Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Forests, Volume 8, Issue 9 (September 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) The way of ascending trees to harvest the “tree crown” biomass with the removal of 100% of the [...] Read more.
View options order results:
result details:
Displaying articles 1-52
Export citation of selected articles as:
Open AccessArticle Direct Seeding of Pinus halepensis Mill. for Recovery of Burned Semi-Arid Forests: Implications for Post-Fire Management for Improving Natural Regeneration
Forests 2017, 8(9), 353; https://doi.org/10.3390/f8090353
Received: 20 June 2017 / Revised: 12 September 2017 / Accepted: 14 September 2017 / Published: 20 September 2017
Cited by 2 | PDF Full-text (5782 KB) | HTML Full-text | XML Full-text
Abstract
Background: In order to maximize the resiliency of Pinus halepensis in semiarid forests, we analyzed direct seeding methods to recover burned stands by simulating post-fire soil treatments. Methods: Seeding was done by installing spot seeding (100 seeds in a 50 × 50 cm
[...] Read more.
Background: In order to maximize the resiliency of Pinus halepensis in semiarid forests, we analyzed direct seeding methods to recover burned stands by simulating post-fire soil treatments. Methods: Seeding was done by installing spot seeding (100 seeds in a 50 × 50 cm plot), using five methods: (1) covering seeding with wood chips; (2) seeding in branch piles; (3) seeding along trunks on contour-felled logs (on the shaded side); (4) seeding next to grass (Stipa tenacissima); and (5) seeding on the bare ground (control). The experiment was replicated according to aspect (northern and southern aspects). The response variables were seed germination (%), and seedling survival after the summer (measured in autumn 2015 and 2016). Direct seeding was carried out in 32 plots with 160-spot seeding, and data were analyzed using general linear models, including nested random effects. Results: Wood chips as a surface-covering material represented the only treatment that significantly improved seed germination and seedling survival (by 12.4%, and 17.4 seedlings m−2 in year 2, respectively) compared with the control in the two topographic aspects. Conclusions: Covering seeding with wood chips, and thus chipping wood within the burned stand, form a recommended post-fire treatment to improve regeneration in Pinus halepensis semiarid stands. Full article
(This article belongs to the Special Issue Effects of Post-Fire Management Activities on Forests)
Figures

Figure 1

Open AccessArticle Environmental Performance of Eastern Canadian Wood Pellets as Measured Through Life Cycle Assessment
Forests 2017, 8(9), 352; https://doi.org/10.3390/f8090352
Received: 20 July 2017 / Revised: 7 September 2017 / Accepted: 14 September 2017 / Published: 19 September 2017
PDF Full-text (2302 KB) | HTML Full-text | XML Full-text
Abstract
Global demand for renewable energy has increased drastically over the last decade due to new climate change policies implemented in many jurisdictions. Wood pellets made from primary wood processing mill residues represent an attractive source of renewable energy that can be used in
[...] Read more.
Global demand for renewable energy has increased drastically over the last decade due to new climate change policies implemented in many jurisdictions. Wood pellets made from primary wood processing mill residues represent an attractive source of renewable energy that can be used in the environmental global challenge. However, the environmental impacts involved in their manufacture must be considered to measure the real benefits they can provide to the atmosphere. The general aim of this study was to evaluate the environmental impacts of wood pellet production at two Quebec plants using the Life Cycle Assessment (LCA) methodology and considering a gate-to-gate approach. The paper focuses on the different stages involved in wood pellet production; from the recovery of mill residues, through the pelletization process, to pellet bagging. The paper further expands to a cradle-to-grave analysis comparing the environmental footprints of producing and combusting 1 GJ of energy from wood pellets, natural gas and fossil fuel oil. The analysis suggested that the drying and the pelletizing stages were the largest negative factors affecting the environmental performance of wood pellet production. The comparison demonstrated the environmental advantage of using renewable rather than fossil sources of energy. Considering the growing interest in renewable energy, biomass in particular, and the lack of environmental information on wood pellets, this study could be useful not only for forest sector-related industries but also for the energy sector and policymakers. Full article
Figures

Figure 1

Open AccessReview Revisiting Wildland Fire Fuel Quantification Methods: The Challenge of Understanding a Dynamic, Biotic Entity
Forests 2017, 8(9), 351; https://doi.org/10.3390/f8090351
Received: 24 August 2017 / Revised: 8 September 2017 / Accepted: 13 September 2017 / Published: 18 September 2017
Cited by 4 | PDF Full-text (742 KB) | HTML Full-text | XML Full-text
Abstract
Wildland fires are a function of properties of the fuels that sustain them. These fuels are themselves a function of vegetation, and share the complexity and dynamics of natural systems. Worldwide, the requirement for solutions to the threat of fire to human values
[...] Read more.
Wildland fires are a function of properties of the fuels that sustain them. These fuels are themselves a function of vegetation, and share the complexity and dynamics of natural systems. Worldwide, the requirement for solutions to the threat of fire to human values has resulted in the development of systems for predicting fire behaviour. To date, regional differences in vegetation and independent fire model development has resulted a variety of approaches being used to describe, measure and map fuels. As a result, widely different systems have been adopted, resulting in incompatibilities that pose challenges to applying research findings and fire models outside their development domains. As combustion is a fundamental process, the same relationships between fuel and fire behaviour occur universally. Consequently, there is potential for developing novel fuel assessment methods that are more broadly applicable and allow fire research to be leveraged worldwide. Such a movement would require broad cooperation between researchers and would most likely necessitate a focus on universal properties of fuel. However, to truly understand fuel dynamics, the complex biotic nature of fuel would also need to remain a consideration—particularly when looking to understand the effects of altered fire regimes or changing climate. Full article
(This article belongs to the Special Issue Wildland Fire, Forest Dynamics, and Their Interactions)
Open AccessReview How Reliable Are Heat Pulse Velocity Methods for Estimating Tree Transpiration?
Forests 2017, 8(9), 350; https://doi.org/10.3390/f8090350
Received: 11 August 2017 / Revised: 7 September 2017 / Accepted: 16 September 2017 / Published: 18 September 2017
Cited by 1 | PDF Full-text (1037 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Transpiration is a significant component of the hydrologic cycle and its accurate quantification is critical for modelling, industry, and policy decisions. Sap flow sensors provide a low cost and practical method to measure transpiration. Various methods to measure sap flow are available and
[...] Read more.
Transpiration is a significant component of the hydrologic cycle and its accurate quantification is critical for modelling, industry, and policy decisions. Sap flow sensors provide a low cost and practical method to measure transpiration. Various methods to measure sap flow are available and a popular family of methods is known as heat pulse velocity (HPV). Theory on thermal conductance and convection, that underpins HPV methods, suggests transpiration can be directly estimated from sensor measurements without the need for laborious calibrations. To test this accuracy, transpiration estimated from HPV sensors is compared with an independent measure of plant water use such as a weighing lysimeter. A meta-analysis of the literature that explicitly tested the accuracy of a HPV sensors against an independent measure of transpiration was conducted. Data from linear regression analysis was collated where an R2 of 1 indicates perfect precision and a slope of 1 of the linear regression curve indicates perfect accuracy. The average R2 and slope from all studies was 0.822 and 0.860, respectively. However, the overall error, or deviation from real transpiration values, was 34.706%. The results indicate that HPV sensors are precise in correlating heat velocity with rates of transpiration, but poor in quantifying transpiration. Various sources of error in converting heat velocity into sap velocity and sap flow are discussed including probe misalignment, wound corrections, thermal diffusivity, stem water content, placement of sensors in sapwood, and scaling of point measurements to whole plants. Where whole plant water use or transpiration is required in a study, it is recommended that all sap flow sensors are calibrated against an independent measure of transpiration. Full article
Figures

Figure 1

Open AccessArticle Structure and Composition of a Dry Mixed-Conifer Forest in Absence of Contemporary Treatments, Southwest, USA
Forests 2017, 8(9), 349; https://doi.org/10.3390/f8090349
Received: 3 June 2017 / Revised: 12 September 2017 / Accepted: 15 September 2017 / Published: 16 September 2017
Cited by 1 | PDF Full-text (1770 KB) | HTML Full-text | XML Full-text
Abstract
Dry mixed-conifer forests in the Southwest occupy an important ecological and hydrological role in upper watersheds. In the absence of reoccurring fire and silvicultural treatments over the last 50 years, we quantified forest structure and composition on prevailing north and south aspects of
[...] Read more.
Dry mixed-conifer forests in the Southwest occupy an important ecological and hydrological role in upper watersheds. In the absence of reoccurring fire and silvicultural treatments over the last 50 years, we quantified forest structure and composition on prevailing north and south aspects of a dry mixed-conifer forest in southcentral New Mexico using mixed models and ordination analysis in preparation for an experiment in ecological restoration. Results indicated overstory and midstory were dominated by Douglas-fir (Pseudotsuga menziesii) and shade tolerant/fire intolerant white fir (Abies concolor) with interspersed mature aspen on north aspects, and Douglas-fir and Southwestern white pine (Pinus strobiformis) on south aspects. Ponderosa pine (Pinus ponderosa), which was historically co-dominant with Douglas-fir on north and south aspects, was subdominant on south aspects and almost entirely absent on north aspects. Regeneration was dominated by white fir saplings and seedlings on north aspects while ponderosa pine was completely absent. South aspect saplings and seedlings were characterized by Douglas-fir and Southwestern white pine, but almost no ponderosa pine. Ordination analysis characterized the effect of aspect on species composition. Understanding contemporary forest structure and composition is important when planning for desired future conditions that are to be achieved through ecological restoration using silvicultural techniques designed to foster resilience. Full article
Figures

Figure 1

Open AccessArticle Long Non-Coding RNAs Responsive to Witches’ Broom Disease in Paulownia tomentosa
Forests 2017, 8(9), 348; https://doi.org/10.3390/f8090348
Received: 16 August 2017 / Revised: 12 September 2017 / Accepted: 12 September 2017 / Published: 15 September 2017
PDF Full-text (2798 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Paulownia witches’ broom (PaWB) disease caused by phytoplasmas is a fatal disease that leads to considerable economic losses. Long non-coding RNAs (lncRNAs) have been demonstrated to play critical regulatory roles in posttranscriptional and transcriptional regulation. However, lncRNAs and their functional roles remain poorly
[...] Read more.
Paulownia witches’ broom (PaWB) disease caused by phytoplasmas is a fatal disease that leads to considerable economic losses. Long non-coding RNAs (lncRNAs) have been demonstrated to play critical regulatory roles in posttranscriptional and transcriptional regulation. However, lncRNAs and their functional roles remain poorly characterized in Paulownia. To identify lncRNAs and investigate their roles in the response to PaWB phytoplasmas, RNA sequencing was performed for healthy Paulownia tomentosa, PaWB-infected P. tomentosa, and for healthy and PaWB-infected P. tomentosa treated with 100 mg L−1 rifampicin. A total of 28,614 unique mRNAs and 3693 potential lncRNAs were identified. Comparisons between lncRNAs and coding genes indicated that lncRNAs tended to have shorter transcripts and fewer exon numbers, and displayed significant expression specificity. Based on our comparison scheme, 1063 PaWB-related mRNAs and 110 PaWB-related lncRNAs were identified; among them, 12 PaWB-related candidate target genes that were regulated by nine PaWB-related lncRNAs were characterized. This study provides the first catalog of lncRNAs expressed in Paulownia and gives a revealing insight into the molecular mechanism responsible for PaWB. Full article
(This article belongs to the Special Issue Genetics and Genomics of Forest Trees)
Figures

Figure 1

Open AccessArticle Rapid Shifts in Soil Nutrients and Decomposition Enzyme Activity in Early Succession Following Forest Fire
Forests 2017, 8(9), 347; https://doi.org/10.3390/f8090347
Received: 3 August 2017 / Revised: 12 September 2017 / Accepted: 13 September 2017 / Published: 15 September 2017
Cited by 5 | PDF Full-text (2776 KB) | HTML Full-text | XML Full-text
Abstract
While past research has studied forest succession on decadal timescales, ecosystem responses to rapid shifts in nutrient dynamics within the first months to years of succession after fire (e.g., carbon (C) burn-off, a pulse in inorganic nitrogen (N), accumulation of organic matter, etc.)
[...] Read more.
While past research has studied forest succession on decadal timescales, ecosystem responses to rapid shifts in nutrient dynamics within the first months to years of succession after fire (e.g., carbon (C) burn-off, a pulse in inorganic nitrogen (N), accumulation of organic matter, etc.) have been less well documented. This work reveals how rapid shifts in nutrient availability associated with fire disturbance may drive changes in soil enzyme activity on short timescales in forest secondary succession. In this study, we evaluate soil chemistry and decomposition extracellular enzyme activity (EEA) across time to determine whether rapid shifts in nutrient availability (1–29 months after fire) might control microbial enzyme activity. We found that, with advancing succession, soil nutrients correlate with C-targeting β-1,4-glucosidase (BG) EEA four months after the fire, and with N-targeting β-1,4-N-acetylglucosaminidase (NAG) EEA at 29 months after the fire, indicating shifting nutrient limitation and decomposition dynamics. We also observed increases in BG:NAG ratios over 29 months in these recently burned soils, suggesting relative increases in microbial activity around C-cycling and C-acquisition. These successional dynamics were unique from seasonal changes we observed in unburned, forested reference soils. Our work demonstrates how EEA may shift even within the first months to years of ecosystem succession alongside common patterns of post-fire nutrient availability. Thus, this work emphasizes that nutrient dynamics in the earliest stages of forest secondary succession are important for understanding rates of C and N cycling and ecosystem development. Full article
(This article belongs to the Special Issue Carbon and Nitrogen in Forest Ecosystems)
Figures

Figure 1

Open AccessArticle Patterns of Early Postfire Succession of Alpine, Subalpine and Lichen-Woodland Vegetation: 21 Years of Monitoring from Permanent Plots
Forests 2017, 8(9), 346; https://doi.org/10.3390/f8090346
Received: 7 August 2017 / Revised: 5 September 2017 / Accepted: 8 September 2017 / Published: 15 September 2017
Cited by 1 | PDF Full-text (2224 KB) | HTML Full-text | XML Full-text
Abstract
Field observations using chronosequences are helpful to study vegetation succession. This method allows to establish comparisons based on soil composition, stand structure, micro- and macrofossil remains from sites of different ages but on similar edaphic and topographic conditions. In the boreal forest, post-fire
[...] Read more.
Field observations using chronosequences are helpful to study vegetation succession. This method allows to establish comparisons based on soil composition, stand structure, micro- and macrofossil remains from sites of different ages but on similar edaphic and topographic conditions. In the boreal forest, post-fire succession through time is triggered by climate, disturbance history (insect epidemics, fire and logging), latitude and altitude. The main objective of this research is to identify the main patterns of early post-fire succession, including similarities and differences in vegetation composition and attributes, of three contrasted ecosystems distributed along an altitudinal gradient. To do so, we have monitored the successional development of the alpine, subalpine and boreal lichen-woodland sites during the first 21 years (1991 to 2011) of post-fire sequence in eastern Canada 1991 to 2011. Each site was characterized by a different functional group that became established following fire. A rapid resurgence of ericaceous shrubs and lichens was observed in the lichen woodland and subalpine sites. Bryophyte and lichen species were not an important component of vegetation communities during the earlier stages of post-fire succession. For all three sites monitored, lichens were the last functional group to establish in the chronosequences. Herbs and mosses characterized the post-fire succession in alpine areas, the latter functional group established late in the chronosequence to cover >25% of the site after 15 years. Post-fire chronosequences in the three contrasted environments indicate that plant succession is a repetitive process often involving similar resilient plant assemblages. Full article
(This article belongs to the Special Issue Successional Dynamics of Forest Structure and Function)
Figures

Figure 1

Open AccessArticle Towards a Theoretical Construct for Modelling Smallholders’ Forestland-Use Decisions: What Can We Learn from Agriculture and Forest Economics?
Forests 2017, 8(9), 345; https://doi.org/10.3390/f8090345
Received: 4 July 2017 / Revised: 2 September 2017 / Accepted: 12 September 2017 / Published: 14 September 2017
PDF Full-text (1073 KB) | HTML Full-text | XML Full-text
Abstract
Academic research on smallholders’ forestland-use decisions is regularly addressed in different streams of literature using different theoretical constructs that are independently incomplete. In this article, we propose a theoretical construct for modelling smallholders’ forestland-use decisions intended to serve in the guidance and operationalization
[...] Read more.
Academic research on smallholders’ forestland-use decisions is regularly addressed in different streams of literature using different theoretical constructs that are independently incomplete. In this article, we propose a theoretical construct for modelling smallholders’ forestland-use decisions intended to serve in the guidance and operationalization of future models for quantitative analysis. Our construct is inspired by the sub-disciplines of forestry and agricultural economics with a crosscutting theme of how transaction costs drive separability between consumption and production decisions. Our results help explain why exogenous variables proposed in the existing literature are insufficient at explaining smallholders’ forestland-use decisions, and provide theoretical context for endogenizing characteristics of the household, farm and landscape. Smallholders’ forestland-use decisions are best understood in an agricultural context of competing uses for household assets and interdependent consumption and production decisions. Forest production strategies range from natural regeneration to intensive management of the forest resource to co-jointly produce market and non-market values. Due to transaction costs, decision prices are best represented by their shadow as opposed to market prices. Shadow prices are shaped by endogenous smallholder-specific preferences for leisure, non-market values, time, risk, and uncertainty. Our proposed construct is intended to provide a theoretical basis to assist modellers in the selection of variables for quantitative analysis. Full article
(This article belongs to the Special Issue At the Frontiers of Knowledge in Forest Economics)
Figures

Figure 1

Open AccessArticle Relationships between Plant Species Richness and Terrain in Middle Sub-Tropical Eastern China
Forests 2017, 8(9), 344; https://doi.org/10.3390/f8090344
Received: 16 June 2017 / Revised: 31 August 2017 / Accepted: 4 September 2017 / Published: 14 September 2017
PDF Full-text (4528 KB) | HTML Full-text | XML Full-text
Abstract
The objective of this research was to study the relation between species richness and topography in the middle sub-tropical area of Eastern China. A species richness survey was conducted along altitude in Kaihua County, Zhejiang Province, Eastern China. Topographic variables, such as altitude,
[...] Read more.
The objective of this research was to study the relation between species richness and topography in the middle sub-tropical area of Eastern China. A species richness survey was conducted along altitude in Kaihua County, Zhejiang Province, Eastern China. Topographic variables, such as altitude, slope, aspect, terrain roughness, relief degree and the topographical wetness index, were extracted from the digital elevation model. The Generalized Additive Model (GAM), the linear model and the quadratic model were used to fit response curves of species richness to topographic variables. The results indicated that altitude and the topographical wetness index have a significant relation to species richness. Species richness has a unimodal response to altitude and a linear response to the topographical wetness index. However, no significant correlations were observed between slope, aspect and species richness. The predicted species richness by GAM is significantly correlated with the observed species richness, whereas the prediction error tends to increase with the increment of species richness. This study furthered insights into the relationship between topography and plants’ diversity in the middle sub-tropical area of Eastern China. Full article
(This article belongs to the Special Issue Plant Diversity and Phytogeography in Forests)
Figures

Figure 1

Open AccessArticle Forest Structure Estimation from a UAV-Based Photogrammetric Point Cloud in Managed Temperate Coniferous Forests
Forests 2017, 8(9), 343; https://doi.org/10.3390/f8090343
Received: 18 August 2017 / Revised: 4 September 2017 / Accepted: 6 September 2017 / Published: 13 September 2017
Cited by 1 | PDF Full-text (1538 KB) | HTML Full-text | XML Full-text
Abstract
Here, we investigated the capabilities of a lightweight unmanned aerial vehicle (UAV) photogrammetric point cloud for estimating forest biophysical properties in managed temperate coniferous forests in Japan, and the importance of spectral information for the estimation. We estimated four biophysical properties: stand volume
[...] Read more.
Here, we investigated the capabilities of a lightweight unmanned aerial vehicle (UAV) photogrammetric point cloud for estimating forest biophysical properties in managed temperate coniferous forests in Japan, and the importance of spectral information for the estimation. We estimated four biophysical properties: stand volume (V), Lorey’s mean height (HL), mean height (HA), and max height (HM). We developed three independent variable sets, which included a height variable, a spectral variable, and a combined height and spectral variable. The addition of a dominant tree type to the above data sets was also tested. The model including a height variable and dominant tree type was the best for all biophysical property estimations. The root-mean-square errors (RMSEs) for the best model for V, HL, HA, and HM, were 118.30, 1.13, 1.24, and 1.24, respectively. The model including a height variable alone yielded the second highest accuracy. The respective RMSEs were 131.74, 1.21, 1.31, and 1.32. The model including a spectral variable alone yielded much lower estimation accuracy than that including a height variable. Thus, a lightweight UAV photogrammetric point cloud could accurately estimate forest biophysical properties, and a spectral variable was not necessarily required for the estimation. The dominant tree type improved estimation accuracy. Full article
Figures

Figure 1

Open AccessArticle Proximate Causes of Land-Use and Land-Cover Change in Bannerghatta National Park: A Spatial Statistical Model
Forests 2017, 8(9), 342; https://doi.org/10.3390/f8090342
Received: 6 June 2017 / Revised: 1 September 2017 / Accepted: 5 September 2017 / Published: 12 September 2017
Cited by 1 | PDF Full-text (1808 KB) | HTML Full-text | XML Full-text
Abstract
Land change modeling has become increasingly important in evaluating the unique driving factors and proximate causes that underlie a particular geographical location. In this article, a binary logistic regression analysis was employed to identify the factors influencing deforestation and simultaneous plantation driven reforestation
[...] Read more.
Land change modeling has become increasingly important in evaluating the unique driving factors and proximate causes that underlie a particular geographical location. In this article, a binary logistic regression analysis was employed to identify the factors influencing deforestation and simultaneous plantation driven reforestation in Bannerghatta National Park, located at the periphery of one of the fastest growing cities in India, i.e., Bangalore. Methodologically, this study explores the inclusion of different sub-regions and statistical population to address spatial autocorrelation in land change modeling. The results show negative relationship between deforestation and protected area status and edge of previous forest clearing. In addition, the deforestation models found differences in the processes that are affecting forest clearing in our two sub-periods of 1973–1992 and 1992–2007. The plantation driven reforestation in the region were attributed to distance to major towns, Bangalore city, rural centers and major and minor roads suggesting the importance of accessibility to market for heavy cash crops such as coconut palm and eucalyptus. Finally, the inclusion of different sub-regions and statistical population facilitated a better understanding of varying driving factors in different zones within the overall landscape. Full article
(This article belongs to the Special Issue Forest Landscape Ecology: Linking Past, Present, and Future Data)
Figures

Figure 1

Open AccessArticle Traits and Resource Use of Co-Occurring Introduced and Native Trees in a Tropical Novel Forest
Forests 2017, 8(9), 339; https://doi.org/10.3390/f8090339
Received: 1 July 2017 / Revised: 6 September 2017 / Accepted: 6 September 2017 / Published: 12 September 2017
PDF Full-text (4173 KB) | HTML Full-text | XML Full-text
Abstract
Novel forests are naturally regenerating forests that have established on degraded lands and have a species composition strongly influenced by introduced species. We studied ecophysiological traits of an introduced species (Castilla elastica Sessé) and several native species growing side by side in
[...] Read more.
Novel forests are naturally regenerating forests that have established on degraded lands and have a species composition strongly influenced by introduced species. We studied ecophysiological traits of an introduced species (Castilla elastica Sessé) and several native species growing side by side in novel forests dominated by C. elastica in Puerto Rico. We hypothesized that C. elastica has higher photosynthetic capacity and makes more efficient use of resources than co-occurring native species. Using light response curves, we found that the photosynthetic capacity of C. elastica is similar to that of native species, and that different parameters of the curves reflected mostly sun light variation across the forest strata. However, photosynthetic nitrogen use-efficiency as well as leaf area/mass ratios were higher for C. elastica, and both the amount of C and N per unit area were lower, highlighting the different ecological strategies of the introduced and native plants. Presumably, those traits support C. elastica’s dominance over native plants in the study area. We provide empirical data on the ecophysiology of co-occurring plants in a novel forest, and show evidence that different resource-investment strategies co-occur in this type of ecosystem. Full article
(This article belongs to the Special Issue Tropical Forest Ecology and Management for the Anthropocene)
Figures

Figure 1

Open AccessArticle Excessive Accumulation of Chinese Fir Litter Inhibits Its Own Seedling Emergence and Early Growth—A Greenhouse Perspective
Forests 2017, 8(9), 341; https://doi.org/10.3390/f8090341
Received: 27 July 2017 / Revised: 30 August 2017 / Accepted: 6 September 2017 / Published: 11 September 2017
PDF Full-text (2695 KB) | HTML Full-text | XML Full-text
Abstract
Litter accumulation can strongly influence plants’ natural regeneration via both physical and chemical mechanisms, but the relative influence of each mechanism on seedling establishment remains to be elucidated. Chinese fir (Cunninghamia lanceolata) is one of the most important commercial plantations in
[...] Read more.
Litter accumulation can strongly influence plants’ natural regeneration via both physical and chemical mechanisms, but the relative influence of each mechanism on seedling establishment remains to be elucidated. Chinese fir (Cunninghamia lanceolata) is one of the most important commercial plantations in southern China, but its natural regeneration is poor, possibly due to its thick leaf litter accumulation. We used natural and plastic litter to study the effects of Chinese fir litter on its own seedling emergence and early growth, as well as to assess whether the effect is physical or chemical in nature. Results showed that high litter amount (800 g·m−2) significantly reduced seedling emergence and the survival rate for both natural and plastic litter. Low litter amount (200 g·m−2) exerted a slightly positive effect on root mass, leaf mass, and total mass, while high litter amount significantly inhibited root mass, leaf mass, and total mass for both natural and plastic litter. Root-mass ratio was significantly lower, and leaf-mass ratio was significantly greater under high litter cover than under control for both natural and plastic litter. Although the root/shoot ratio decreased with increasing litter amount, such effect was only significant for high litter treatment for both natural and plastic litter. Seedling robustness (aboveground biomass divided by seedling height) decreased with increasing litter amount, with high litter treatment generating the least robust seedlings. Because plastic and natural litter did not differ in their effects on seedling emergence and growth, the litter layer’s short-term influence is primarily physical. These data indicated that as litter cover increased, the initial slightly positive effects on seedling emergence and early growth could shift to inhibitory effects. Furthermore, to penetrate the thick litter layer, Chinese fir seedlings allocated more resources towards stems and aboveground growth at the expense of their roots. This study provided experimental evidence of litter amount as a key ecological factor affecting seedling development and subsequent natural regeneration of Chinese fir. Full article
Figures

Figure 1

Open AccessArticle Individual Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest
Forests 2017, 8(9), 340; https://doi.org/10.3390/f8090340
Received: 28 July 2017 / Revised: 8 September 2017 / Accepted: 8 September 2017 / Published: 11 September 2017
Cited by 8 | PDF Full-text (7072 KB) | HTML Full-text | XML Full-text
Abstract
Advances in Unmanned Aerial Vehicle (UAV) technology and data processing capabilities have made it feasible to obtain high-resolution imagery and three dimensional (3D) data which can be used for forest monitoring and assessing tree attributes. This study evaluates the applicability of low consumer
[...] Read more.
Advances in Unmanned Aerial Vehicle (UAV) technology and data processing capabilities have made it feasible to obtain high-resolution imagery and three dimensional (3D) data which can be used for forest monitoring and assessing tree attributes. This study evaluates the applicability of low consumer grade cameras attached to UAVs and structure-from-motion (SfM) algorithm for automatic individual tree detection (ITD) using a local-maxima based algorithm on UAV-derived Canopy Height Models (CHMs). This study was conducted in a private forest at Cache Creek located east of Jackson city, Wyoming. Based on the UAV-imagery, we allocated 30 field plots of 20 m × 20 m. For each plot, the number of trees was counted manually using the UAV-derived orthomosaic for reference. A total of 367 reference trees were counted as part of this study and the algorithm detected 312 trees resulting in an accuracy higher than 85% (F-score of 0.86). Overall, the algorithm missed 55 trees (omission errors), and falsely detected 46 trees (commission errors) resulting in a total count of 358 trees. We further determined the impact of fixed tree window sizes (FWS) and fixed smoothing window sizes (SWS) on the ITD accuracy, and detected an inverse relationship between tree density and FWS. From our results, it can be concluded that ITD can be performed with an acceptable accuracy (F > 0.80) from UAV-derived CHMs in an open canopy forest, and has the potential to supplement future research directed towards estimation of above ground biomass and stem volume from UAV-imagery. Full article
Figures

Graphical abstract

Back to Top