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Abstract: The paper shows how the aspects of uncertainty in spatial harvest scheduling can be
embedded into a harvest optimization model. We introduce an approach based on robust optimization
that secures better scheduling schematics of the decision maker while eliminating a significant
portion of uncertainty in the decisions. The robust programming approach presented in this paper
was applied in a real management area of Central Europe. The basic harvest scheduling model
with harvest-flow constraints was created. The uncertainty that is assessed here is due to forest
inventory errors and growth prediction errors of stand volume. The modelled results were compared
with randomly simulated errors of stand volume. The effects of different levels of robustness and
uncertainty on harvest-flow were analyzed. The analysis confirmed that using the robust approach
for harvest decisions always ensures significantly better solutions in terms of the harvested volume
than the worst-case scenarios created under the same constraints. The construction of a mathematical
model as well as the methodology of simulations are described in detail. The observed results
confirmed obvious advantages of robust optimization. However, many problems with its application
in forest management must still be solved. This study helps to address the need to develop and
explore methods for decision-making under different kinds of uncertainty in forest management.
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1. Introduction

According to the Food and Agriculture Organization [1], one form of sustainable indicator is the
area of forests under sustainable forest management. Sustainable development is a necessary part
of sustainable forest management and its purpose is to eradicate poverty, to significantly minimize
deforestation, and to minimize degradation of natural resources (forests) and the loss of biodiversity
of the forests. Forest management should reduce possible fluctuations in the harvested amount of
wood that could cause excessive deforestation and thereby reduce all ecosystem services. However,
there are a lot of uncertainties in forestry-timber sector which can significantly impair the functioning
of the entire supply chain and thus decrease the efficiency of use [2]. Uncertainty means lack of the
information about the current or future state of the forest. The quality of forest management and
planning has an important direct impact on the performance of the supply chain [3].

Although forestry and timber supply chains have been improved during the last decade, the challenge
of integrating different planning problems still remains. For example, long-term forest management
requires assumptions about future conditions which have various degrees of uncertainty. Wrong
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decisions in forest management can have effects that span over long periods [4]. Although deterministic
models can provide relatively good solutions, they do not take into account the information about
variability of the incomes caused by these sources of uncertainty.

One way to incorporate uncertainty into the planning process is post-optimal or sensitivity
analysis, while another approach used in forestry is based on scenario analyses or simulations.
The uncertainty in the modelling process [5] can be explicitly considered by the means of the
mathematical programming methods which have been used to solve harvest scheduling problems
since the 1970s (e.g., [6,7]). Any harvest scheduling model should also include harvest-flow constraints
which are essential parts of these models because coordinating the harvest-flow is a vital concern of
many forest and timber companies [8]. There are many different types of harvest-flow constraints
presented in many different papers (see, for example, [9-11]).

Parameter uncertainty in mathematical programming has been treated in many ways since
Dantzig’s pioneering work [12] wherein the sensitivity analysis of the mathematical programs is
introduced. The sensitivity analysis is a tool that allows ex-post examination of possible perturbations
in the input data. Ben-Tal and Nemirovski [13] point out, however, that the sensitivity analysis does
not say how to improve the solution stability when necessary and instead, they focus on robust
optimization methodology (RO) which is a possible approach to deal with the uncertainty. Also,
RO is deterministic and set-based rather than stochastic programming [14]. An overall comparison of
robust optimization, stochastic (linear) programming, and sensitivity analysis is brought by Mulvey,
Vanderbei, and Zenios [15] who also provide the comparison of all approaches on the real case study
which is built on earlier robust formulation developed by Malcolm and Zenios [16]. An extensive
work on the matter of robustness was developed by Soyster [17]. Compared to the current trends
in robust optimization, it was quite over-conservative in terms of uncertainty. Since Soyster’s work,
a considerable number of improvements were made in this area and RO has become a focus of many
researchers, as it happens to be somehow attractive for its not-so-stochastic nature. Not only is it
applicable to linear programs, but it was generalized for integer programming [18] or even semidefinite
programming (SDP). Despite semidefinite programming being a rather new field of optimization,
it has come to interest of researchers dealing with robustness. El-Ghaoui, Oustry, and Lebret [19] prove
and show how to obtain approximate robust solutions via SDP.

Several scientific papers dealing with RO have already been published on this matter. Palma and
Nelson [5] applied the RO approach in a typical harvest scheduling problem where the uncertainty
is considered in the volume and demand of products over the entire planning horizon. They took
advantage of the approach by Bertsimas and Sim [19] with slight changes proposed in the paper [5].
Later on, Palma described the usefulness of RO within the harvest decisions from several different
points of view [20]. Another paper by Palma and Nelson [21] is dedicated to the RO of road-building
and harvest-scheduling decisions from timber estimate errors. Another paper dealing with road
building and uncertainty was elaborated by Murphy and Stander [22]. From recent papers looking
at the robust optimization in the field of forestry, we can mention two papers dedicated to sawmill
planning [23,24] and sawmill production scheduling [25]. One can notice that the RO approach appears
in the forestry science quite rarely and only in recent years.

The main goal of the paper is to analyze possible effects of assumed uncertainties in forestry
inventory data and growth model predictions on the harvesting balance in the long-term perspective
and to present one possible method of incorporating the uncertainties directly into the harvest
scheduling model. The second goal of the paper is to test a new way of including robustness into the
harvest scheduling model.
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2. Materials and Methods

2.1. Study Area

The models were applied to a 513.9 ha forest management unit (FMU) located in the central part of
the Czech Republic with mean altitude of 510 m above sea level. The mean rotation period is 110 years
and the regeneration period is 30 years. The stand volume data for this FMU were obtained from the
forest inventory documents in 2013. To simplify the scenarios, species composition of the forest stands
was limited to a single species, Norway spruce (Picea abies (L.) Karst), which covers 87% of the FMU.
We used the current mean site index of the studied FMU equal to 28. One hundred and sixty-three
(163) stands with a total area of 350 ha were available to be harvested in the initial 50 years. Each forest
stand was divided into the harvest units (strips) following the rules of the clear-cut system (i.e., the
limited area and the width of strips). The total number of harvest units was 361, with an average area
of 0.96 ha. A planning horizon of five periods (each 10 years long) was used for the analysis.

2.2. Model Formulation

In this section, we introduce two harvest scheduling models. Firstly, the deterministic model
(DET) of harvesting will be specified and the robust model (ROB) and its development from the first
model (DET) will be described. The DET model represents a deterministic description of the harvest
scheduling situation where no uncertainty is assumed. The ROB model describes the analogous
situation but with aspects of uncertainty also included. Both models are described further in detail.

The DET maximizes the volume of the harvest units over a certain number of harvest periods
while the harvest balance across the planning horizon as well as the spatial restrictions between the
cutting units are preserved. This model generally falls into the category of Unit restriction models of
spatial harvest scheduling (URM), which specifically proposes harvesting not only in the time but
also in the space. The DET model is a discrete programming model and consists of a set of decision
0-1 variables x;,, four sets of constraints and one objective function. The model is generally applied
to I cutting units over P periods, and the indices of decision variables x;, arei =1, 2, ..., [ and
p=12 ..., P

The optimization goal is given as the maximization of the harvested volume v under the constraints
that harvesting fluency, unit adjacency, and other logical conditions are satisfied. For modelling
purposes, we assumed 5% growth from period to period. Let us denote the DET model as:

I P
Maximize Z Z VipXip 1)
i=1p=1
subject to
P
Y xp,<li=1,...,1 )
p=1
I I I
(1—-a) 2 ipXip SZ i(p+1)Xi(p+1) §(1+06 Evlpxzp,r?—l ., P 3)
i=1 i=1 i=1
Xip + Xjp <1 VZ,VP,\V/] e (4)
xip € {0,1} ©)

The objective function (1) maximizes the harvested volume of each unit i in every period p over
thesetof all unitsi =1, 2, ..., I and the setof all periods p =1, 2,..., P. where v expresses the
stand volume. The first set of constraints (2) ensures that each unit is harvested at most once during the
planning horizon, the second set of constraints (3) ensures the fluent harvest flow with the maximum
deviation such that 0 < & < 1, and the third set of constraints (4) describes the spatial restrictions
of the problem while the set (); includes all units adjacent to the unit i. The last set of constraints (5)
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merely shows what values the decision variable x;, can attain. The value of 0 means the unit i is not
harvested in period p, while 1 shows the opposite. Let us denote the feasibility subset (2, 4, and 5) of
DET as @ (defined later).

The solution of the DET model is based on the assumption that all exact parameter values of its
components are known. Specifically, it is considered that the estimated volume v;;, of all harvest units i
is not going to change in any way over the planning horizon of P periods. In practice, this is hardly a
certainty with respect to all thinkable influences of environmental changes or human-caused actions.

It is possible to overcome these unexpected deviations by building a robust optimization model.
A robust alternative to the standard deterministic optimization model is called a robust counterpart
(ROB). In the following section, the modified approach of Palma and Nelson [5] (originally based
on [26]) that accounts also for the robustness of left-hand side coefficients will be briefly summarized.

Let us have a general constraint of an optimization model given as a;;x; < b. Let us assume
that the coefficients a;; belong to a symmetric interval [ul-j — i, aj; + ﬁi]} , where 4;; is the expected
symmetric deviation from the original deterministic value of the coefficient a;;. To acquire the ROB
model, one must perform several steps to transform the original model into its robust counterpart.
The deviations shown in this paragraph refer to the changes in the left-hand side coefficients in an
arbitrary constraint of an optimization problem given as:

n
Maximize ) c;x; (6)
j=1
subject to:
n
Y oa;ix; <b;, Vi
=R 7)
x]- Z 0 , \V/]

The robust counterpart of (6, 7) model is then defined as:

n
Maximize ) c;x; (8)
=1

subject to:

n
i +Tizi+ L qij < bi, Vi
/:

j€li
zi +qij > a;xj, Vi, Vj € J;
x>0, Y )
T; €0, |Jil], Vi
Zj Z 0, Vi

There are several new variables and parameters in (8, 9) that need to be explained. Auxiliary
variables g;; and z; are products of the ROB model inference from the DET and have no significantly
important real interpretation for our purposes. I is an important parameter that controls the
uncertainty for each constraint. The value of I'; (protection level) represents how many left-hand side
coefficients of that constraint we assume have deviations from their original values a;; by 4;;. The set of
indices J; is the set of uncertain coefficients that are considered for each constraint. We refer the reader
to Bertsimas and Sim [26] for the detailed proof of creating (8, 9) from (6, 7).

Going back to our DET model, one can realize that imposing the uncertainty on any left-hand side
coefficients in constraints (2-5) would be sensible only in the case of constraints (3). In the remaining
constraints (2, 4, and 5), no such coefficients are explicitly included. In the case of (3), it could be
assumed to impose the uncertainty on parameter a or parameter(s) v;, The parameter «a alone is
given by the harvest-flow standards where no deviations can be logically assumed. The group of
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parameters v;;, is more of our interest since the volume of individual stands is a quantity that can be
hardly measured with absolute precision. Thus, we will concentrate on assuming deflections in the
Ujp parameters.

The v;,s in the DET model are found in constraints (3) that express the ratio between the total
volumes harvested in two consequent periods. One must notice that the very same parameters also
appear in the objective function of the DET model. We can assume that the uncertainty of v;,s must be
then considered in both constraints (3) and objective function (1). We will apply the transformation
from DET model (6, 7) to ROB model (8, 9) as described above. However, the given form of ROB (8, 9)
assumes uncertainties only in the left-hand sided coefficients of the model constraints. In our case, the
uncertainty is needed in the constraints and in the objective function. One can overcome this issue by
transforming the objective function into a constraint in the following way:

I P
Maximize Y Y vipXip (10)
i=1p=1
Is equivalent to (11) with (12)
Maximize E (11)
subject to
[ P
—Y ) vipxip +E<0 (12)

i=1p=1
with E as an auxiliary function. Now in (12) the objective function coefficients are on the left-hand side
and hence, it is possible to treat them in terms of building a robust counterpart.

However, the number of expected deviations v;,, controlled by I'; parameter is known. To solve it,
let us assume that some of the v;,s will deviate in the objective function (or now in constraint (12))
by at most 0;,. By setting I'; to a specific value we state that this is the maximum possible number
of coefficients v;, that will possibly deviate from their expected values. However, the coefficients are
not specified. Practically, it means that the number of the coefficients, which will change in every
period p, is unknown. This is a problem in relation to the set of constraints (3) wherein the same v;,s
are also included. To deal with this situation we have to split the objective function into a sum of P
functions with each representing one period. That leads to the following equivalent re-definition of
(11) and (12) into:
P
Maximize Z Ep (13)
p=1

subject to

I
- Y vpxp+E <0
i—1

I
— Y Upxp+E <0
i=1 (14)

I
— Y vipxip+ Ep <0
i—1

This allows us to treat the uncertainty in the individual periods separately. It is now possible to
design the final ROB model:

P
Maximize ) Ep (15)
p=1
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subject to
I
— L UpXip+Ep+Tpzp+ ) qip <0, p=1,...,P
i=1 US
I I
(1—a) ¥ vipxip — L Vigpen)Xigper) + Tp +Tpr1)zp+ L qip <0, p=1,..., P
i=1 i=1 i€{JpUJps1}
I I
-1+« VipXip + Y. 0; X; +(T'y4+Tpi1)zp + Y iy <0, p=1,..., P
( )z':l ipXip = i(p+1)Xi(p+1) ( p p+) P iE{]pU],,H}qlp p (16)
zp+qip = OipXip, p=1,...,P, i €]p
Xip cd
z,>20,p=1,...,P
IIPRS [0, Iy ], p=1,...,P

qipzo, p=1...,P,i€]p

This was an expected obstacle since the problem is NP-hard (non-deterministic polynomial-time
hard) on its own (due to the presence of integral variables). The time limit for solving had to be set
to 1200 s. The instances of the described models were computed on a personal computer with Intel®
Core™ processor (Intel, Santa Clara, CA, USA) with 3.40 GHz and 16.0 GB random-access memory,
which represents common computer equipment available today. The Gurobi® 6. 5 (Gurobi, Houston,
TX, USA) [27] optimization solver was used. The branching solving algorithm allows for lower and
upper bounds to be found on the optimal solution. The optimal solution might not be found in a
reasonable time but the lower and upper bounds might be. This approach can sometimes provide a
sufficiently tight estimate of the result. Once the lower and upper bounds on the optimal solution are
available the software is able to calculate the feasible solution x** whose objective is within p % of the
optimum value x*. The difference between x* and x** is called a gap.

2.3. Simulation Experiments

The deterministic and robust solutions were tested by simulating the uncertain coefficients of
the model within the uncertainty sets as described above. The slightly changed approach proposed
by [5] was used for the simulation. That is, we analyzed the optimal solutions from the deterministic
and robust models using randomly selected harvest units whose stand volumes were reduced by
deviations defined above (9;;). The number of the randomly selected harvest units was equal to the
protection levels (I'y) for each individual planning period. We performed 1000 simulations of the
volume coefficients for all optimal solutions. The same number of simulations was performed in the
similar experiments by Palma [5]. In our case, it occurred that the higher number of simulations is not
necessary for the refinement of the results. A convergent behavior was observed in the variance of the
solutions above 1000 simulations, and thus we consider this number sufficient. The resulting objective
function, change in the periodic harvested amount, and the occurrence of infeasibility were examined.

3. Results

Different harvest flow percentages (10% to 100% in scale of 10%) were analyzed in this paper for
five planning periods. The uncertain parameters were used for the simulation experiments and the
ROB model. We assumed the deviation 0;; equal to 15% for the first planning period (PP), 20% for the
second PP, 25% for the third PP, 30% for fourth PP, and 35% for the fifth PP. The assumptions of the
deviations are based on the theoretical expectation of the inventory errors in the first PP which increase
in each period by the approximated prediction errors. The protection levels I', were set to 10% to 60%
for the first PP. It is assumed that 10% to 60% of the harvest units can have negative deviations from
the original value in the first PP. We assumed that the confidence in the predicted number of deviations
decreases with every subsequent PP; in other words, the protection level increases by 10% in each PP.
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Figure 1 presents the relation between the protection level and the harvested volume estimated
by simulation experiments for each period. The optimal solution from the DET model was used for
the simulation experiments and is presented by the black squares in the figure. The harvest flow
constraints were excluded from this DET model. It is obvious that as the planning period and the
expected uncertainty of growth increase, the difference between the expected harvested volume (DET
model value) and the simulated worst alternative of the harvested volume also increase. Contrary to
other works (e.g., [5]), simulations were always worse (100% of cases) than the solution obtained by
the DET model, or always better (100% of cases) than the solution obtained by the ROB model.
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Figure 1. The relation between the protection level and the harvested volume obtained by the deterministic
(DET) model and simulation experiments for each period.

The results for the DET model that include the harvest flow constraints for 50% protection level in
the first PP are presented in Table 1. Only one initial size of protection level was selected for a clear
presentation of the results. It is obvious that as the harvest flow percentage increases the total harvested
volume also increases. However, the difference in the total harvested volume (objective function of the
DET model) is more than 4% between 10% and 100% harvest flow. The harvested volume increases
with the period index because of the growth of the forests. The harvest flow constraints do not affect
the total harvested volume significantly but they are necessary for the harvest flow preservation.
The exclusion of the harvest flow constraints from the model or too high values of the harvest flow
percentage can have a significant negative impact on the ecosystem in the future without any significant
economic effect.

The results of the simulation using the DET model show (Table 2) that as the harvest flow
percentage decreases the total harvested volume increases. The simulated total harvested value from
the DET model without the harvest flow is also worse than the DET model’s results without the harvest
flow constraints. This means that the harvest flow constraints do not affect the total harvested volume
under uncertainty. However, the highest total harvested volume is obtained without the harvest flow
constraints by simulations as well as the DET model.

If the results from the DET model and simulation experiments are compared, one can see that no
value from the simulations is better than the values obtained using the DET model. Moreover, no value
of the periodic harvested volume obtained from the DET model is within the range of simulations
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given by standard deviations. The worst alternatives of the harvested volumes will therefore always
be lower than expected according to the harvest scheduling plan.

Table 1. The periodic and total harvested volumes for different harvest flow percentages obtained using
the DET model for 50% protection level in the first planning period (PP).

Harvested Volume (m3)
Period
1 2 3 4 5

10 43,410 47,739 52,463 57,685 63,434 264,731

20 35,885 43,061 51,673 61,983 74,349 266,951

30 29,764 38,692 50,279 65,323 84,876 268,934

40 24,790 34,696 48,491 67,811 94,906 270,694

Harvest Flow 50 20,713 30,996 46,492 69,635 104,426 272,262
Percentage (%) 60 17,342 27,739 44,358 70,892 113,321 273,652
70 14,600 24,814 42,164 71,633 121,674 274,885

80 12,470 22,437 40,198 72,309 128,440 275,854

90 11,118 21,083 40,048 75,891 128,046 276,186

100 10,105 20,174 40,335 78,524 127,247 276,385

No harvest flow constraints 5543 19,906 46,660 77,564 127,066 276,739

Total

Table 2. The average periodic and total harvested volumes and their standard deviations for different
harvest flow percentages obtained by simulation experiments for the DET model’s results for 50%
protection level in the first PP.

Harvested Volume (m?®)
Period
1 2 3 4 5

10 41,244 +408 43,422 +738 45,048 =944 46,139 + 1059 46,396 + 1133 222,248

20 34,078 £421 39,161 £ 653 44,376 =928 49,685 + 1180 54,217 £ 1079 221,517

30 28,281 £292 35,208 =568 43,276 =896 52,334 4+ 1204 61,929 + 1402 221,027

40 23,552 £282 31,593 £503 41,685 +908 54,309 + 1184 69,185 + 1428 220,324

Harvest flow 50 19,679 £249 28,201 +£448 39,964 + 863 55,748 £+ 1207 76,196 + 1492 219,789
percentage (%) 60 16,472 £201 252240 £418 38,163 =849 56,816 & 1302 82,642 + 1445 219,333
70 13,869 £ 156 22,603 £417 36,339 £ 750 57,251 & 1241 88,628 + 1579 218,690

80 11,845+ 164 20,408 £372 34,527 £772 57,917 £ 1151 93,655 £ 1568 218,353

90 10,657 2173 19,188 £ 363 34,437 755 60,806 41182 93,340 + 1609 218,327

100 9597 £ 158 18,338 =340 34,667 £787 62,896 £ 1230 92,714 + 1489 218,211

Total

No harvest flow

. 5262 £ 108 18,408 + 363 42,045 £ 920 67,879 1539 107,904 £ 2659 241,498
constraints

Unlike the DET model results (without the harvest flow constraints), the relations between the
protection level and the harvested volume obtained from the ROB model and simulation experiments
for each period are more similar (Figure 2). There is therefore no big difference between the expected
value (ROB model) and the worst possible real alternative (simulated values). Moreover, all of the
simulated worst possible alternatives are better than expected by the ROB model, which can be
understood as a success rate of simulations surpassing the ROB model results. On the other hand,
the success rate of simulations over the DET model was 0.

At the beginning of the planning horizon (first PP), the harvested volume increases with the
increasing protection level. However, in the middle and at the end of the planning horizon (third
to fifth period), the harvested volume decreases as the protection level increases. It is necessary to
emphasize that these relations are only valid for the models and simulations that do not contain the
harvest flow constraints.
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Figure 2. The relation between the protection level and the harvested volume obtained by the robust

(ROB) model (a) and simulation experiments (b) for each period.

The results of the computations for the chosen instances are shown in Table 3. The table shows
the influence of the harvest flow percentage with the combination of the protection level on the
computation time measured in a gap tolerance. The scenarios with 10% up to 100% harvest flow were
assumed with the initial protection level varying from 10% up to 60%. Note that it is not possible
to inspect protection levels above 60% because we consider the protection level in the experiment
methodology to raise by 10% in each period. Starting with 60% in the first period would result in 100%
protection in the fifth period, which is the logical protection limit.

Table 3. The resulting gap tolerance for instances of the ROB model.

Resulting Gap Tolerance (%)

The Protection Level (%)

10 20 30 40 50 60
10 0.00 0.00 0.00 NoGap NoGap NoGap
20 0.00 0.00 0.00 NoGap NoGap NoGap
30 No Gap 0.00 0.00 NoGap NoGap NoGap
40 NoGap NoGap NoGap NoGap NoGap NoGap
Harvest flow 50 6.60 5.19 4.18 3.53 3.21 3.20
percentage (%) 60 4.42 3.07 2.29 0.92 0.43 0.16
70 4.02 3.03 1.69 0.83 0.41 0.08
80 4.17 2.89 1.67 0.86 0.37 0.02
90 3.98 2.99 1.64 0.75 0.35 0.09
100 3.81 2.75 1.55 0.84 0.37 0.08
No harvest flow 162 1.62 1.62 0.76 043 0.05

constraints

Note: No gap indicates that solving the problem took longer than 1200 s without achieving the gap tolerance.

When both the harvest flow and the protection level were set to smaller values the optimal
solution was found with zero objective, which means that no harvesting should be performed at all.
This is caused by too strict requirements on the model in terms of protection and harvest flow and no
solution where the units could be harvested exists. In general, the lower the harvest flow is the stricter
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the requirements are laid on the model and thus, the solution is not achievable at all or is achievable in
a time that exceeds the practical usage of this approach.

One might argue that the use of the presented ROB models is impractical when it is not possible
to achieve a low harvest flow. However, when the final harvest flow percentages are calculated for
models and simulations results, one can see that the real (achieved) harvest flow is much lower than
the expected one by the models (Table 4). The resulted harvest flows are presented just for the 50%
protection level, as the situation is similar in other protection level alternatives as well. The positive
value of percentages signifies the increase of the harvested amount between two consecutive periods,
the negative value of percentages signifies the decrease of the harvested amount between two
consecutive periods. Although the achieved harvest flow percentages are better than those expected
by the ROB model even in the case of the simulations, the harvest flow during the planning horizon is
not ensured.

Table 4. The real (achieved) harvest flow percentages for ROB models and simulations for 50% protection
level in the first PP.

ROB Model Simulations
Consecutive Periods Consecutive Periods
Protection Level Harvest Flow 1-2 2-3 3-4 4-5 1-2 2-3 34 4-5
50 50 —36% —35% 21% —34% —34% —44% —48% —37%
50 60 —36% —35% 18% —34% —34% —34% —60% —51%
50 70 —36% —35% 16% —34% —34% —35% —56% —65%
50 80 —33% —32% —29% —31% —-31% —-21% —9% —2%
50 90 —44%  —44% —42% —43% —43% —33% —22% —10%
50 100 —41% —41% —39% —39% —39% —45% —35% —24%

The results of the ROB model including the harvest flow constraints for 50% protection level in
the first PP are presented in Table 5. Only one initial size of the protection level was selected to ensure
the clarity of the result presentation. The alternatives with the harvest flow percentage lower than
50% in which no solution was obtained are not presented for the same reason. It is obvious that the
increase of the harvest flow percentage results in the higher total harvested volume similar to DET
model results (Table 1). The simulated values of the harvested amount in each period are higher than
the expected amount obtained by the ROB model (Table 6). This difference is obvious especially in the
first periods.

Table 5. The periodic and total harvested volumes for different harvest flow percentages obtained
using the ROB model for 50% protection level in the first PP.

Harvested Volume (m3)
Period
1 2 3 4 5

50 69,006 46,287 35404 30,980 23,450 205,126

60 87,437 48,583 31,436 23,593 20,447 211,496

Harvest flow 70 94,477 55906 29,604 18,503 13,569 212,059
percentage (%) 80 93,959 59,997 32,395 16,198 9720 212,269
90 93,765 59,730 37,691 14,459 6748 212,393

100 93,800 59,795 37,554 15,942 5329 212,420

No harvest flow constraints 92,898 59,677 38,919 16,461 4468 212,423

Total
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Table 6. The average periodic and total harvested volumes and their standard deviations of different
harvest flow percentages obtained by simulation experiments for the ROB model’s results for 50%
protection level in the first PP.

Harvested Volume (m?)
Period
1 2 3 4 5

50 73,644 + 664 51,183 £ 728 40,771 £ 868 37,202 £1117 36,490 £ 1074 239,290

60 93,322 + 726 53,825 £+ 677 36,207 £ 801 28,318 £ 896 25,754 + 1114 237,426

Harvest flow 70 100,876 + 713 61,892 + 817 34,089 £ 831 22,275 £ 686 17,074 + 703 236,206
percentage (%) 80 100,289 + 710 66,396 + 857 37,290 £ 817 19,487 + 664 12,240 £+ 574 235,701

Total

90 100,063+ 684 66138+ 805 43440 +896 17,396 + 611 8512 =+ 446 235,548
100 100,092+ 725 66,160 + 839 43282 +876 19,143+ 624 6706 + 385 235,383
No harvest flow 99,148 £ 715 66,024 + 843  44925+910 19,777 + 632 5619 + 369 235,493

constraints

The total harvested amount of the ROB model during the whole planning horizon is much lower
than the total harvested amount in the case of the DET model. However, the simulated values of the
ROB model (Table 6) are higher than the simulated values of the DET model (Table 2). This means
that the realized harvest situation will always be better than the planned harvest, and that is the main
important advantage of the RO.

4. Discussion

The sustainable use of natural resources is not only about the balanced harvesting or economic
profit. Sustainable management aimed at sustainable development must include all services provided
by the natural resources. However, the economic prosperity significantly contributes to the social
welfare. The prosperous company is then willing to reduce its demands on the fulfilment of production.
Moreover, the unexpected fluctuations in harvesting can cause excessive ecosystem loading by trying
to ensure stable financial incomes for the company and employees. Balanced harvesting is a necessary
part of sustainable development. Mathematical programming methods have been widely used for
harvest scheduling since the 1970s, and harvest flow constraints have been an important part of all
developed models [28]. The great importance of the harvest flow constraints to the optimal solution is
evident from the presented results. However, there are a lot of sources of uncertainties and risks in
forest management which can significantly disturb the flow of harvesting. Some of them are difficult
to predict, such as climate conditions or natural disturbances. Those sources of uncertainty that can be
at least approximately predicted should therefore be a part of harvest scheduling processes.

The RO is one of the approaches used to incorporate the uncertainties into the harvest scheduling.
The RO is under the focus of many researchers because of its not-so-stochastic nature. Palma and
Nelson [5] based the robustness (a) on the minimal demand of harvested amount condition, or (b)
on the protection against infeasibility for volume-fluctuation constraints. However, they applied the
model to a linear programming model in which spatial details cannot be included. Models integrating
spatial aspects are needed in the long-term planning process because of certification requirements,
aesthetic concerns, fragmentation issues, etc. [29]. In another work, Palma and Nelson [21] applied
robust programming to a binary programming problem, however, they did not test the effect of
robustness on the harvest flow. This paper concentrates more on testing the uncertainty in the harvest
flow constraints in spatial harvest scheduling models. Moreover, the goal of the paper was to test
different harvest flow percentages as opposed to the mentioned authors who were more focused
on testing different types of protection levels. However, if the forest sector plays a great role in the
bioeconomy [30], quality and reliable harvest scheduling that includes spatial details as well as harvest
flow conditions is needed.

The value of the protection level (I') is a very important parameter of RO because it represents
how many left-hand side coefficients of that constraint we assume have deviations from their original
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values. In other words, this value shows how many variables (harvest units) can have negative
deviations from their deterministic values (i.e., in a sense it shows the size of the user's confidence
in the predicted deviations). The robust harvest scheduling model presented in this paper includes
robustness based on harvest-flow conditions for each planning period. The advantage of the RO is
that the optimal solution will be better and a higher success rate than the worst possible real situation.
When the robustness is laid on an objective function, it is ensured that the total harvested amount
will be higher than the value of the objective function of a RO model. However, it cannot be ensured
that the partial harvested amounts in individual periods will actually be better than what a RO model
gives. The results of the simulations based on the ROB model presented in this study are always better
than the ROB model results even in the partial periods.

The first discovered complication of the presented approach is the computational complexity,
which seems to be an obstacle for its practical use. The computational experience reveals the need to
test various heuristic methods for pre-solving the robust models with harvest flow constraints, as in
the case of complex spatial harvest scheduling problems (see, for example, [31]). Palma and Nelson [5]
also draw attention to the problem of the size of robust programming models, but point out that the
models are still linear, which is their greatest advantage. General linear programming problem has
n variables and m + n constraints (n is the number of non-negativity constraints). A general robust
model has n + m + m X n variables and 3m + n + 2m x p, where p is the number of variables considered
where uncertainty occurs. In addition, in the presented model, we are still transferring the objective
function into the constraints, so the increase will be even higher.

Additionally, there is an obvious correlation between the level of protection, harvest flow, and
computational time altogether. In the case of the harvest flow greater than or equal to 50%, it is evident
that with growing protection levels the gap tolerance approaches zero. We assume that the decrease
in gap tolerances originates in the general behavior of the gamma-robustness models. The presented
approach of robust optimization generally tends to choose those basic variables (i.e., those harvest units
that are going to be harvested) to incorporate into the optimal solution for which the uncertainty is
assumed. If there is only a small percent of the units with the considered uncertainty, it is assumed that
these units will be preferably chosen for harvesting, but then it is necessary to choose and accompany
them with other units where the uncertainty is not considered. In the case of a higher number of
uncertain units, the model assumes that those will be incorporated into the solution (if feasible)
and then it spends less time searching for other deterministic units to incorporate into the solution.
This tendency was observed by Hlavaty and BroZzova [32] who performed calculation experiments
with the same approach to model robustness on a simpler linear programming case.

The results could be different when a different initial age structure is used. In this paper, the
real age structure of the forest was used, so the results could not be generalized for any kind of forest
structure. Testing of age structure influence on the RO results was not yet done and could be the key
point for ongoing research.

The RO provides a robust optimal solution, which in reality will always be better than the actual
schedule. Contrary to other works (e.g., [5]), simulations were always better (100% of cases) than the
solution obtained by the ROB model. Unlike the deterministic model, a larger amount of timber will be
harvested than the optimal solution suggests, because this solution is calculated using the worst-case
(negative deviations) alternatives of stand volumes. The harvested volume reduction is referred to as a
price of robustness. However, the extreme positive deviations can also significantly affect the harvest
flow. Unfortunately, this characteristic could not be incorporated into the harvest scheduling process
by the presented approach because of the nature of RO. A potential approach is called multi-band
robust programming, as proposed by D’ Andreagiovanni and Raymond [33].

There is an obvious advantage in the use of RO due to its not-so-stochastic nature. However,
stochastic programming has already been used for harvest scheduling models under uncertainty as
well (see, for example, [34,35]). As was shown above, many problems facing the full applicability of
RO for forest management must still be solved.
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5. Conclusions

The uncertainty caused by human errors and natural impacts majorly affects forest management
and harvest scheduling, especially from a long-term point of view. Despite this mentioned fact,
the presented impacts of uncertainty were marginally included in practical forest management.
It is obvious that to ensure sustainability, harvest scheduling approaches must include uncertainty
sources as much as possible to avoid extreme fluctuations of harvesting during the planning horizon.
The fluctuations in harvesting can negatively affect not only forest-timber supply chains but also forest
ecosystems. Classical methods of harvest scheduling are not able to include uncertainty, while the
presented robust optimization approach can be considered as a possible manner in which to make
forest planning more realistic. Although many sources of uncertainty are not included in the presented
analysis (climate change, timber market prices, etc.) for methodological reasons, it is obvious that it is
necessary to further develop and explore methods that can help to make a right decision in the rapidly
changing world. The uncertainty should be reduced as much as possible by also minimizing human
errors or improving prediction models.

Acknowledgments: This research was supported by the project of the National Agency for Agriculture Research
(No. QJ1320230).

Author Contributions: Jan Kaspar established the idea and directed the development of the mathematical
formulation of the harvest scheduling model. Robert Hlavaty was responsible for the mathematical formulation.
Karel Kuzelka determined the uncertainty for the purposes of this paper. Robert Marusak was the supervisor for
this work.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. FAO. Indicators of Sustainable Development: Guidelines and Methodologies, 3rd ed.; United Nations Publications:
New York, NY, USA, 2007; ISBN 978-92-1-104577-2.

2. Gertner, G.; Kohl, M. An assessment of some nonsampling errors in a national survey using an error budget.
For. Sci. 1992, 38, 525-538.

3. D’Amours, S.; Ronnqvist, M.; Weintraub, A. Using operational research for supply chain planning in the
forest products industry. INFOR 2008, 46, 265-281. [CrossRef]

4.  Pasalodos-Tato, M.; Mikinen, A.; Garcia-Gonyalo, J.; Borges, ].G.; Laimas, T.; Eriksson, L.O. Review. Assessing
uncertainty and risk in forest planning and decision support systems: Review of classical methods and
introduction of innovative approaches. For. Syst. 2013, 22, 282-303. [CrossRef]

5. Palma, C.D.; Nelson, ].D. A robust optimization approach protected harvest scheduling decisions against
uncertainty. Can. J. For. Res. 2009, 39, 342-355. [CrossRef]

6. Johnson, K.; Scheurman, H. Techniques for prescribing optimal timber harvest and investment under
different objectives—Discussion and synthesis. Forest Sci. 1977, 23, 1-31.

7.  Field, R. C; Dress, P. E.; Fortson, J. C. Complementary linear and goal programming procedures for timber
harvest scheduling. Forest Sci. 1980, 26, 121-133.

8.  Carlsson, D.; Ronnqvist, N. Supply chain management in forestry—case studies at Sodra Cell AB. Eur. J.
Oper. Res. 2005, 163, 589-616. [CrossRef]

9. McDill, M.E;; Rebain, S.A.; Braze, J. Harvest scheduling with area-based adjacency constraints. For. Sci. 2002,
48, 631-642.

10. Gunn, E.A.; Richards, E.W. Solving the adjacency problem with stand-centered constraints. Can. J. For. Res.
2005, 65, 832-842. [CrossRef]

11.  Yoshimoto, A.; Brodie, ]J.D. Short- and long-term impacts of spatial restriction on harvest scheduling with
reference to riparian zone planning. Can. |. For. Res. 1994, 24, 1617-1628. [CrossRef]

12. Dantzig, G.B. Linear programming under uncertainty. Manag. Sci. 1955, 1, 197-206. [CrossRef]

13. Ben-Tal, A.; Nemirovski, A. Robust solutions of linear programming problems contaminated with uncertain
data. Math Progr. 2000, 88, 411-424. [CrossRef]


http://dx.doi.org/10.3138/infor.46.4.265
http://dx.doi.org/10.5424/fs/2013222-03063
http://dx.doi.org/10.1139/X08-175
http://dx.doi.org/10.1016/j.ejor.2004.02.001
http://dx.doi.org/10.1139/x05-013
http://dx.doi.org/10.1139/x94-210
http://dx.doi.org/10.1287/mnsc.1.3-4.197
http://dx.doi.org/10.1007/PL00011380

Forests 2017, 8, 335 14 of 14

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

Bertsimas, D.; Brown, D. B.; Caramanis, C. Theory and applications of robust optimization. SIAM Rev. 2011,
53,464-501. [CrossRef]

Mulvey, ].M.; Vanderbei, R.].; Zenios, S.A. Robust optimization of large-scale systems. Oper. Res. 1995, 43,
264-281. [CrossRef]

Malcolm, S.; Zenios, S.A. Robust optimization for power capacity expansion planning. J. Oper. Res. Soc. 1994,
45,1040-1049. [CrossRef]

Soyster, A.L. Convex programming with set-inclusive constraints and applications to inexact linear
programming. Oper. Res. 1973, 21, 1154-1157. [CrossRef]

Bertsimas, D.; Sim, M. Robust discrete optimization and network flows. Math Progr. 2003, 98, 49-71.
[CrossRef]

Palma, C.D. Robust Optimization for Forest Resources Decision-Making under Uncertainty. Ph.D. Thesis,
The University of British Columbia, Vancouver, BC, Canada, 2010.

El-Ghaoui, L.; Oustry, F.; Lebret, H. Robust solutions to uncertain semidefinite programs. SIAM J. Optim.
1998, 9, 33-52. [CrossRef]

Palma, C.D.; Nelson, J.D. A robust model for protecting road-building and harvest-scheduling decisions
from timber estimate errors. Forest Sci. 2014, 60, 137-148. [CrossRef]

Murphy, G.; Stander, H.C. Robust optimisation of forest transportation networks: A case study. South
Hemisph. For. J. 2010, 69, 117-123. [CrossRef]

Alvarez, PP; Vera, ].R. Application of robust optimization to the sawmill planning problem. Ann. Oper. Res.
2011, 219, 457-475. [CrossRef]

Kazemi Zanjani, M.D.; Ait-Kadi, D.; Nourelfath, M. Robust production planning in a manufacturing
environment with random yield: A case in sawmill production planning. Eur. |. Oper. Res. 2008, 201, 882-891.
[CrossRef]

Varas, M.; Maturana, S.; Pascual, R.; Vargas, I.; Vera, ]J. Scheduling production for a sawmill: A robust
optimization approach. Int. J. Prod. Econ. 2014, 150, 37-51. [CrossRef]

Bertsimas, D.; Sim, M. The price of robustness. Oper. Res. 2004, 52, 35-53. [CrossRef]

Gurobi Optimizer Reference Manual 6.5. Available online: http://www.gurobi.com/documentation/6.5/
refman/java_api_overview.html#sec:Java (accessed on 1 August 2017).

Dykstra, D.P. Mathematical Programming for Natural Resource Management; McGraw-Hill Book Company Inc.:
New York, NY, USA, 1984.

Dong, L.; Bettinger, P,; Liu, Z.; Qin, H. Spatial Forest Harvest Scheduling for Areas involving Carbon and
Timber Management Goals. Forests 2015, 6, 1362-1379. [CrossRef]

Ollikainen, M. Forestry in bioeconomy—smart green growth for the humankind. Scand. J. For. Res. 2014, 29,
360-366. [CrossRef]

Bettinger, P; Sessions, J.; Chung, W.; Greatz, D.; Boston, K. Eight Heuristic Planning Techniques Applied to
Three Increasingly Difficult Wildlife Planning Problems : A Summary. In Systems Analysis in Forest Resources;
Springer Netherlands: Berlin, Germany, 2003; pp. 240-257.

Hlavaty, R.; Brozova, H. Robust optimization approach in transportation problem. In Proceedings of the
35th international conference Mathematical methods in economics, Hradec Kralové, Czech Republic, 2017.
D’Andreagiovanni, F.; Raymond, A. Multiband Robust Optimization and its Adoption in Harvest Scheduling.
FORMATH 2014, 13, 97-122. [CrossRef]

Alonso-Ayuso, A.; Escudero, L. F; Guignard, M.; Quinteros, M.; Weintraub, A. Forestry management under
uncertainty. Ann. Oper. Res. 2011, 190, 17-39. [CrossRef]

Eriksson, L.O. Planning under uncertainty at the forest level: A systems approach. Scand. J. For. Res. 2006,
21,111-117. [CrossRef]

® © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1137/080734510
http://dx.doi.org/10.1287/opre.43.2.264
http://dx.doi.org/10.1057/jors.1994.169
http://dx.doi.org/10.1287/opre.21.5.1154
http://dx.doi.org/10.1007/s10107-003-0396-4
http://dx.doi.org/10.1137/S1052623496305717
http://dx.doi.org/10.5849/forsci.12-090
http://dx.doi.org/10.2989/SHFJ.2007.69.2.7.293
http://dx.doi.org/10.1007/s10479-011-1002-4
http://dx.doi.org/10.1016/j.ejor.2009.03.041
http://dx.doi.org/10.1016/j.ijpe.2013.11.028
http://dx.doi.org/10.1287/opre.1030.0065
http://www.gurobi.com/documentation/6.5/refman/java_api_overview.html#sec:Java
http://www.gurobi.com/documentation/6.5/refman/java_api_overview.html#sec:Java
http://dx.doi.org/10.3390/f6041362
http://dx.doi.org/10.1080/02827581.2014.926392
http://dx.doi.org/10.15684/formath.13.97
http://dx.doi.org/10.1007/s10479-009-0561-0
http://dx.doi.org/10.1080/14004080500486849
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Model Formulation 
	Simulation Experiments 

	Results 
	Discussion 
	Conclusions 

