Next Issue
Previous Issue

Table of Contents

Pharmaceuticals, Volume 11, Issue 2 (June 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) Over the past few years, drug repositioning has become a relevant strategy for drug discovery, [...] Read more.
View options order results:
result details:
Displaying articles 1-30
Export citation of selected articles as:
Open AccessArticle Parallel Evolution of Host-Attachment Proteins in Phage PP01 Populations Adapting to Escherichia coli O157:H7
Pharmaceuticals 2018, 11(2), 60; https://doi.org/10.3390/ph11020060
Received: 12 April 2018 / Revised: 7 June 2018 / Accepted: 11 June 2018 / Published: 20 June 2018
PDF Full-text (1607 KB) | HTML Full-text | XML Full-text
Abstract
The emergence of antibiotic resistance has sparked interest in phage therapy, which uses virulent phages as antibacterial agents. Bacteriophage PP01 has been studied for potential bio-control of Escherichia coli O157:H7, its natural host, but in the laboratory, PP01 can be inefficient at killing
[...] Read more.
The emergence of antibiotic resistance has sparked interest in phage therapy, which uses virulent phages as antibacterial agents. Bacteriophage PP01 has been studied for potential bio-control of Escherichia coli O157:H7, its natural host, but in the laboratory, PP01 can be inefficient at killing this bacterium. Thus, the goal of this study was to improve the therapeutic potential of PP01 through short-term experimental evolution. Four replicate populations of PP01 were serially passaged 21 times on non-evolving E. coli O157:H7 with the prediction that the evolved phage populations would adsorb faster and more efficiently kill the host bacteria. Dead-cell adsorption assays and in vitro killing assays confirmed that evolved viruses improved their adsorption ability on E. coli O157:H7, and adapted to kill host bacteria faster than the wildtype ancestor. Sequencing of candidate tail-fiber genes revealed that the phage populations evolved in parallel; the lineages shared two point mutations in gp38 that encodes a host recognition protein, and surprisingly shared a ~600 bp deletion in gp37 that encodes the distal tail fibers. In contrast, no mutations were observed in the gp12 gene encoding PP01’s short tail fibers. We discuss the functional role of the observed mutations, including the possible adaptive role of the evolved deletions. This study demonstrates how experimental evolution can be used to select for viral traits that improve phage attack of an important bacterial pathogen, and that the molecular targets of selection include loci contributing to cell attachment and phage virulence. Full article
(This article belongs to the Special Issue Phage Therapy and Phage-Mediated Biological Control)
Figures

Figure 1

Open AccessArticle Synthesis, Evaluation of Cytotoxicity and Molecular Docking Studies of the 7-Acetamido Substituted 2-Aryl-5-bromo-3-trifluoroacetylindoles as Potential Inhibitors of Tubulin Polymerization
Pharmaceuticals 2018, 11(2), 59; https://doi.org/10.3390/ph11020059
Received: 9 May 2018 / Revised: 22 May 2018 / Accepted: 25 May 2018 / Published: 11 June 2018
Cited by 1 | PDF Full-text (2365 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The 3-trifluoroacetyl–substituted 7-acetamido-2-aryl-5-bromoindoles 5ah were prepared and evaluated for potential antigrowth effect in vitro against human lung cancer (A549) and cervical cancer (HeLa) cells and for the potential to inhibit tubulin polymerization. The corresponding intermediates, namely, the 3-unsubstituted 7-acetyl-2-aryl-5-bromoindole 2a
[...] Read more.
The 3-trifluoroacetyl–substituted 7-acetamido-2-aryl-5-bromoindoles 5ah were prepared and evaluated for potential antigrowth effect in vitro against human lung cancer (A549) and cervical cancer (HeLa) cells and for the potential to inhibit tubulin polymerization. The corresponding intermediates, namely, the 3-unsubstituted 7-acetyl-2-aryl-5-bromoindole 2ad and 7-acetamido-2-aryl-5-bromoindole 4ad were included in the assays in order to correlate both structural variations and cytotoxicity. No cytotoxicity was observed for compounds 2ad and their 3-trifluoroacetyl–substituted derivatives 5ad against both cell lines. The 7-acetamido derivatives 4d exhibited modest cytotoxicity against both cell lines. All of the 3-trifluoroacetyl–substituted 7-acetamido-2-aryl-5-bromoindoles 5eh were found to be more active against both cell lines when compared to the chemotherapeutic drug, Melphalan. The most active compound, 5g, induced programmed cell death (apoptosis) in a caspase-dependent manner for both A549 and HeLa cells. Compounds 5eh were found to significantly inhibit tubulin polymerization against indole-3-carbinol and colchicine as reference standards. Molecular docking of 5g into the colchicine-binding site suggests that the compounds bind to tubulin by different type of interactions including pi-alkyl, amide-pi stacked and alkyl interactions as well as hydrogen bonding with the protein residues to elicit anticancer activity. Full article
(This article belongs to the Special Issue Heterocyclic Chemistry for Cancer and CNS Diseases)
Figures

Graphical abstract

Open AccessReview TRPM Family Channels in Cancer
Pharmaceuticals 2018, 11(2), 58; https://doi.org/10.3390/ph11020058
Received: 25 April 2018 / Revised: 28 May 2018 / Accepted: 1 June 2018 / Published: 7 June 2018
PDF Full-text (1209 KB) | HTML Full-text | XML Full-text
Abstract
Members of the TRPM (“Melastatin”) family fall into the subclass of the TRP channels having varying permeability to Ca2+ and Mg2+, with three members of the TRPM family being chanzymes, which contain C-terminal enzyme domains. The role of different TRPM
[...] Read more.
Members of the TRPM (“Melastatin”) family fall into the subclass of the TRP channels having varying permeability to Ca2+ and Mg2+, with three members of the TRPM family being chanzymes, which contain C-terminal enzyme domains. The role of different TRPM members has been shown in various cancers such as prostate cancer for mostly TRPM8 and TRPM2, breast cancer for mostly TRPM2 and TRPM7, and pancreatic cancer for TRPM2/7/8 channels. The role of TRPM5 channels has been shown in lung cancer, TRPM1 in melanoma, and TRPM4 channel in prostate cancer as well. Thus, the TRPM family of channels may represent an appealing target for the anticancer therapy. Full article
Figures

Graphical abstract

Open AccessReview Changing Trends in Computational Drug Repositioning
Pharmaceuticals 2018, 11(2), 57; https://doi.org/10.3390/ph11020057
Received: 30 April 2018 / Revised: 1 June 2018 / Accepted: 2 June 2018 / Published: 5 June 2018
PDF Full-text (288 KB) | HTML Full-text | XML Full-text
Abstract
Efforts to maximize the indications potential and revenue from drugs that are already marketed are largely motivated by what Sir James Black, a Nobel Prize-winning pharmacologist advocated—“The most fruitful basis for the discovery of a new drug is to start with an old
[...] Read more.
Efforts to maximize the indications potential and revenue from drugs that are already marketed are largely motivated by what Sir James Black, a Nobel Prize-winning pharmacologist advocated—“The most fruitful basis for the discovery of a new drug is to start with an old drug”. However, rational design of drug mixtures poses formidable challenges because of the lack of or limited information about in vivo cell regulation, mechanisms of genetic pathway activation, and in vivo pathway interactions. Hence, most of the successfully repositioned drugs are the result of “serendipity”, discovered during late phase clinical studies of unexpected but beneficial findings. The connections between drug candidates and their potential adverse drug reactions or new applications are often difficult to foresee because the underlying mechanism associating them is largely unknown, complex, or dispersed and buried in silos of information. Discovery of such multi-domain pharmacomodules—pharmacologically relevant sub-networks of biomolecules and/or pathways—from collection of databases by independent/simultaneous mining of multiple datasets is an active area of research. Here, while presenting some of the promising bioinformatics approaches and pipelines, we summarize and discuss the current and evolving landscape of computational drug repositioning. Full article
(This article belongs to the Special Issue Old Pharmaceuticals with New Applications)
Open AccessReview Inflammation and Neuro-Immune Dysregulations in Autism Spectrum Disorders
Pharmaceuticals 2018, 11(2), 56; https://doi.org/10.3390/ph11020056
Received: 2 May 2018 / Revised: 30 May 2018 / Accepted: 1 June 2018 / Published: 4 June 2018
Cited by 1 | PDF Full-text (261 KB) | HTML Full-text | XML Full-text
Abstract
Autism Spectrum Disorder (ASD) is characterized by persistent deficits in social communication and interaction and restricted-repetitive patterns of behavior, interests, or activities. Strong inflammation states are associated with ASD. This inflammatory condition is often linked to immune system dysfunction. Several cell types are
[...] Read more.
Autism Spectrum Disorder (ASD) is characterized by persistent deficits in social communication and interaction and restricted-repetitive patterns of behavior, interests, or activities. Strong inflammation states are associated with ASD. This inflammatory condition is often linked to immune system dysfunction. Several cell types are enrolled to trigger and sustain these processes. Neuro-inflammation and neuro-immune abnormalities have now been established in ASD as key factors in its development and maintenance. In this review, we will explore inflammatory conditions, dysfunctions in neuro-immune cross-talk, and immune system treatments in ASD management. Full article
Open AccessReview Endocannabinoids in Body Weight Control
Pharmaceuticals 2018, 11(2), 55; https://doi.org/10.3390/ph11020055
Received: 28 April 2018 / Revised: 17 May 2018 / Accepted: 28 May 2018 / Published: 30 May 2018
PDF Full-text (2079 KB) | HTML Full-text | XML Full-text
Abstract
Maintenance of body weight is fundamental to maintain one’s health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold
[...] Read more.
Maintenance of body weight is fundamental to maintain one’s health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and energy expenditure. Next, we will focus on how peripheral eCBs affect food digestion, nutrient transformation and energy expenditure by interfering with signaling cascades in the gastrointestinal tract, liver, pancreas, fat depots and endocrine glands. To finally outline the safe future potential of cannabinoids as medicines, our overall goal is to address the molecular, cellular and pharmacological logic behind central and peripheral eCB-mediated body weight control, and to figure out how these precise mechanistic insights are currently transferred into the development of next generation cannabinoid medicines displaying clearly improved safety profiles, such as significantly reduced side effects. Full article
(This article belongs to the Special Issue Cannabinoids as Medicines)
Figures

Figure 1

Open AccessReview Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines
Pharmaceuticals 2018, 11(2), 54; https://doi.org/10.3390/ph11020054
Received: 8 May 2018 / Revised: 23 May 2018 / Accepted: 25 May 2018 / Published: 29 May 2018
PDF Full-text (20531 KB) | HTML Full-text | XML Full-text
Abstract
The current concept in searching for new bioactive products, including mainly original active substances with potential application in pharmacy and medicine, is based on compounds with a previously determined structure, well-known properties, and biological activity profile. Nowadays, many commonly used drugs originated from
[...] Read more.
The current concept in searching for new bioactive products, including mainly original active substances with potential application in pharmacy and medicine, is based on compounds with a previously determined structure, well-known properties, and biological activity profile. Nowadays, many commonly used drugs originated from natural sources. Moreover, some natural materials have become the source of leading structures for processing further chemical modifications. Many organic compounds with great therapeutic significance have the nitro group in their structure. Very often, nitro compounds are active substances in many well-known preparations belonging to different groups of medicines that are classified according to their pharmacological potencies. Moreover, the nitro group is part of the chemical structure of veterinary drugs. In this review, we describe many bioactive substances with the nitro group, divided into ten categories, including substances with exciting activity and that are currently undergoing clinical trials. Full article
Figures

Figure 1

Open AccessFeature PaperArticle Phenytoin Cream for the Treatment of Neuropathic Pain: Case Series
Pharmaceuticals 2018, 11(2), 53; https://doi.org/10.3390/ph11020053
Received: 11 May 2018 / Revised: 22 May 2018 / Accepted: 23 May 2018 / Published: 28 May 2018
Cited by 1 | PDF Full-text (529 KB) | HTML Full-text | XML Full-text
Abstract
BACKGROUND: Neuropathic pain can be disabling, and is often difficult to treat. Within a year, over half of all patients stop taking their prescribed neuropathic pain medication, which is most probably due to side effects or disappointing analgesic results. Therefore, new therapies are
[...] Read more.
BACKGROUND: Neuropathic pain can be disabling, and is often difficult to treat. Within a year, over half of all patients stop taking their prescribed neuropathic pain medication, which is most probably due to side effects or disappointing analgesic results. Therefore, new therapies are needed to alleviate neuropathic pain. As such, topical analgesics could be a new inroad in the treatment of neuropathic pain. In 2014, we developed a new topical formulation containing either phenytoin or sodium phenytoin. After optimization of the formulation, we were able to reach a 10% concentration and combine phenytoin with other co-analgesics in the same base cream. OBJECTIVE: To describe a series of 70 neuropathic pain patients who were treated with phenytoin cream. MATERIAL AND METHODS: Cases treated with phenytoin 5% or 10% creams were gathered. The mean onset of pain relief, the duration of effect, and reduction in pain intensity measured on the 11-point numerical rating scale (NRS) were all studied. A single-blind response test with phenytoin 10% and placebo creams was conducted on 12 patients in order to select responders prior to prescribing the active cream. Plasma phenytoin concentrations were measured in 16 patients. RESULTS: Nine patients applied phenytoin 5% cream, and 61 patients used phenytoin 10% cream. After grouping the effects of all of the patients, the mean onset of pain relief was 16.3 min (SD: 14.8), the mean duration of analgesia was 8.1 h (SD: 9.1), and the mean pain reduction on the NRS was 61.2% (SD: 25.0). The mean pain reduction on the NRS while using phenytoin cream was statistically significant compared with the baseline, with a reduction of 4.5 (CI: 4.0 to 5.0, p < 0.01). The 12 patients on whom a single-blind response test was performed experienced a statistically significant reduction in pain in the area where the phenytoin 10% cream was applied in comparison to the area where the placebo cream was applied (p < 0.01). Thirty minutes after the test application, the mean pain reduction on the NRS in the areas where the phenytoin 10% cream and the placebo cream were applied was 3.3 (CI: 2.3 to 4.4, p < 0.01) and 1.1 (CI: 0.4 to 1.9, p < 0.05), respectively. In all 16 patients, the phenytoin plasma levels were below the limit of detection. So far, no systemic side effects were reported. Two patients only reported local side effects: a transient burning aggravation and skin rash. CONCLUSION: In this case series, the phenytoin cream had reduced neuropathic pain considerably, with a fast onset of analgesic effect. Full article
(This article belongs to the Special Issue New Advances in Pharmacological Targets for Pain)
Figures

Figure 1

Open AccessArticle Development and Validation of a Rapid High-Performance Liquid Chromatography–Tandem Mass Spectrometric Method for Determination of Folic Acid in Human Plasma
Pharmaceuticals 2018, 11(2), 52; https://doi.org/10.3390/ph11020052
Received: 14 May 2018 / Revised: 22 May 2018 / Accepted: 23 May 2018 / Published: 27 May 2018
PDF Full-text (2340 KB) | HTML Full-text | XML Full-text
Abstract
There are health concerns associated with increased folic acid intake from fortified food and supplements. Existing analytical methods, however, which can be employed to carry out epidemiological and bioavailability studies for folic acid involve laborious sample preparation and/or lengthy chromatographic analysis. In this
[...] Read more.
There are health concerns associated with increased folic acid intake from fortified food and supplements. Existing analytical methods, however, which can be employed to carry out epidemiological and bioavailability studies for folic acid involve laborious sample preparation and/or lengthy chromatographic analysis. In this paper we describe a simple, rapid, and sensitive high-performance liquid chromatography–electrospray ionisation-tandem mass spectrometry (HPLC–ESI-MS/MS) method for determination of unmetabolised folic acid in human plasma using folic acid-d4 as an internal standard. The method required only a simple sample preparation step of protein precipitation and had a total run time of 3.5 min, which is the shortest run time reported to date for HPLC–MS/MS method employed for quantifying folic acid in plasma. The analytes were separated on a C18 column (3 µm; 50 × 3.00 mm) using an isocratic mobile phase consisting of ammonium acetate (1 mM)-acetic acid-acetonitrile (9.9:0.1:90, v/v/v). The method was fully validated in terms of accuracy, precision, linearity, selectivity, recovery, matrix effect, and stability. The short run time and the minimal sample preparation makes the method a valuable tool for performing high-throughput analyses. To demonstrate the applicability of the method in real conditions, it was applied successfully in a bioavailability study for the determination of unmetabolised folic acid levels in vivo in human plasma after oral administration of folic acid. Full article
Figures

Graphical abstract

Open AccessReview Side Effects and Interactions of the Xanthine Oxidase Inhibitor Febuxostat
Pharmaceuticals 2018, 11(2), 51; https://doi.org/10.3390/ph11020051
Received: 26 March 2018 / Revised: 21 May 2018 / Accepted: 21 May 2018 / Published: 25 May 2018
PDF Full-text (3270 KB) | HTML Full-text | XML Full-text
Abstract
The paper addresses the safety of febuxostat and summarizes reports on side effects and interactions of febuxostat published by the cut-off date (last day of literature search) of 20 March 2018. Publications on side effects and the interactions of febuxostat were considered. Information
[...] Read more.
The paper addresses the safety of febuxostat and summarizes reports on side effects and interactions of febuxostat published by the cut-off date (last day of literature search) of 20 March 2018. Publications on side effects and the interactions of febuxostat were considered. Information concerning the occurrence of side effects and interactions in association with the treatment with febuxostat was collected and summarized in the review. The incidence of severe side effects was much less frequent than mild side effects (1.2–3.8% to 20.1–38.7%). The rate and range of febuxostat side effects are low at doses of up to 120 mg and only increase with a daily dose of over 120 mg. The publications reveal no age-dependent increase in side effects for febuxostat. In patients with impaired renal function, no increase in adverse events is described with a dose of up to 120 mg of febuxostat per day. Patients with impaired liver function had no elevated risk for severe side effects. A known allopurinol intolerance increases the risk of skin reactions during treatment with febuxostat by a factor of 3.6. No correlation between treatment with febuxostat and agranulocytosis has been confirmed. Possible interactions with very few medications (principally azathioprine) are known for febuxostat. Febuxostat is well tolerated and a modern and safe alternative to allopurinol therapy. Full article
Figures

Figure 1

Open AccessArticle Controlled-Deactivation CB1 Receptor Ligands as a Novel Strategy to Lower Intraocular Pressure
Pharmaceuticals 2018, 11(2), 50; https://doi.org/10.3390/ph11020050
Received: 28 April 2018 / Revised: 13 May 2018 / Accepted: 18 May 2018 / Published: 22 May 2018
PDF Full-text (2453 KB) | HTML Full-text | XML Full-text
Abstract
Nearly half a century has passed since the demonstration that cannabis and its chief psychoactive component Δ9-THC lowers intraocular pressure (IOP). Elevated IOP remains the chief hallmark and therapeutic target for glaucoma, a condition that places millions at risk of blindness.
[...] Read more.
Nearly half a century has passed since the demonstration that cannabis and its chief psychoactive component Δ9-THC lowers intraocular pressure (IOP). Elevated IOP remains the chief hallmark and therapeutic target for glaucoma, a condition that places millions at risk of blindness. It is likely that Δ9-THC exerts much of its IOP-lowering effects via the activation of CB1 cannabinoid receptors. However, the initial promise of CB1 as a target for treating glaucoma has not thus far translated into a credible therapeutic strategy. We have recently shown that blocking monoacylglycerol lipase (MAGL), an enzyme that breaks the endocannabinoid 2-arachidonoyl glycerol (2-AG), substantially lowers IOP. Another strategy is to develop cannabinoid CB1 receptor agonists that are optimized for topical application to the eye. Recently we have reported on a controlled-deactivation approach where the “soft” drug concept of enzymatic deactivation was combined with a “depot effect” that is commonly observed with Δ9-THC and other lipophilic cannabinoids. This approach allowed us to develop novel cannabinoids with a predictable duration of action and is particularly attractive for the design of CB1 activators for ophthalmic use with limited or no psychoactive effects. We have tested a novel class of compounds using a combination of electrophysiology in autaptic hippocampal neurons, a well-characterized model of endogenous cannabinoid signaling, and measurements of IOP in a mouse model. We now report that AM7410 is a reasonably potent and efficacious agonist at CB1 in neurons and that it substantially (30%) lowers IOP for as long as 5 h after a single topical treatment. This effect is absent in CB1 knockout mice. Our results indicate that the direct targeting of CB1 receptors with controlled-deactivation ligands is a viable approach to lower IOP in a murine model and merits further study in other model systems. Full article
(This article belongs to the Special Issue Cannabinoids as Medicines)
Figures

Figure 1

Open AccessArticle A Short Peptide Inhibitor as an Activity-Based Probe for Matriptase-2
Pharmaceuticals 2018, 11(2), 49; https://doi.org/10.3390/ph11020049
Received: 30 April 2018 / Revised: 15 May 2018 / Accepted: 17 May 2018 / Published: 21 May 2018
PDF Full-text (7069 KB) | HTML Full-text | XML Full-text
Abstract
Matriptase-2 is a type II transmembrane serine protease and a key regulator of systemic iron homeostasis. Since the activation mechanism and several features of the physiological role of matriptase-2 are not fully understood, there is strong need for analytical tools to perform tasks
[...] Read more.
Matriptase-2 is a type II transmembrane serine protease and a key regulator of systemic iron homeostasis. Since the activation mechanism and several features of the physiological role of matriptase-2 are not fully understood, there is strong need for analytical tools to perform tasks such as distinguishing active and inactive matriptase-2. For this purpose we present a short biotinylated peptide derivative with a chloromethyl ketone group, biotin-RQRR-CMK, as an activity-based probe for matriptase-2. Biotin-RQRR-CMK was kinetically characterized and exhibited a second-order rate constant of inactivation (kinac/Ki) of 10,800 M−1 s−1 towards the matriptase-2 activity in the supernatant of transfected human embryonic kidney (HEK) cells. Biotin-RQRR-CMK was able to label active matriptase-2, as visualized in western blot experiments. Pretreatment with aprotinin, an active-site directed inhibitor of serine proteases, protected matriptase-2 from the reaction with biotin-RQRR-CMK. Full article
Figures

Graphical abstract

Open AccessReview The Role of TRP Channels in the Metastatic Cascade
Pharmaceuticals 2018, 11(2), 48; https://doi.org/10.3390/ph11020048
Received: 20 April 2018 / Revised: 15 May 2018 / Accepted: 16 May 2018 / Published: 17 May 2018
PDF Full-text (2541 KB) | HTML Full-text | XML Full-text
Abstract
A dysregulated cellular Ca2+ homeostasis is involved in multiple pathologies including cancer. Changes in Ca2+ signaling caused by altered fluxes through ion channels and transporters (the transportome) are involved in all steps of the metastatic cascade. Cancer cells thereby “re-program” and
[...] Read more.
A dysregulated cellular Ca2+ homeostasis is involved in multiple pathologies including cancer. Changes in Ca2+ signaling caused by altered fluxes through ion channels and transporters (the transportome) are involved in all steps of the metastatic cascade. Cancer cells thereby “re-program” and “misuse” the cellular transportome to regulate proliferation, apoptosis, metabolism, growth factor signaling, migration and invasion. Cancer cells use their transportome to cope with diverse environmental challenges during the metastatic cascade, like hypoxic, acidic and mechanical cues. Hence, ion channels and transporters are key modulators of cancer progression. This review focuses on the role of transient receptor potential (TRP) channels in the metastatic cascade. After briefly introducing the role of the transportome in cancer, we discuss TRP channel functions in cancer cell migration. We highlight the role of TRP channels in sensing and transmitting cues from the tumor microenvironment and discuss their role in cancer cell invasion. We identify open questions concerning the role of TRP channels in circulating tumor cells and in the processes of intra- and extravasation of tumor cells. We emphasize the importance of TRP channels in different steps of cancer metastasis and propose cancer-specific TRP channel blockade as a therapeutic option in cancer treatment. Full article
Figures

Figure 1

Open AccessArticle High Concentrations of Sodium Chloride Improve Microbicidal Activity of Ibuprofen against Common Cystic Fibrosis Pathogens
Pharmaceuticals 2018, 11(2), 47; https://doi.org/10.3390/ph11020047
Received: 16 February 2018 / Revised: 4 April 2018 / Accepted: 5 April 2018 / Published: 17 May 2018
PDF Full-text (3771 KB) | HTML Full-text | XML Full-text
Abstract
Ibuprofen (IBU-H), a widely used anti-inflammatory, also shows a marked antimicrobial effect against several bacterial species, including those involved in cystic fibrosis such as Pseudomona aeruginosa, methicillin resistant Staphylococcus aureus and Burkholderia cepacia complex. Additionally, our results show significant synergy between water
[...] Read more.
Ibuprofen (IBU-H), a widely used anti-inflammatory, also shows a marked antimicrobial effect against several bacterial species, including those involved in cystic fibrosis such as Pseudomona aeruginosa, methicillin resistant Staphylococcus aureus and Burkholderia cepacia complex. Additionally, our results show significant synergy between water soluble Na-ibuprofen (IBU-Na) and ionic strength. Salt concentrations above 0.5 M modify the zeta potential promoting the action of Na-IBU; thus, with 1 M sodium chloride, IBU-Na is ten times more efficient than in the absence of ionic strength, and the minimum effective contact time is reduced from hours to minutes. In short time periods, where neither IBU-Na nor controls with 1 M NaCl show activity, the combination of both leads to a reduction in the bacterial load. We also analyzed whether the changes caused by salt on the bacterial membrane also promoted the activity of other microbicide compounds used in cystic fibrosis like gentamicin, tobramycin and phosphomycin. The results show that the presence of ionic strength only enhanced the bactericidal activity of the amphipathic molecule of IBU-Na. In this respect, the effect of saline concentration was also reflected in the surface properties of IBU-Na, where, in addition to the clear differences observed between 145 mM and 1 M, singular behaviors were also found, different in each condition. The combination of anti-inflammatory activity and this improved bactericidal effect of Na-IBU in hypertonic solution provides a new alternative for the treatment of respiratory infections of fibrotic patients based on known and widely used compounds. Full article
Figures

Graphical abstract

Open AccessArticle The Effects of Dabigatran and Rivaroxaban on Markers of Polymorphonuclear Leukocyte Activation
Pharmaceuticals 2018, 11(2), 46; https://doi.org/10.3390/ph11020046
Received: 16 April 2018 / Revised: 3 May 2018 / Accepted: 4 May 2018 / Published: 14 May 2018
PDF Full-text (702 KB) | HTML Full-text | XML Full-text
Abstract
Dabigatran is an oral direct thrombin inhibitor, and rivaroxaban, a factor Xa inhibitor. Dabigatran has been implicated in the etiology of acute coronary syndromes and as these occur following inflammatory changes in the endothelium, we investigated the inflammatory potential of these agents in
[...] Read more.
Dabigatran is an oral direct thrombin inhibitor, and rivaroxaban, a factor Xa inhibitor. Dabigatran has been implicated in the etiology of acute coronary syndromes and as these occur following inflammatory changes in the endothelium, we investigated the inflammatory potential of these agents in vitro. In order to do so, polymorphonuclear leukocytes (PMNL) were isolated from heparinized venous blood from non-smoking, healthy adults and exposed to dabigatran or rivaroxaban (0.5–10 µM). Generation of reactive oxygen species (ROS), elastase release, cytosolic Ca2+ fluxes, neutrophil extracellular trap (NET) formation and cell viability were measured using chemiluminescence, spectrophotometric and flow cytometric procedures respectively. However, with the exception of modest inhibitory effects on elastase release, neither agent at concentrations of up to 10 µM affected these markers of PMNL activation. Although no pro-inflammatory effects of dabigatran nor any difference between the two test agents were detected in vitro, the existence of a pro-inflammatory mechanism involving the generation of thrombin during dabigatran therapy cannot be fully excluded. Full article
Figures

Figure 1

Back to Top