Previous Issue
Volume 11, April
 
 

Photonics, Volume 11, Issue 5 (May 2024) – 65 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
15 pages, 5340 KiB  
Article
Dual-Polarization Conversion and Coding Metasurface for Wideband Radar Cross-Section Reduction
by Saima Hafeez, Jianguo Yu, Fahim Aziz Umrani, Yibo Huang, Wang Yun and Muhammad Ishfaq
Photonics 2024, 11(5), 454; https://doi.org/10.3390/photonics11050454 (registering DOI) - 11 May 2024
Abstract
Modern stealth application systems require integrated meta-devices to operate effectively and have gained significant attention recently. This research paper proposes a 1-bit coding metasurface (CM) design. The fundamental component of the proposed CM is integrated to convert linearly polarized incoming electromagnetic waves into [...] Read more.
Modern stealth application systems require integrated meta-devices to operate effectively and have gained significant attention recently. This research paper proposes a 1-bit coding metasurface (CM) design. The fundamental component of the proposed CM is integrated to convert linearly polarized incoming electromagnetic waves into their orthogonal counterpart within frequency bands of 12.37–13.03 GHz and 18.96–32.37 GHz, achieving a polarization conversion ratio exceeding 99%. Furthermore, it enables linear-to-circular polarization conversion from 11.80 to 12.29, 13.17 to 18.44, and 33.33 to 40.35 GHz. A second element is produced by rotating a fundamental component by 90°, introducing a phase difference of π (pi) between them. Both elements are arranged in an array using a random aperiodic coding sequence to create a 1-bit CM for reducing the radar cross-section (RCS). The planar structure achieved over 10 dB RCS reduction for polarized waves in the frequency bands of 13.1–13.8 GHz and 20.4–30.9 GHz. A prototype was fabricated and tested, with the experimental results showing a good agreement with the simulated outcomes. The proposed design holds potential applications in radar systems, reflector antennas, stealth technologies, and satellite communication. Full article
16 pages, 12295 KiB  
Article
Ghost Fringe Suppression by Modifying the f-Number of the Diverger Lens for the Interferometric Measurement of Catadioptric Telescopes
by Yi-Kai Huang and Cheng-Huan Chen
Photonics 2024, 11(5), 453; https://doi.org/10.3390/photonics11050453 (registering DOI) - 11 May 2024
Viewed by 96
Abstract
A high-precision catadioptric telescope such as a space-borne telescope is usually tested with interferometer to check the optical quality in assembly. The coarse and fine alignment of the telescope are mainly based on the information from the coordinate measuring machine and the fringe [...] Read more.
A high-precision catadioptric telescope such as a space-borne telescope is usually tested with interferometer to check the optical quality in assembly. The coarse and fine alignment of the telescope are mainly based on the information from the coordinate measuring machine and the fringe pattern of the interferometer, respectively. In addition, further fine-tuning can be achieved according to the variation in wavefront error and Zernike data. The issue is that the vast majority of the catadioptric telescopes contain plural lens surfaces which could produce unwanted ghost fringes, disturbing the wavefront measurement. Technically, off-axis installation to shift away ghost fringes from central interferogram could be acceptable in some cases. Nevertheless, in this paper, the source of ghost fringe in interferometric measurement for catadioptric telescopes is investigated with light path simulation, and a solution of reducing the f-number of the diverger lens is proposed to eliminate the ghost fringe disturbance. Both simulation and experimental results verify the effectiveness of the proposed concept. Full article
(This article belongs to the Special Issue Optical Systems for Astronomy)
19 pages, 68984 KiB  
Article
Flow Field Estimation with Distortion Correction Based on Multiple Input Deep Convolutional Neural Networks and Hartmann–Shack Wavefront Sensing
by Zeyu Gao, Xinlan Ge, Licheng Zhu, Shiqing Ma, Ao Li, Lars Büttner, Jürgen Czarske and Ping Yang
Photonics 2024, 11(5), 452; https://doi.org/10.3390/photonics11050452 (registering DOI) - 11 May 2024
Viewed by 90
Abstract
The precise estimation of fluid motion is critical across various fields, including aerodynamics, hydrodynamics, and industrial fluid mechanics. However, refraction at complex interfaces in the light path can cause image deterioration and lead to severe measurement errors if the aberration changes with time, [...] Read more.
The precise estimation of fluid motion is critical across various fields, including aerodynamics, hydrodynamics, and industrial fluid mechanics. However, refraction at complex interfaces in the light path can cause image deterioration and lead to severe measurement errors if the aberration changes with time, e.g., at fluctuating air–water interfaces. This challenge is particularly pronounced in technical energy conversion processes such as bubble formation in electrolysis, droplet formation in fuel cells, or film flows. In this paper, a flow field estimation algorithm that can perform the aberration correction function is proposed, which integrates the flow field distribution estimation algorithm based on the Particle Image Velocimetry (PIV) technique and the novel actuator-free adaptive optics technique. Two different multi-input convolutional neural network (CNN) structures are established, with two frames of distorted PIV images and measured wavefront distortion information as inputs. The corrected flow field results are directly output, which are divided into two types based on different network structures: dense estimation and sparse estimation. Based on a series of models, a corresponding dataset synthesis model is established to generate training datasets. Finally, the algorithm performance is evaluated from different perspectives. Compared with traditional algorithms, the two proposed algorithms achieves reductions in the root mean square value of velocity residual error by 84% and 89%, respectively. By integrating both flow field measurement and novel adaptive optics technique into deep CNNs, this method lays a foundation for future research aimed at exploring more intricate distortion phenomena in flow field measurement. Full article
(This article belongs to the Special Issue Challenges and Future Directions in Adaptive Optics Technology)
15 pages, 5457 KiB  
Article
Improved DeepLabV3+ Network Beacon Spot Capture Methods
by Jun Liu, Xiaolong Ni, Xin Yu and Cong Li
Photonics 2024, 11(5), 451; https://doi.org/10.3390/photonics11050451 (registering DOI) - 11 May 2024
Viewed by 131
Abstract
In long-range laser communication, adaptive optics tracking systems are often used to achieve high-precision tracking. When recognizing beacon spots for tracking, the traditional threshold segmentation method is highly susceptible to segmentation errors in the face of interference. In this study, an improved DeepLabV3+ [...] Read more.
In long-range laser communication, adaptive optics tracking systems are often used to achieve high-precision tracking. When recognizing beacon spots for tracking, the traditional threshold segmentation method is highly susceptible to segmentation errors in the face of interference. In this study, an improved DeepLabV3+ network is designed for fast and accurate capture of beacon spots in complex situations. In order to speed up the inference process, the backbone of the model was rewritten as MobileNetV2. This study improves the ASPP (Atrous Spatial Pyramid Pooling) module by splicing and fusing the outputs and inputs of its different layers. Meanwhile, the original convolution in the module is rewritten as a depthwise separable convolution with a dilation rate to reduce the computational burden. CBAM (Convolutional Block Attention Module) is applied, and the focus loss function is introduced during training. The network yields an accuracy of 98.76% mean intersection over union on self-constructed beacon spot dataset, and the segmentation consumes only 12 milliseconds, which realizes the fast and high-precision capturing of beacon spots. Full article
(This article belongs to the Special Issue Challenges and Future Directions in Adaptive Optics Technology)
Show Figures

Figure 1

17 pages, 6945 KiB  
Article
Crystal ZnGeP2 for Nonlinear Frequency Conversion: Physical Parameters, Phase-Matching and Nonlinear Properties: Revision
by Sergey G. Grechin and Ilyia A. Muravev
Photonics 2024, 11(5), 450; https://doi.org/10.3390/photonics11050450 (registering DOI) - 11 May 2024
Viewed by 86
Abstract
The article presents a comparative analysis of published data for the physical parameters of the ZGP (ZnGeP2) crystal, its nonlinear and phase-matching properties, and functional capabilities for all frequency conversion processes (harmonics, sum and difference frequencies, and parametric generation). At the [...] Read more.
The article presents a comparative analysis of published data for the physical parameters of the ZGP (ZnGeP2) crystal, its nonlinear and phase-matching properties, and functional capabilities for all frequency conversion processes (harmonics, sum and difference frequencies, and parametric generation). At the first time, the possibilities for obtaining the temperature-noncritical processes for some combinations of wavelengths are shown. Full article
Show Figures

Figure 1

9 pages, 4367 KiB  
Communication
Gain-Switched Er-Doped Fluoride Fiber Laser at ~3.75 μm
by Lu Zhang, Shijie Fu, Quan Sheng, Xuewen Luo, Junxiang Zhang, Wei Shi, Qiang Fang and Jianquan Yao
Photonics 2024, 11(5), 449; https://doi.org/10.3390/photonics11050449 (registering DOI) - 11 May 2024
Viewed by 160
Abstract
We demonstrate a pulsed Er-doped ZBLAN fiber laser operating at 3.75 μm based on the gain-switching scheme. A diffraction grating is introduced as a wavelength selection component to enable stable lasing in this long-wavelength region that deviates from the emission peak of 4 [...] Read more.
We demonstrate a pulsed Er-doped ZBLAN fiber laser operating at 3.75 μm based on the gain-switching scheme. A diffraction grating is introduced as a wavelength selection component to enable stable lasing in this long-wavelength region that deviates from the emission peak of 4F9/24I9/2 transition in Er3+. Different from the conventional gain-switching behavior where the pulse repetition frequency of the output laser is same as the that of the pump, the gain-switched laser demonstrated here shows a variable pulse repetition frequency, which accounts for 1/n (n = 4, 3, 2) of the pump pulse repetition frequency, in response to the 1950 nm pump power. The output pulse characteristics, including average output power, repetition frequency, pulse duration, and peak power, are investigated in detail. Over 200 mW average output power at 3.75 μm was obtained at 12 W of 1950 nm pump power. This work demonstrates that the Er-doped ZBLAN fiber laser, in combination with gain-switched scheme, is a feasible and promising approach to generate powerful pulsed emission > 3.7 μm. Full article
(This article belongs to the Special Issue Research on Rare-Earth-Doped Fiber Lasers)
Show Figures

Figure 1

9 pages, 868 KiB  
Article
Penrose Scattering in Quantum Vacuum
by José Tito Mendonça
Photonics 2024, 11(5), 448; https://doi.org/10.3390/photonics11050448 (registering DOI) - 10 May 2024
Viewed by 164
Abstract
This paper considers the scattering of a probe laser pulse by an intense light spring in a QED vacuum. This new scattering configuration can be seen as the vacuum equivalent to the process originally associated with the scattering of light by a rotating [...] Read more.
This paper considers the scattering of a probe laser pulse by an intense light spring in a QED vacuum. This new scattering configuration can be seen as the vacuum equivalent to the process originally associated with the scattering of light by a rotating black hole, which is usually called Penrose superradiance. Here, the rotating object is an intense laser beam containing two different components of orbital angular momentum. Due to these two components having slightly different frequencies, the energy profile of the intense laser beam rotates with an angular velocity that depends on the frequency difference. The nonlinear properties of a quantum vacuum are described by a first-order Euler–Heisenberg Lagrangian. It is shown that in such a configuration, nonlinear photon–photon coupling leads to scattered radiation with frequency shift and angular dispersion. These two distinct properties, of frequency and propagation direction, could eventually be favorable for possible experimental observations. In principle, this new scattering configuration can also be reproduced in a nonlinear optical medium. Full article
(This article belongs to the Special Issue Photon-Photon Collision Using Extreme Lasers)
18 pages, 2363 KiB  
Review
Research Progress on Femtosecond Laser Poling of Ferroelectrics
by Yan Sheng, Xin Chen, Tianxiang Xu, Shan Liu, Ruwei Zhao and Wieslaw Krolikowski
Photonics 2024, 11(5), 447; https://doi.org/10.3390/photonics11050447 (registering DOI) - 10 May 2024
Viewed by 139
Abstract
Ferroelectric domain engineering has wide applications in optical and electronic industries. Compared with traditional electric field poling, femtosecond laser poling has many advantages, such as higher fabrication resolution, 3D engineering applicability, and lower costs of production. In this review, the recent research progress [...] Read more.
Ferroelectric domain engineering has wide applications in optical and electronic industries. Compared with traditional electric field poling, femtosecond laser poling has many advantages, such as higher fabrication resolution, 3D engineering applicability, and lower costs of production. In this review, the recent research progress on ferroelectric domain engineering with femtosecond laser pulses is presented. We show the latest results, including complex domain structures fabricated in various kinds of ferroelectric crystals, and discuss the influence of laser poling parameters and conditions on the morphologies of inverted domains and their physical mechanisms. The technical challenges to overcome in future are also briefly discussed. Full article
13 pages, 588 KiB  
Article
Optimized Wide-Angle Metamaterial Edge Filters: Enhanced Performance with Multi-Layer Designs and Anti-Reflection Coatings
by Baidong Wu, James N. Monks, Liyang Yue, Andrew Hurst and Zengbo Wang
Photonics 2024, 11(5), 446; https://doi.org/10.3390/photonics11050446 (registering DOI) - 10 May 2024
Viewed by 139
Abstract
This study presents a systematic optimization of wide-angle metamaterial long-pass (LP) edge filters based on silicon nanospheres (SiNP). Multi-layered configurations incorporating SiNP-meta-films and anti-reflection coating (ARC) elements not previously considered in the literature are explored to enhance their filter performance in both stop [...] Read more.
This study presents a systematic optimization of wide-angle metamaterial long-pass (LP) edge filters based on silicon nanospheres (SiNP). Multi-layered configurations incorporating SiNP-meta-films and anti-reflection coating (ARC) elements not previously considered in the literature are explored to enhance their filter performance in both stop and pass bands. This research has successfully developed an accurate model for the effective refractive index using Kramers–Kronig relations, enabling the use of classical thin-film design software for rapid device performance optimization, which is verified by full-wave numerical software. This systematic optimization has produced highly efficient, near-shift-free long-pass metamaterial filters, evidenced by their high optical density (OD = 2.55) and low spectral shift across a wide angular range (0°–60°). These advancements herald the development of high-efficiency metamaterial optical components suitable for a variety of applications that require a consistent performance across diverse angles of incidence. Full article
(This article belongs to the Special Issue Emerging Trends in Metamaterials and Metasurfaces Research)
22 pages, 34378 KiB  
Article
Polarization-Based Reflection Suppression Method and Its Application to Target Detection
by Jin Duan, Jialin Wang, Qiang Fu, Guofang Xie, Suxin Mo and Ruisen Fang
Photonics 2024, 11(5), 445; https://doi.org/10.3390/photonics11050445 - 10 May 2024
Viewed by 171
Abstract
Active illumination light becomes strongly reflective interference light after specular reflection. It causes saturation in some areas of the image during target detection, resulting in the inability to recognize detailed target feature information. This greatly limits the application of active illumination detection. Based [...] Read more.
Active illumination light becomes strongly reflective interference light after specular reflection. It causes saturation in some areas of the image during target detection, resulting in the inability to recognize detailed target feature information. This greatly limits the application of active illumination detection. Based on the Mueller matrix analysis of the difference in polarization characteristics between the background specular reflected light and the target reflected light, we propose a reflection suppression method based on orthogonal polarization imaging. The method employs a polarization modulation strategy in a bidirectional manner between the light source and the detector. First, the polarization information difference is amplified by active polarized illumination between the background specular reflected light and the target reflected light. Then, the target recovery is achieved by suppressing the background specular reflected light through the polarized orthogonal imaging method. Meanwhile, this method can also be used for moving target detection. The experimental results show that the reflection suppression method of orthogonal polarization imaging can effectively suppress the interference of specular reflection on the target image. Additionally, it can reduce the problems of missed and false detection that occurs in moving target detection and improve the active illumination detection effect. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

10 pages, 2433 KiB  
Article
Individual Tuning of Directional Emission and Luminance of a Quantum Emitter in a Composite Plasmonic Antenna
by Chaonuo Xin, Yuming Huang, Renpu Li and Yong Ma
Photonics 2024, 11(5), 444; https://doi.org/10.3390/photonics11050444 - 10 May 2024
Viewed by 222
Abstract
High directional emission and high radiative quantum efficiency are strongly needed when moving a single optical nano-emitter (such as a quantum dot) into the practical realm. However, a typical optical nano-emitter struggles to meet the requirements above, which limits its practical applications in [...] Read more.
High directional emission and high radiative quantum efficiency are strongly needed when moving a single optical nano-emitter (such as a quantum dot) into the practical realm. However, a typical optical nano-emitter struggles to meet the requirements above, which limits its practical applications in next-generation nano-photonic devices such as single-photon sources. Here, to achieve these features simultaneously, we propose and theoretically investigate a composite plasmonic antenna consisting of a hemispherical solid immersion lens (SIL) and a bowtie plasmonic nano-antenna, wherein a high directional emission of 10° and 2.5 × 103 of Purcell factor have both been enabled. Moreover, we find that directionality and the Purcell factor can be manipulated independently in our antenna, which provides a novel platform for the optimization of single-photon sources. Full article
(This article belongs to the Special Issue Optical Quantum System)
Show Figures

Figure 1

19 pages, 5898 KiB  
Article
Research on Dual-Grating Spacing Calibration Method Based on Multiple Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Combined with Hilbert Transform
by Yanzhen Zhu, Jiayuan Sun, Yuqing Guan, Liqin Liu, Chuangwei Guo, Yujie Zhang, Jun Wan and Lihua Lei
Photonics 2024, 11(5), 443; https://doi.org/10.3390/photonics11050443 - 10 May 2024
Viewed by 299
Abstract
The paper proposes a method for the calibration of spacing in dual-grating based on Multiple Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) combined with Hilbert Transform (HT), referred to as Multiple ICEEMDAN-HT. This method addresses the potential impact of nonlinear [...] Read more.
The paper proposes a method for the calibration of spacing in dual-grating based on Multiple Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) combined with Hilbert Transform (HT), referred to as Multiple ICEEMDAN-HT. This method addresses the potential impact of nonlinear factors on phase extraction accuracy, consequently on ranging precision in the homodyne interference of the dual-grating. Building upon the ICEEMDAN algorithm, the signal undergoes iterative decomposition and reconstruction using the sample entropy criterion. The intrinsic mode functions (IMFs) obtained from multiple iterations are then reconstructed to obtain the complete signal. Through a simulation and comparison with other signal decomposition methods, the repeatability and completeness of signal reconstruction by Multiple ICEEMDAN are verified. Finally, an actual dual-grating ranging system is utilized to calibrate the spacing of the planar grating. Experimental results demonstrate that the calibration relative error of the Multiple ICEEMDAN-HT phase unwrapping method can be reduced to as low as 0.07%, effectively enhancing the signal robustness and spacing calibration precision. Full article
(This article belongs to the Special Issue Novel Ultraviolet Laser: Generation, Properties and Applications)
Show Figures

Figure 1

77 pages, 9183 KiB  
Review
Synergy between AI and Optical Metasurfaces: A Critical Overview of Recent Advances
by Zoran Jakšić
Photonics 2024, 11(5), 442; https://doi.org/10.3390/photonics11050442 - 9 May 2024
Viewed by 604
Abstract
The interplay between two paradigms, artificial intelligence (AI) and optical metasurfaces, nowadays appears obvious and unavoidable. AI is permeating literally all facets of human activity, from science and arts to everyday life. On the other hand, optical metasurfaces offer diverse and sophisticated multifunctionalities, [...] Read more.
The interplay between two paradigms, artificial intelligence (AI) and optical metasurfaces, nowadays appears obvious and unavoidable. AI is permeating literally all facets of human activity, from science and arts to everyday life. On the other hand, optical metasurfaces offer diverse and sophisticated multifunctionalities, many of which appeared impossible only a short time ago. The use of AI for optimization is a general approach that has become ubiquitous. However, here we are witnessing a two-way process—AI is improving metasurfaces but some metasurfaces are also improving AI. AI helps design, analyze and utilize metasurfaces, while metasurfaces ensure the creation of all-optical AI chips. This ensures positive feedback where each of the two enhances the other one: this may well be a revolution in the making. A vast number of publications already cover either the first or the second direction; only a modest number includes both. This is an attempt to make a reader-friendly critical overview of this emerging synergy. It first succinctly reviews the research trends, stressing the most recent findings. Then, it considers possible future developments and challenges. The author hopes that this broad interdisciplinary overview will be useful both to dedicated experts and a general scholarly audience. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

16 pages, 5047 KiB  
Article
Surface Plasmon Waveguide Based on Nested Dielectric Parallel Nanowire Pairs Coated with Graphene
by Lixia Yu, Ji Liu and Wenrui Xue
Photonics 2024, 11(5), 441; https://doi.org/10.3390/photonics11050441 - 9 May 2024
Viewed by 278
Abstract
A kind of surface plasmon waveguide composed of two nested cylindrical dielectric parallel nanowire pairs coated with graphene was designed and studied. The dependence of the mode characteristics and the normalized gradient force of the lowest two modes supported by the waveguide on [...] Read more.
A kind of surface plasmon waveguide composed of two nested cylindrical dielectric parallel nanowire pairs coated with graphene was designed and studied. The dependence of the mode characteristics and the normalized gradient force of the lowest two modes supported by the waveguide on the parameters involved were analyzed by using the multipole method. To ensure rigor, the finite element method was employed to verify the accuracy of the multipole method, thus confirming its results. The results show that the multipole method is a powerful tool for handling this type of waveguide. The real part of the effective refractive index, the propagation length, the figure of merit, and the normalized gradient force can be significantly affected by the operating wavelength, the Fermi energy of graphene, the waveguide geometric parameters, and the refractive index of the inner dielectric nanowire. Due to the employment of nested dielectric nanowire pairs coated with graphene, this waveguide structure exhibits significant gradient force that surpasses 100 nN·μm−1·mW−1. The observed phenomena can be attributed to the interaction of the field with graphene. This waveguide holds promising potential for applications in micro/nano integration, optical tweezers, and sensing technologies. Full article
(This article belongs to the Special Issue Design and Applications of Novel Nanophotonics Devices)
Show Figures

Figure 1

17 pages, 7129 KiB  
Review
On-Chip Supercontinuum Generation Pumped by Short Wavelength Fiber Lasers
by Peng Chen, Zhe Long, Qi Cheng, Maozhuang Song, Wei Wang, Ruixue Liu, Zheng Zhang, Kai Xia, Zhen Yang, Lei Qian, Shengchuang Bai, Xunsi Wang, Peilong Yang, Peipeng Xu, El Sayed Yousef and Rongping Wang
Photonics 2024, 11(5), 440; https://doi.org/10.3390/photonics11050440 - 9 May 2024
Viewed by 236
Abstract
Supercontinuum (SC) generation pumped by fiber lasers with short wavelengths below 2.0 μm is important since it can provide a compact light source for various applications. We review the progress of SC generation in various materials regarding the formation of the waveguides and [...] Read more.
Supercontinuum (SC) generation pumped by fiber lasers with short wavelengths below 2.0 μm is important since it can provide a compact light source for various applications. We review the progress of SC generation in various materials regarding the formation of the waveguides and point out the existing issues in the current investigations and possible solutions in the future. Full article
Show Figures

Figure 1

11 pages, 1515 KiB  
Article
Wavelength-Tunable Chirped Pulse Amplification System (1720 nm–1800 nm) Based on Thulium-Doped Fiber
by Xinyang Liu and Regina Gumenyuk
Photonics 2024, 11(5), 439; https://doi.org/10.3390/photonics11050439 - 8 May 2024
Viewed by 205
Abstract
Chirped pulse amplification (CPA) has been a commonly used methodology to obtain powerful ultrashort laser pulses ever since its first demonstration. However, wavelength-tunable CPA systems are much less common. Wavelength-tunable ultrashort and intense laser pulses are desirable in various fields such as nonlinear [...] Read more.
Chirped pulse amplification (CPA) has been a commonly used methodology to obtain powerful ultrashort laser pulses ever since its first demonstration. However, wavelength-tunable CPA systems are much less common. Wavelength-tunable ultrashort and intense laser pulses are desirable in various fields such as nonlinear spectroscopy and optical parametric amplification. In this work, we report a 1720 nm–1800 nm tunable CPA system based on Tm-doped fiber. The tunable CPA system contains a seed laser, a pulse stretcher, two cascaded amplifiers and a pulse compressor. The dispersion-managed seed laser cavity emits wavelength-tunable laser pulses with pulse durations of several ps and spectral widths from 25 nm to 34 nm. After being stretched temporally to tens of ps, the laser pulses are then amplified in two-stage amplifiers and compressed in a Treacy-type compressor. At 1720 nm, the maximum average power of 126 mW is obtained with a pulse duration of 507 fs; at 1800 nm, the maximum average power of 264 mW is obtained with a pulse duration of 294 fs. The pulse repetition rates are around 22.7 MHz. We perform an analysis of the system design based on numerical simulations and go on to suggest further steps for improvement. To the best of our knowledge, this is the first demonstration of a tunable CPA system beyond 1.1 μm. Considering the specific wavelength range, this wavelength-tunable CPA system is highly desirable for biomedical imaging, sensing, and parametric amplifiers. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

19 pages, 5518 KiB  
Article
EUV Radiation in the Range of 10–20 nm from Liquid Spray Targets Containing O, Cl, Br and I Atoms under Pulsed Laser Excitation
by Valerie E. Guseva, Andrey N. Nechay, Alexander A. Perekalov and Nicolay I. Chkhalo
Photonics 2024, 11(5), 438; https://doi.org/10.3390/photonics11050438 - 8 May 2024
Viewed by 213
Abstract
The article describes the results of an investigation to determine the values of radiation intensities emitted by O-, Cl-, Br-, and I-containing liquid spray targets in absolute units in the wavelength range 10–20 nm when excited by pulsed laser radiation. The conversion coefficients [...] Read more.
The article describes the results of an investigation to determine the values of radiation intensities emitted by O-, Cl-, Br-, and I-containing liquid spray targets in absolute units in the wavelength range 10–20 nm when excited by pulsed laser radiation. The conversion coefficients of laser radiation into the EUV radiation are given for some wavelengths. The authors’ specially designed pulse extrusion liquid supply system was used to form the liquid spray targets. An Nd:YAG laser with λ = 1064 nm, τ = 8.4 ns, and Epulse = 0.8 J was used to excite the targets. Spectral measurements were made using a grazing incidence grating spectrometer–monochromator. The absolute intensities of a number of emission lines were also measured using a Bragg spectrometer based on a Mo/Be multilayer X-ray mirror, calibrated by both sensitivity and wavelength. The high values of absolute intensities of the liquid targets in the extreme ultraviolet wavelength range were demonstrated. Full article
(This article belongs to the Special Issue Advances and Applications of Solid State Lasers)
Show Figures

Figure 1

10 pages, 1560 KiB  
Article
Conversion and Active Control between BIC and Absorber in Terahertz Metasurface
by Zhou Xi and Zhencheng Chen
Photonics 2024, 11(5), 437; https://doi.org/10.3390/photonics11050437 - 8 May 2024
Viewed by 286
Abstract
A multifunctional switchable metamaterial device based on graphene, a gold layer, polyimide, vanadiµm dioxide (VO2), and the sapphire substrate is designed in this paper. The top layer consists of a gold wire, graphene, and two split-ring resonators with the same parameters. [...] Read more.
A multifunctional switchable metamaterial device based on graphene, a gold layer, polyimide, vanadiµm dioxide (VO2), and the sapphire substrate is designed in this paper. The top layer consists of a gold wire, graphene, and two split-ring resonators with the same parameters. By adjusting the Fermi level of graphene, the regulation of BIC and quasi-BIC is realized, and the conversion between BIC and absorber is realized by adjusting the conductivity of VO2. When the device is converted into a wave-absorbing device with single-band absorption characteristics, the Fermi level of graphene at this time is 0.001 eV, the absorption peak at 0.820 THz is higher than 99.5%, and when the Fermi level of regulated graphene is 1 eV, the absorption peak at 0.667 THz is also higher than 99.5%. The peak frequency of the device is 0.640 THz when it converts to quasi-BIC. To the best of our knowledge, this is the first time that the conversion and regulation of BIC and absorber have been achieved using these two phase change materials. Moreover, by adjusting the parameters of the metamaterial structure, the working efficiency and frequency of BIC and absorber can be dynamically adjusted. The electric field distribution and surface current of metamaterials are further studied, and the physical mechanism of effective absorption and BIC is discussed. These results show that the metamaterials proposed in this paper have many advantages, such as terahertz absorption, BIC, and active device control, and are of great significance for developing terahertz multifunctional devices. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

17 pages, 5263 KiB  
Article
The Optimization of Microwave Field Characteristics for ODMR Measurement of Nitrogen-Vacancy Centers in Diamond
by Zhenxian Fan, Li Xing, Feixiang Wu, Xiaojuan Feng and Jintao Zhang
Photonics 2024, 11(5), 436; https://doi.org/10.3390/photonics11050436 - 8 May 2024
Viewed by 320
Abstract
A typical solid-state quantum sensor can be developed based on negatively charged nitrogen-vacancy (NV) centers in diamond. The electron spin state of NV can be controlled and read at room temperature. Through optical detection magnetic resonance (ODMR) technology, temperature measurement [...] Read more.
A typical solid-state quantum sensor can be developed based on negatively charged nitrogen-vacancy (NV) centers in diamond. The electron spin state of NV can be controlled and read at room temperature. Through optical detection magnetic resonance (ODMR) technology, temperature measurement can be achieved at the nanoscale. The key to ODMR technology is to apply microwave resonance to manipulate the electron spin state of the NV. Therefore, the microwave field characteristics formed near the NV have a crucial impact on the sensitivity of ODMR measurement. This article mainly focuses on the temperature situation in cellular applications and simulates the influence of structural parameters of double open loop resonant (DOLR) microwave antennas and broadband large-area (BLA) microwave antennas on the microwave field’s resonance frequency, quality factor Q, magnetic field strength, uniformity, etc. The parameters are optimized to have sufficient bandwidth, high signal-to-noise ratio, low power loss, and high magnetic field strength in the temperature range of 36 °C to 42.5 °C. Finally, the ODMR spectra are used for effect comparison, and the signal-to-noise ratio and Q values of the ODMR spectra are compared when using different antennas. We have provided an optimization method for the design of microwave antennas and it is concluded that the DOLR microwave antenna is more suitable for living cell temperature measurement in the future. Full article
(This article belongs to the Special Issue Optically Pumped Magnetometer and Its Application)
Show Figures

Figure 1

13 pages, 9090 KiB  
Article
Discriminating Glioblastoma from Normal Brain Tissue In Vivo Using Optical Coherence Tomography and Angiography: A Texture and Microvascular Analysis Approach
by Trung Nguyễn-Hoàng, Tai-Ang Wang, Chia-Heng Wu and Meng-Tsan Tsai
Photonics 2024, 11(5), 435; https://doi.org/10.3390/photonics11050435 - 8 May 2024
Viewed by 284
Abstract
Brain tumors arise from abnormal cell growth in the brain. Glioblastoma, the most common and aggressive type, poses significant challenges for identification during surgery. The primary goal of this study is to identify and differentiate normal brain tissue from glioblastoma tissue using optical [...] Read more.
Brain tumors arise from abnormal cell growth in the brain. Glioblastoma, the most common and aggressive type, poses significant challenges for identification during surgery. The primary goal of this study is to identify and differentiate normal brain tissue from glioblastoma tissue using optical coherence tomography (OCT) and OCT angiography (OCTA). These techniques offer a non-invasive way to analyze the morphological and microvascular alternations associated with glioblastoma in an animal model. To monitor the changes in morphology and vascular distribution of brain tissue as glioblastoma tumors grow, time-series OCT and OCTA results were collected for comparison. Texture analysis of OCT images was proposed using the gray-level co-occurrence matrix (GLCM), from which homogeneity and variance were calculated as discriminative parameters. Additionally, OCTA was used to assess microvascular characteristics, including vessel diameter, density, and fractal dimension. The findings demonstrate that the proposed methods can effectively distinguish between normal and cancerous brain tissue in vivo. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

20 pages, 11282 KiB  
Article
Rare-Earth-Ion (RE3+)-Doped Aluminum and Lanthanum Borates for Mobile-Phone-Interrogated Luminescent Markers
by Katya Hristova, Irena P. Kostova, Tinko A. Eftimov, Daniel Brabant and Samia Fouzar
Photonics 2024, 11(5), 434; https://doi.org/10.3390/photonics11050434 - 6 May 2024
Viewed by 344
Abstract
In this paper, we present the synthesis and luminescent spectra of rare-earth (RE)-doped aluminum and lanthanum borates intended to serve as narrow excitation–emission band fluorescent markers. We perform a detailed 3D excitation–emission matrix (EEM) analysis of their spectra, compare the measurements from both [...] Read more.
In this paper, we present the synthesis and luminescent spectra of rare-earth (RE)-doped aluminum and lanthanum borates intended to serve as narrow excitation–emission band fluorescent markers. We perform a detailed 3D excitation–emission matrix (EEM) analysis of their spectra, compare the measurements from both standard and mobile phone spectrometers, and outline the basic differences and advantages of each method. While smartphones have a different and non-uniform spectral response compared to standard spectrometers, it is shown that they offer a number of advantages such as contactless interrogation, efficient suppression of the UV excitation light, and simultaneous spectral analysis of spatially arranged arrays of fluorescent markers. The basic emission peaks have been observed and their corresponding electronic transitions identified. The obtained results show that the rare-earth-doped La and Al borates feature excitation–emission bandwidths as low 15 nm/12 nm, which makes them particularly appropriate for use as luminescent markers with UV LED excitation and smartphone interrogation. Full article
Show Figures

Figure 1

10 pages, 13238 KiB  
Article
Dead Zone Fault Detection Optimization Method for Few-Mode Fiber Links Based on Unexcited Coupled Higher-Order Modes
by Feng Liu, Tianle Gu and Zicheng Huang
Photonics 2024, 11(5), 433; https://doi.org/10.3390/photonics11050433 - 6 May 2024
Viewed by 422
Abstract
The traditional single-mode fiber (SMF) optical time domain reflectometer (OTDR) may not be able to accurately detect and locate fault events in the dead zone of few-mode fiber (FMF) links. This paper introduces the concept of higher-order spatial mode detection dimensions unique to [...] Read more.
The traditional single-mode fiber (SMF) optical time domain reflectometer (OTDR) may not be able to accurately detect and locate fault events in the dead zone of few-mode fiber (FMF) links. This paper introduces the concept of higher-order spatial mode detection dimensions unique to FMF, combined with the spatial mode coupling characteristics between modes. The Fresnel reflection from the end face of the fiber, the interior of the circulator, and the connector only occurs in the spatial mode of the injected optical pulse. The Rayleigh backscattering, which reflects the fault distribution characteristics of FMF links, can be detected by non-excited higher-order spatial modes. The proposed method can completely overcome the traditional OTDR dead zone. In this paper, the six-mode fiber is taken as an example for experimental verification. The detection optical pulse is injected into the fundamental mode LP01, and the Rayleigh backscattering of LP11a, LP11b, LP21a, LP21b, and LP02 higher-order spatial mode are collected and analyzed to accurately detect and locate the fusion splice fault event at 100 m and 500 m in the dead zone. Full article
Show Figures

Figure 1

16 pages, 7405 KiB  
Article
Mid-Infrared 2.79 μm Band Er, Cr: Y3Sc2Ga3O12 Laser Transmission Anti-Bending Low-Loss Anti-Resonant Hollow-Core Fiber
by Lei Huang, Peng Wang, Yinze Wang, Tingqing Cheng, Li Wang and Haihe Jiang
Photonics 2024, 11(5), 432; https://doi.org/10.3390/photonics11050432 - 5 May 2024
Viewed by 461
Abstract
A large core size and bending resistance are very important properties of mid-infrared energy transfer fibers, but large core sizes usually lead to the deterioration of bending properties. A negative-curvature nested node-free anti-resonant hollow-core fiber (AR-HCF) based on quartz is proposed. It was [...] Read more.
A large core size and bending resistance are very important properties of mid-infrared energy transfer fibers, but large core sizes usually lead to the deterioration of bending properties. A negative-curvature nested node-free anti-resonant hollow-core fiber (AR-HCF) based on quartz is proposed. It was made by adding a nested layer to a previous AR-HCF design to provide an additional anti-resonance region while keeping the gap between adjacent tubes strictly correlated with the core diameter to produce a node-free structure. These features improve the fiber’s bending resistance while achieving a larger core diameter. The simulation results show that the radial air–glass anti-resonant layer is increased by the introduction of the nested anti-resonant tube, and the weak interference overlap between the fiber core and the cladding mode is reduced, so the fiber core’s limiting loss and sensitivity to bending are effectively reduced. When the capillary wall thickness t of the fiber is 0.71 μm, the core diameter D is 70 μm, the ratio of the inner diameter of the cladding capillary to the core diameter d/D is 0.62, the diameter of the nested tube is d0 = 29 μm, the fiber has a lower limiting loss at the wavelength of 2.79 μm, and the limiting loss is 3.28 × 10−4 dB/m. At the same time, the optimized structure also has good bending resistance. When the bending radius is 30 mm, the bending loss is only 4.72 × 10−2 dB/m. An anti-bending low-loss micro-structure hollow fiber with a bending radius of less than 30 mm was successfully achieved in the 2.79 μm band. An anti-bending low-loss anti-resonant hollow-core fiber with this structure constitutes a reliable choice for the light guiding system of a 2.79 μm band Er, Cr: YSGG laser therapy instrument. Full article
Show Figures

Figure 1

14 pages, 1448 KiB  
Article
Global Receptive Field Designed Complex-Valued Convolutional Neural Network Equalizer for Optical Fiber Communications
by Lu Han, Yongjun Wang, Haifeng Yang, Yang Zhao and Chao Li
Photonics 2024, 11(5), 431; https://doi.org/10.3390/photonics11050431 - 5 May 2024
Viewed by 242
Abstract
In this paper, an improved complex-valued convolutional neural network (CvCNN) structure to be placed at the received side is proposed for nonlinearity compensation in a coherent optical system. This complex-valued global convolutional kernel-assisted convolutional neural network equalizer (CvGNN) has been verified in terms [...] Read more.
In this paper, an improved complex-valued convolutional neural network (CvCNN) structure to be placed at the received side is proposed for nonlinearity compensation in a coherent optical system. This complex-valued global convolutional kernel-assisted convolutional neural network equalizer (CvGNN) has been verified in terms of Q-factor performance and complexity compared to seven other related nonlinear equalizers based on both the 64 QAM experimental platform and the QPSK numerical platform. The global convolution operation of the proposed CvGNN is more suitable for the calculation process of perturbation coefficients, and the global receptive field can also be more effective at extracting effective information from perturbation feature maps. The introduction of CvCNN can directly focus on the complex-valued perturbation feature maps themselves without separately processing the real and imaginary parts, which is more in line with the waveform-dependent physical characteristics of optical signals. Based on the experimental platform, compared with the real-valued neural network with small convolutional kernel (RvCNNC), the proposed CvGNNC improves the Q-factor by ∼2.95 dB at the optimal transmission power, while reducing the time complexity by ∼44.7%. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

14 pages, 4641 KiB  
Article
Polarization Strips in the Focus of a Generalized Poincaré Beam
by Victor V. Kotlyar, Alexey A. Kovalev, Alexey M. Telegin and Elena Sergeevna Kozlova
Photonics 2024, 11(5), 430; https://doi.org/10.3390/photonics11050430 (registering DOI) - 4 May 2024
Viewed by 425
Abstract
We analyze the tight focusing of a generalized Poincaré beam using a Richards–Wolf formalism. Conventional Poincaré beams are superpositions of two Laguerre–Gaussian beams with orthogonal polarization, while the generalized Poincaré beams are composed of two arbitrary optical vortices with rotationally symmetric amplitudes. Analytical [...] Read more.
We analyze the tight focusing of a generalized Poincaré beam using a Richards–Wolf formalism. Conventional Poincaré beams are superpositions of two Laguerre–Gaussian beams with orthogonal polarization, while the generalized Poincaré beams are composed of two arbitrary optical vortices with rotationally symmetric amplitudes. Analytical relationships for projections of the electric field in the focal plane are derived. Using the superposition of a right-handed circularly polarized plane wave and an optical vortex with a topological charge of −1 as an example, relationships for the intensity distribution and the longitudinal projection of the spin angular momentum vector are deduced. It is theoretically and numerically shown that the original beam has a topological charge of −1/2 and a C-point of circular polarization, and it is generated at the focal plane center, producing an on-axis C-line with a singularity index of −1/2 (a star). Furthermore, when making a full circle of some radius around the optical axis, the major axis vector of polarization ellipse is theoretically and numerically shown to form a one-sided polarization (Möbius) strip of order −3/2, which has three half-twists and a single ‘patching’ in which two oppositely directed vectors of the major axis of polarization ellipse occur close to each other. Full article
(This article belongs to the Special Issue Recent Advances in Diffractive Optics)
Show Figures

Figure 1

19 pages, 5476 KiB  
Article
Efficient Pipeline Conflict Resolution for Layered QC-LDPC Decoders in OFDM-PON
by Zhijie Wang, Zhengjun Xu, Kun Chen, Yuanzhe Qu, Xiaoqun Liu, Yingchun Li and Junjie Zhang
Photonics 2024, 11(5), 429; https://doi.org/10.3390/photonics11050429 - 4 May 2024
Viewed by 270
Abstract
The high standard of communication quality in optical access networks makes forward error correction (FEC) schemes, such as LDPC, an integral part of the system. However, pipeline conflict arising from data dependencies is a common issue encountered in the hardware implementation of layered [...] Read more.
The high standard of communication quality in optical access networks makes forward error correction (FEC) schemes, such as LDPC, an integral part of the system. However, pipeline conflict arising from data dependencies is a common issue encountered in the hardware implementation of layered QC-LDPC decoders. This paper proposes an efficient layered decoding architecture to reduce pipeline conflicts without introducing stall cycles. It can solve some of the pipeline conflicts by flexibly reordering the processing order of inter-layer and intra-layer submatrices offline. In addition, the patch method, based on variable-to-check messages, allows for the delayed use of gains between layer iterations, which can further minimize the performance loss caused by the remaining pipeline conflicts. The experimental results on the LDPC code of the IEEE802.16 standard in the OFDM-PON system demonstrate that the proposed architecture has sensitivity improvements of 0.125 dBm and 0.375 dBm, respectively, compared with our previous work and the method described in the other work. The optimized architecture improves the reliability of the decoder and can also make a contribution to efficient PON systems. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

14 pages, 12042 KiB  
Article
Tightly Trapped Atom Interferometer inside a Hollow-Core Fiber
by Yitong Song, Wei Li, Xiaobin Xu, Rui Han, Chengchun Gao, Cheng Dai and Ningfang Song
Photonics 2024, 11(5), 428; https://doi.org/10.3390/photonics11050428 - 3 May 2024
Viewed by 394
Abstract
We demonstrate a fiber-guided atom interferometer in a far-off-resonant trap (FORT) of 100 μK. The differential light shift (DLS) introduced by the FORT leads to the inhomogeneous dephasing of the tightly trapped atoms inside a hollow-core fiber. The DLS-induced dephasing is greatly suppressed [...] Read more.
We demonstrate a fiber-guided atom interferometer in a far-off-resonant trap (FORT) of 100 μK. The differential light shift (DLS) introduced by the FORT leads to the inhomogeneous dephasing of the tightly trapped atoms inside a hollow-core fiber. The DLS-induced dephasing is greatly suppressed in π/2-π-π/2 Doppler-insensitive interferometry. The spin coherence time is extended to 13.4 ms by optimizing the coupling of the trapping laser beam into a quasi-single-mode hollow-core anti-resonant fiber. The Doppler-sensitive interferometry shows a much shorter coherence time, indicating that the main limits to our fiber-guided atom interferometer are the wide axial velocity distribution and the irregular modes of the Raman laser beams inside the fiber. This work paves the way for portable and miniaturized quantum devices, which have advantages for inertial sensing at arbitrary orientations and in dynamic environments. Full article
(This article belongs to the Special Issue The Integration of Quantum Communication and Quantum Sensors)
Show Figures

Figure 1

16 pages, 6183 KiB  
Article
Improved Optics for Super-Resolution Time-Lapse Observations of Biological Phenomenon Using Speckle Interferometry
by Yasuhiko Arai
Photonics 2024, 11(5), 427; https://doi.org/10.3390/photonics11050427 - 3 May 2024
Viewed by 269
Abstract
This study proposes a new optical system with the potential for time-lapse observation of living cellular tissue beyond the diffraction limit through speckle interferometry to facilitate biological research. The spatial resolution of this optical system was investigated and improved upon. This study also [...] Read more.
This study proposes a new optical system with the potential for time-lapse observation of living cellular tissue beyond the diffraction limit through speckle interferometry to facilitate biological research. The spatial resolution of this optical system was investigated and improved upon. This study also experimentally verified a finding from an earlier simulation study that the new super-resolution technology could be realised by analysing the phase distribution related to the shape of the measured object, preserved in the light reflected from the object. Additionally, a method was presented to confirm the positions of microstructures, based on the extracted characteristics of the structure. Full article
(This article belongs to the Special Issue Coherence Properties of Light: From Theory to Applications)
Show Figures

Figure 1

26 pages, 9970 KiB  
Article
An Empirical Approach to Rerouting Visible Light Pathways Using an Adjustable-Angle Mirror to Sustain Communication between Vehicles on Curvy Roads
by Ahmet Deniz, Burak Aydın and Heba Yuksel
Photonics 2024, 11(5), 426; https://doi.org/10.3390/photonics11050426 - 3 May 2024
Viewed by 546
Abstract
In this paper, a novel method is demonstrated to sustain vehicle-to-vehicle (V2V) communication on curvy roads via the arrangement of the lateral position of a self-angle-adjustable mirror–reflective road sign (SAAMRS) and light-direction-sensing wide-angle complementary photodiodes (CPDs). Visible light communication (VLC) between vehicles attracts [...] Read more.
In this paper, a novel method is demonstrated to sustain vehicle-to-vehicle (V2V) communication on curvy roads via the arrangement of the lateral position of a self-angle-adjustable mirror–reflective road sign (SAAMRS) and light-direction-sensing wide-angle complementary photodiodes (CPDs). Visible light communication (VLC) between vehicles attracts attention as a complementary technology to radio-frequency-based (RF-based) communication technologies due to its wide, license-free spectrum and immunity to interferences. However, V2V VLC may be interrupted on curvy roads due to the limited field of view (FOV) of the receiver or the line of sight (LOS) being interrupted. To solve this problem, an experiment was developed using an SAAMRS along with wide-angle light-direction-sensing CPDs that used a precise peak detection (PPD) method to sustain communication between vehicles in dynamic environments by rerouting the incident light with the highest signal intensity level to the receiver vehicle on curvy roads. We also used real images of curvy roads simulated as polynomials to calculate the necessary rotation angles for the SAAMRS and regions where communication exist. Our experimental results overlapped almost completely with our simulations, with small errors of approximately 4.8% and 4.4% for the SAAMRS angle and communication region, respectively. Full article
(This article belongs to the Special Issue Visible Light Communications)
Show Figures

Figure 1

12 pages, 2756 KiB  
Article
Polarization Diffraction Gratings in PAZO Polymer Thin Films Recorded with Digital Polarization Holography: Polarization Properties and Surface Relief Formation
by Nataliya Berberova-Buhova, Lian Nedelchev, Georgi Mateev, Ludmila Nikolova, Elena Stoykova, Branimir Ivanov, Velichka Strijkova, Keehoon Hong and Dimana Nazarova
Photonics 2024, 11(5), 425; https://doi.org/10.3390/photonics11050425 - 3 May 2024
Viewed by 420
Abstract
In this work, we study the polarization properties of diffraction gratings recorded in thin films of the azopolymer PAZO (poly[1-[4-(3-carboxy-4-hydroxyphenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt]) using digital polarization holography. Using two quarter-wave plates, the phase retardation of each pixel of the SLM is converted into [...] Read more.
In this work, we study the polarization properties of diffraction gratings recorded in thin films of the azopolymer PAZO (poly[1-[4-(3-carboxy-4-hydroxyphenylazo)benzene sulfonamido]-1,2-ethanediyl, sodium salt]) using digital polarization holography. Using two quarter-wave plates, the phase retardation of each pixel of the SLM is converted into the azimuth rotation of linearly polarized light. When recording from the azopolymer side of the sample, significant surface relief amplitude is observed with atomic force microscopy. In contrast, recording from the substrate side of the sample allows the reduction of the surface relief modulation and the obtaining of polarization gratings with characteristics close to an ideal grating, recorded with two orthogonal circular polarizations. This can be achieved even with a four-pixel period of grating, as demonstrated by our results. Full article
(This article belongs to the Special Issue Technologies and Applications of Digital Holography)
Show Figures

Figure 1

Previous Issue
Back to TopTop