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Abstract: In this paper, an improved complex-valued convolutional neural network (CvCNN)
structure to be placed at the received side is proposed for nonlinearity compensation in a coherent
optical system. This complex-valued global convolutional kernel-assisted convolutional neural
network equalizer (CvGNN) has been verified in terms of Q-factor performance and complexity
compared to seven other related nonlinear equalizers based on both the 64 QAM experimental
platform and the QPSK numerical platform. The global convolution operation of the proposed
CvGNN is more suitable for the calculation process of perturbation coefficients, and the global
receptive field can also be more effective at extracting effective information from perturbation feature
maps. The introduction of CvCNN can directly focus on the complex-valued perturbation feature
maps themselves without separately processing the real and imaginary parts, which is more in line
with the waveform-dependent physical characteristics of optical signals. Based on the experimental
platform, compared with the real-valued neural network with small convolutional kernel (RvCNNC),
the proposed CvGNNC improves the Q-factor by ∼2.95 dB at the optimal transmission power, while
reducing the time complexity by ∼44.7%.

Keywords: complex-valued convolutional neural network; global receptive field; coherent optical
communication system

1. Introduction

Driven by various emerging internet services, the quantity of global data has exploded,
and there is an increasing demand to perform massive amounts of data transmission and
processing. For efficient use of spectrum resources, information is generally modulated in a
M-ary quadrature-amplitude (M-QAM) modulation format, which is extremely susceptible
to serious nonlinear impairments [1]. Moreover, long-distance transmission causes serious
nonlinearity accumulation [2]. Digital backpropagation (DBP) based on split-step Fourier
transform (SSFT) is an effective method for nonlinearity compensation (NLC), but it requires
considerable computational resources [3,4].

Neural network (NN) algorithms have achieved excellent performance in many areas
of science and technology. Various structures have been proposed and implemented in
optical fiber communication systems, which have experimentally demonstrated that NNs
can effectively map end-to-end relationships because of their excellent ability to fit the
linear and nonlinear transform between the input and output. Ref. [5] proposed a NN
equalizer based on the perturbation theory and selected triplets as input features and
perturbation terms as NN output. Ref. [6] compared several NN equalizers and proved
that symbol sequences can be treated as time series, so nonlinear tasks can be treated
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as classification or regression tasks for time series in recurrent neural network (RNN).
In our previous work [7], we regarded the triplets as feature units (FU) and constructed
a dual-channel feature map. We also proposed using real-valued convolutional network
classifier (RvCNNC) to process these feature maps and complete the task of nonlinearity
equalization. However, it is well known that digital signals are usually represented in
plural form for optical signal processing in optical fiber communication systems. Most
existing NNs are real-valued frameworks that ignore the correlation between the real and
imaginary components of complex signals [8]. A comprehensive design of a complex-
valued neural network (CvNN) incorporating phase information in the research process
was proposed, where the network parameters and the backpropagation algorithm were
extended into the complex domain [9,10]. Applying CvNN simplifies waveform signal
processing, and CvNN is a compatible model for wave-related information processing,
as it can simultaneously deal with phase and amplitude components [11]. In [12], a CvNN
was used for four-level pulse amplitude modulation (PAM-4) coherent detection. This
approach achieves a better bit error rate (BER) performance than a real-valued neural
network (RvNN) equalizer.

Recently, CNNs have faced challenges caused by vision transformers (ViTs) in many
tasks [13,14]. To break these bottlenecks, scholars have proposed increasing the size of the
effective receptive field (ERF) to improve the system performance. A global convolutional
neural network (GNN) using a large convolutional kernel is proposed in [15] to eliminate
the influence of shape bias and to establish a closer connection between the input feature
map and the output classification result. The global convolution kernel has been proposed
in [16], and the scholars have proven that the GNN performance can be greatly improved
by expanding the size of the convolutional kernel and ERF.

Our novel contributions are summarized as follows:

• Complex-valued input feature map: For input data, we reconstruct a complex-valued
single channel feature map from received symbols on the basis of perturbation theory.

• Equalizer design: In our proposed CNN equalizer [7], all FUs and FU position-
related information is interrelated and essential. Thus, the equalizer in this paper
was designed based on two aims: 1. To design a convolution kernel with a global
receptive field; 2. to apply the global kernel into the complex-valued convolutional
neural network (CvCNN). For the output of classifiers, we set 64-class classification
labels for the received symbols, and for the output of regressors, we set difference
values between the received and transmitted symbols. Based on different output data
types and loss functions, we can build a nonlinear equalizer consisting of a classifier
and a regressor.

• Experimental result validation: We built a 120 Gb/s polarization division multiplexing
(PDM) 64QAM experimental platform with 375 km transmission distance. We evaluate
our algorithm based on two aspects, the Q-factor performance and the complexity
performance. In coherent optical fiber communication systems, we estimate the
time complexity based on the number of floating point multiplications (FLOPs) to
equalize one symbol and ignore other operations with lower impact. Moreover,
the space complexity is depicted as the number of parameters required to implement
the NN model.

The rest of our paper is organized as follows. In Section 2, we discuss the basic
principle of perturbation theory, the structure of FUs, and the structure of the CvGNN.
In Section 3, the configuration of the coherent optical fiber communication system is
presented. In Section 4, the experimental results are given, along with an analysis of the
performance. In Section 5, the complexity comparison between different equalizers is
discussed. Finally, we conclude the paper in in Section 6.

2. Theoretical Analysis

In this section, we review the feature map construction process by applying the pertur-
bation theory. And based on the inherent symmetry of perturbation terms, we produce a
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spatial folding method to reduce the dimensionality of feature maps. Then, a CNN structure
based on dimensionally reduced feature maps is proposed for nonlinear equalization.

2.1. Feature Map Construction

In PDM optical fiber communication systems, the continuous signals can be denoted as
Q⃗(z, t) = [Qx(z, t), Qy(z, t)]T , where z and t represent the transmission distance and time,
respectively. In optical fiber transmission link, the Q⃗(z, t) follows the Manakov equation
as [17]:

∂Q⃗(z, t)
∂z

+
α

2
Q⃗(z, t) + i

β2

2
∂2Q⃗(z, t)

∂t2 = i
8
9

γ
∣∣∣Q⃗(z, t)

∣∣∣2Q⃗(z, t), (1)

where α, β2 and γ refer to the linear loss, group velocity dispersion, and nonlinear Kerr
coefficient in the fiber optic links, respectively. The optical signal at the transmitting side
can be expressed as follows:

Q⃗(z = 0, t) = ∑
k

A⃗[k]g(t − kTs), (2)

where A⃗[k] = [Ax[k], Ay[k]]T denotes the amplitude of the kth symbol, Ts refers to the
duration of the symbol, and g denotes the waveform of a carrier pulse. Based on the
first-order perturbation theory and the assumption of large dispersion in the optical fiber,
the nonlinear impairments can be assumed to be perturbation terms. If the received symbol
sequence is expressed as B⃗[k] = [Bx[k], By[k]]T , the corresponding perturbation term δ⃗[k]
can be obtained as follows:

δ⃗[k] = B⃗[k]− A⃗[k] = ∑
m,n

−−→
FUn

mCm,n

−−→
FUn

m =



Bx[k + m](Bx[k + n]B∗
x [k + m + n]

+By[k + n]B∗
y [k + m + n]

)
By[k + m]

(
By[k + n]B∗

y [k + m + n]

+Bx[k + n]B∗
x [k + m + n])


, (3)

where m, n and m + n are symbol indexes with respect to the kth symbol. The perturbation
term is the vector dot product of

−−→
FUn

m and perturbation coefficient Cm,n, and Cm,n can be
calculated by the system link parameters using the following Equations (4a)–(4c) [18]:
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8
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√
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(
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mnT2
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)
, Subject to : m ̸= 0, n ̸= 0 (4a)
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9

γ
τ2

√
3β2
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3|β2|2L2

)
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γ
τ2

√
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0

dz
1√

τ4

3β2
2
+ z2

, Subject to : m = 0, n = 0 (4c)

where τ is the pulse width and E1(x) represents the exponential integral function. Figure 1a
shows the normalized amplitude of the perturbation coefficient at different m and n, and S
is the maximum value of m and n. As shown in Figure 1b,c, we organize many different
FUs to complete a feature map with two channels, and the space position relationships
between different FUs are preserved. Moreover, in order to better preserve the inherent
connection between the real part and imaginary part, we combined the two channels to
form a complex-valued single-channel feature map as shown in Figure 1d. In addition,
we propose using a CvCNN to classify a complex-valued single-channel feature map and
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complete the nonlinear equalization of corresponding symbols. Later in the article, we use
C to indicate a value that corresponds to the complex domain.

0
0FU
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SFU 



S
SFU 



S
SFU 



S
SFU 



…… ……

……

……

(a) normalized amplitude of the 
perturbation coefficient

(b) real-valued channel

(d) complex-valued channel

(c) imaginary-valued channel

Figure 1. The construction method for input features.

Figure 2 shows the structure of the CvCNN. The convolution operation of CvCNN is
the same as that of RvCNN. The difference is that all parameters are in the complex-valued
domain, and the operations satisfy the complex-valued operations. The network input
for complex neuron is X = XR + iXI , where XR and XI represent the real and imaginary
components of X, the weight of the convolutional kernel is ω = ωR + iωI , and the bias is
b = bR + ibI . So the corresponding complex neuron output is

Y =YR + iYI = X ∗ ω + b

=(XR ∗ ωR − XI ∗ ωI + bR) + i(XR ∗ ωI + XI ∗ ωR + bI).
(5)

...

  Complex-valued 

Feature Map

  Complex-valued

Output

Complex-valued

Loss Fuction

Complex-valued

Weights Update

Fully Complex-valued Back Propagation

Channel-1

Channel-n

Complex-valued convolutional layers

Channel-1

Channel-l

Complex-valued 

fully-connected layers

Figure 2. The nonlinear equalizer structure for CvCNN.

The nonlinear activation function can introduce nonlinearity to the affine transfor-
mations in neural networks. In this paper, we adopt the complex-valued Split-type A
activation function [19], which means we activate the real and imaginary components,
respectively. This can be denoted as shown in the following equation:

Z = f (YR) + i f (YI) = ZR + ZI , (6)



Photonics 2024, 11, 431 5 of 14

where Z is the final output. The most commonly used nonlinear activation functions
in RvNN are Relu, Leaky Relu, Elu, and Tanh. Thus, in this paper, we adopt CRelu,
CLeaky Relu, CElu, and CTanh as activation functions to verify the effect of the CvNN
nonlinear equalizer.

In this paper, classification tasks are discussed, and the CSoftMax function is used to
map the probability of each category, which can be expressed as follows:

CSo f tMax(yj) =
e|yj |

∑C
c=1 e|yc |

(7)

where yj is the output value of the j-th (i = 1, 2, 3, . . . , C) neural and C is the number of
classifications in the output layer. When training a CvNN, the error is backpropagated from
the output layer to the input layer using fully complex-valued gradient descent. Given
the complex-valued output in polar form zj = rje

iθj ∈ C in the CvNN, the complex-valued
cross-entropy loss function can be expressed as follows [20]:

Lcomp = − 1
n

n

∑
j=1

C

∑
k=1

yjklog(|rjk|eiθjk) (8)

where yjk denotes k-th element of the one-hot encoded label. The process of learning with
complex domain backpropagation is similar to the learning process in the real domain,
and involves finding the optimal weights ω to minimize the loss. The loss calculated after
the forward pass is backpropagated to each neuron in the network, and the weights are
adjusted in the backward pass. And in CvNN, ω can be updated by following Equation [21]:

ω(l+1) = ω(l) −
(

ηl
R∇ω∗E

(
ω(l)

)
+ iηl

I∇ω∗E
(

ω(l)
))

, (9)

where ηl is the learning rate at the l-th iteration, and ∇ω∗E defines the direction of the
maximum rate of change with respect to ω∗.

2.2. Global Convolutional Kernel in CNN

In the CNN, the convolutional layer is generally used to automatically extract the
visual features of the feature map for filtering operations. The size of the convolution
kernel defines the size range of the convolution, representing the size of the receptive
field which refers to the range of input figure processed simultaneously in the network.
Therefore, a global convolutional kernel can enhance ERF and can obtain more feature
information simultaneously. Figure 3 shows the ERF ranges of different convolutional
kernels, as well as different structures of CNNs using normal convolutional kernels and
global convolutional kernels.

In the Figure 3a, by adopting a normal kernel design, we can obtain 1 × 1 output maps
(OMs) after multiple layers of convolution, which can be denoted as

OM(1,1) = ∑
m,n

(
∑ IM(m,n) ∗ kernel-1

)
∗ kernel-2, (10)

where IM(m,n) represents the input feature map, m and n represent the pixel index, kernel-1
is the convolution kernel for convolution layer-1, and kernel-2 is the convolution kernel for
convolution layer-2. In the Figure 3c, it can be seen that compared with the normal kernel,
only one-layer convolution is needed in GNN, which can be denoted as

OM(1,1) = ∑
m,n

IM(m,n) ∗ kernel(m,n) ↔ ∑
m,n

FUn
mCm,n. (11)

The global kernel has a global receptive field (GRF), which can control the entire map
information and better capture the correlation between pixels in the feature map and the
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boundary information. Furthermore, GNN is more similar to the calculation process of
perturbation term, and it is more meaningful to use GNN for nonlinear compensation.

IM

GRF

Kernel

OM

ERF

Kernel-1

9×9

BN

BN

6×6 6×6

Output Map 
@1×1

(a) normal convolutional kernel

Global convolutional 
kernel

BN

OM

IM

Kernel 
parameters

Input 
Map

@9×9

Input
Map

@11×11

Output Map 
@1×1

(b) normal convolutional kernel 
based CNN

Kernel-2

(c) global convolutional kernel (d) global convolutional kernel 
based CNN

Figure 3. Diagram of the different size of ERF and the different structure of CNN.

The structure of CNN is shown in Figure 3b, whose IM is 11 × 11. A double convolu-
tion layer with 6 × 6 convolution kernel and batch normalization (BN) is adopted in CNN.
In this paper, a global convolution kernel in Figure 3d whose size is equivalent to the size
of IM is adopted because the GNN can more efficiently extract useful information with-
out affecting the system’s performance. So, under the premise of balancing performance
and complexity, the IM and global convolutional kernel sizes in GNN can be set as the
optimized value 9 × 9.

3. Experimental Setup

Figure 4 depicts the experimental setup of the 120 Gb/s PDM 64 QAM coherent optical
communication system. At the transmitter, two pseudo-random bit sequences (PRBS) are
generated by MATLAB, and the sequences are combined to construct a strong random
sequence that will not be learned by the NN or other advanced algorithms. Additionally,
the data pattern used in the training and testing datasets has a maximum of 0.5% normalized
cross-correlation to ensure the independence of the data [22]. Then, the data map to
64QAM and are loaded into an arbitrary waveform generator (AWG) with a sampling
rate of 25 GSa/s. The I-channel and Q-channel signals are amplified by electric amplifiers
(EAs) and then sent to the I/Q modulator with an external cavity laser (ECL). The PDM
module consists of a polarization retention optical coupler (PM-OC), optical delay line (DL),
polarization controller (PC), and polarizing beam combiner (PBC) to achieve polarization
multiplexing. A variable optical attenuator (VOA) is used to adjust the power of the optical
signal. A 375 km (5 × 75) standard single-mode optical fiber (SSMF) with a span of 5 is
adopted, and at each end of the span, an Erbium-doped fiber amplifier (EDFA) is used to
compensate for the linear loss. At the receiver, coherent detection technology is applied,
and an ECL with a 100 kHz linewidth is used as the local oscillator (LO). Two PBSs are used
to separate the polarization of the optical signal and LO. The X-polarization of the optical
signal and LO is mixed by the 90◦ optical hybrid and detected by a balanced photonic
detector (BPD). After that, two electric signals are obtained, including the X-polarization
I component (X-I) and Q component (X-Q). Similarly, for the Y-polarization direction,
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two electric signals are obtained, including the Y-polarization I component (Y-I) and Q
component (Y-Q). A 4-channel digital phosphor oscilloscope (DPO) with a sampling rate of
100 GSa/s is used to digitize the signals.
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CvGNN Equalizer

ReceiverTransmitter LinkTransmitter

×N

Figure 4. Experimental setup.

Offline digital signal processing (DSP) is applied to improve the signal quality. In order
to better improve the overall quality of the signal, linear equalization is performed to
repair the signal, and then a nonlinear equalization algorithm is adopted to enable it to
learn and compensate for nonlinear damage more cleanly. Linear compensation mainly
includes low-pass filter (LPF), I/Q imbalance compensation, chromatic dispersion (CD)
compensation, clock recovery, polarization demultiplexing, polarization mode dispersion
(PMD) compensation, frequency offset estimation (FOE), and carrier phase recovery (CPR).
And the CvGNN equalizer is applied to achieve nonlinearity compensation.

The CvGNN equalizer is built, trained, and evaluated in PyTorch 3.8.1. The personal
computer platform owns an AMD Ryzen7 CPU @ 2.90 GHz, and the Random Access
Memory (RAM) is 16 GB. In our model, the Kaiming initialization method is applied to
initialize initial weights [23], and the complex-valued Adam optimizer is employed to
optimize the CvGNNC. When the output data type is labeled and the loss function is
complex-valued cross-entropy, the equalizers act as classifiers. When the output data
type shows the different values between the received and transmitted symbols, and the
loss function is complex-valued mean square error, the equalizers act as regressors. The
datasets for each LOP contain approximately 220 symbols, and we divided them into 70%
for training and 30% for testing. The maximum training epochs are set to 1000, the initial
learning rate is set to 0.003, and every 30 epochs, the learning rate drops to 90% of the
original rate to prevent the learning from falling into the overfitting state.

4. Results and Analysis

As mentioned above, the activation functions are essential for our NN equalizers.
Taking the 1 dBm LOP as an example, we compared and verified the system Q-factor
with four different activation functions using a CvGNN equalizer, as shown in Figure 5.
The abscissa represents the epochs: an epoch occurs when all the training data are sent
to the NN for training once. The ordinate is the Q-factor, which can better distinguish
the system performance when BER is low and can be calculated by the BER using the
following equation:

Q = 20 log10

(√
2 erfcinv(2 ∗ BER)

)
. (12)

From the Figure 5, we can determine that although CTanh has the fastest convergence
speed, it performs poorly, and CLeaky Relu performs well.

Therefore, we choose the CLeaky Relu as the nonlinear activation function in this
paper. Based on the optimal parameters, we compare multiple NNs, including the system
Q-factor performance under same time complexity, and the complexity observed when the
Q-factor performance is achieved is similar.The specific structures of eight equalizers are
displayed in Figure 6, and the Q-factor performance is shown in Figure 7.
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Figure 5. Q-factor trace of CvGNNC with different activation functions.
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Figure 6. Structural design of different nonlinear equalizers.

In Figure 6a–f, the NN input is a feature map based on the perturbation theory.
In Figure 6g,h, the NN input is the symbol sequence in which the nonlinearity equalization
problem appears to be a time sequence problem. Figure 6a,e are the CvGNN classifier
(CvGNNC) and regressor (CvGNNR) based on the global kernel design, the number of
channels is 160, and the number of hidden layer neurons is 20. Figure 6b,f are the RvGNN
classifier (RvGNNC) and regressor (RvGNNR) based on the global kernel design; the
number of channels is 256; and the number of hidden layer neurons is 90. Figure 6c,d are
the CvCNN classifier (CvCNNC) and RvCNN classifier (RvCNNC) based on the normal
kernel. Figure 6g,h are the complex-valued fully connected NN classifiers (CvFNNC). The
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CvFNNC-1 shown in Figure 6g has a total of 171 symbols at the input side with a hidden
layer of 78 neurons, and the time complexity is equal compared with other equalizers;
CvFNNC-2, shown in Figure 6h, has a hidden layer of 260 neurons, and its time complexity
is 3.5 times that of other NNs.

Q
-f

ac
to

r(
dB

)

(a) CvGNN vs. CDC (b) CNN vs.GNN 

(c) CvFNN vs. CvGNN (d) Classifier vs. Regressor 

Figure 7. Nonlinear equalization performance of different neural networks with the same time
complexity.

Figure 7 presents the performance of eight nonlinear equalizers based on the different
NN structures mentioned in Figure 6, which is expressed as Q-factor performance, and the
LOP is in the range of −4 dBm to 5 dBm. In Figure 7a, the performance of CvGNNC is
compared with that achieved after chromatic dispersion compensation (CDC), proving
that using a nonlinear equalizer at the receiver end can significantly improve the Q-factor
performance of the system. As shown in Figure 7b, when LOP is 1 dBm, the best Q-factor of
CvGNNC is 8.98 dB, which is 1.15 dB higher than RvGNNC, and CvCNNC also performs
better than RvCNNC. It is proven that with the same time complexity, the CvNN system’s
performance is better than that of RvNN because CvNN has greater advantages for the
complex-valued operation of complex-valued perturbation characteristics. Furthermore,
by using CvGNNC, we achieve 2.31 dB and 2.95 dB Q-factor improvement compared
with CvCNNC and RvCNNC. It is proven that adopting a global kernel with GRF can
extract FUs and their relationship information more efficiently. Therefore, a perturbation
theory-aided CvGNNC can have a better compensation effect. Figure 7c proves that NN
using the feature map constructed by perturbation theory more easily fits the relationship
between input and output than the NN using front- and back-linked symbols as input
features, both of which are CvNNs. When the time complexity of CvFNNC-2 is 3.5 times
that of CvGNNC, its system performance is consistent with that of CvGNNC. When the
complexity of the two NNs is the same, the Q-factor of CvGNNC is 0.60 dB higher than
CvFNNC-1 at an LOP of 1 dBm. Moreover, the performance of CvFNNC-1 is 0.55 dB higher
than that of RvGNNC, which further confirms the superiority of the CvNN in the optical
fiber communication system. Figure 7d shows that for CNN, the performance of classifiers
is better than that of regressors, which also proves that CvCNN is better than RvCNN
for same pattern recognition tasks. The application of NN classifiers in the nonlinear
equalization of optical fiber communication should be more extensive.



Photonics 2024, 11, 431 10 of 14

Additionally, as shown in Figure 8, we provide a 130 GBaud, 1200 km DP-QPSK
simulation setup to corroborate the results presented in this paper. The optical fiber
channel simulation is based on the split-step Fourier method (SSFM) and is implemented
by MATLAB 2020a. The dispersion, nonlinear effect, and phase noise are added, and the
optical signal-to-noise ratio (OSNR) is set at 30 dB. The optical transmission link is 1200 km
SSMF with 20 spans, and each span incorporates an EDFA to fully compensate for linear
impairments. The comprehensive simulation parameters refer to the actual optical fiber
parameters, as shown in Table 1. The offline DSP is consistent with the experimental system.
Simulation results are shown in the Figure 9, the 1 step-per-span (SPS) DBP and 50 SPS
DBP are performed for comparison with the proposed nonlinearity equalizer CvGNNC.

Table 1. Simulation Parameters.

Parameter RB (GBaud) LSpan (km) NSpan Lstep (m) α (dB/km) β2 (ps2/km) γ /(W∗km)

Value 130 60 20 50 0.2 21.667 1.3
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Figure 9. Nonlinear equalization performance.

It is evident that CvGNNC outperforms the 1 SPS DBP, achieving a 0.97 dB improve-
ment in the Q-factor at the LOP of 0 dBm. Furthermore, when LOP ranges from −2 dBm
to 1 dBm, the performance of CvGNNC is comparable to that of 50 SPS DBP. However,
within the linear range, the CvGNNC outperforms 50 SPS DBP. Thus, unlike DBP algorithm,
NNs are employed to fit end-to-end nonlinear models, enabling CvGNNC not only to
balance nonlinear impairments but also to address residual linear impairments during the
equalization process. Moreover, NNs offer the advantage of avoiding computationally
intensive processes and do not rely on extensive or precise channel knowledge. Many
algorithms have been proposed to simplify DBP-based equalizers, yet their complexity
remains higher than that of NN-based equalizers [24–27]. In the same way, based on fair
equalization performance, the CvGNNC exhibits significantly lower computational com-
plexity compared to the multi-step DBP-based equalizer. Obviously, these results robustly
validate the conclusions articulated in this paper.
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5. Complexity Comparison Discussion

In this section, we analyze the proposed CvGNNC with other nonlinear equalizers
in terms of time complexity and space complexity. The time complexity determines the
training or prediction time of the model, and depicted as the number of FLOPs required to
equalize one symbol. The space complexity is closely related to the model capacity, which
can be determines the number of parameters network required.

The complexity of the CNN model is mainly concentrated in the convolutional layer
and the fully connected layer. The complexity of the fully connected neural network is
composed of multiple fully connected layers. Equation (13) defines the time complexity
measured by the number of FLOPs, and the space complexity measured by the number of
parameters, which are defined as NF_conv and NP_conv in the convolutional layer, and those
in the fully connected layer are defined as NF_ f ully and NP_ f ully. And in the ith convolutional
layer, the CIi represents the number of input channels, COi represents the number of output
channels, Mi represents the size of the feature map, and Ki represents the size of the
convolution kernel. Meanwhile, in the jth fully connected layer, FI j and FOj represent the
number of input and output neurons, while NC and NF represent the number of layers
in the convolutional layer and fully connected layer, respectively. The specific calculation
processes are as follows:

NF_conv =
NC

∑
i=1

CIi ∗ COi ∗ (Mi − Ki + 1)2 ∗ Ki
2,

NP_conv =
NC

∑
i=1

COi ∗ [CIi ∗ Ki
2 + (Mi − Ki + 1)2],

NF_ f ully =
NF

∑
j=1

FI j ∗ FOj,

NP_ f ully =
NF

∑
j=1

FI j ∗ (FOj + 1).

(13)

In CvNN, the data, weight and activation function are all located in the complex field,
and their operations are in the complex domain. It is known that one complex-valued
FLOP is equivalent to four real-valued FLOPs. Therefore, FLOPs in the CvNN should
be multiplied by four times on the basis of the same RvNN structure. In the CvNN,
the parameters are different for the real and imaginary components, so when calculating
the network parameters in CvNN, it should be multiplied twice on the basis of the same
RvNN structure. In this paper, because the number of FLOPs introduced by addition can
be ignored, we consider only the number of operations provided by multiplication when
calculating the complexity.

In Table 2, we list the calculation formulas of the time complexity and space complexity
of multiple NNs related to the CvNN under the same performance, as well as their actual
values. We can see in the table that when we calculate the time and space complexity of
CvGNNC, CvGNNR, CvCNNC, and CvFNN, we multiply them by four and two times
on the basis of the normal calculation. As shown in Table 1, in the CvGNNC, the number
of FLOPs required is 6.97 × 104, and the number of parameters required is 3.35 × 104.
Compared with RvGNNC, the time complexity and space complexity decrease by 16.3%
and 16.2%, respectively. Moreover, the number of parameters required for CvCNNC
is 46.5% lower than that of RvCNNC, while the number of FLOPs required is higher
than that required for RvCNNC. This indicates that CvNN may introduces greater time
complexity, but the application of GNN in CvNN can effectively suppress this phenomenon.
In addition, we can see that compared with CvCNNC, 57.7% time complexity reduction
and 22.0% space complexity reduction are obtained by CvGNNC; compared with RvCNNC,
the time complexity and the space complexity of RvGNNC are reduced by 33.9% and 50.2%,
respectively, which proves the superiority of the CvGNN in reducing complexity.
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Table 2. Complexity calculation process of different equalizers.

Time Complexity Space Complexity NC NF FLOPs (×104) Parameters (×104)

CvGNNC 4 × (Ncgc
F_conv + Ncgc

F_ f ully) 2 × (Ncgc
P_conv + Ncgc

P_ f ully) 1 2 6.97 3.56

CvGNNR 4 × (Ncgr
F_conv + Ncgr

F_ f ully) 2 × (Ncgr
P_conv + Ncgr

P_ f ully) 1 2 8.33 4.24

RvGNNC Nrgc
F_conv + Nrgc

F_ f ully Nrgc
P_conv + Nrgc

P_ f ully 1 2 9.39 9.33

RvGNNR Nrgr
F_conv + Nrgr

F_ f ully Nrgr
P_conv + Nrgr

P_ f ully 1 2 10.05 9.46

CvCNNC 4 × (Nccc
F_conv + Nccc

F_ f ully) 2 × (Nccc
P_conv + Nccc

P_ f ully) 2 2 16.49 4.56

RvCNNC Nrcc
F_conv + Nrcc

F_ f ully Nrcc
P_conv + Nrcc

P_ f ully 2 2 12.61 8.52

CvFNN-2 4 × Nc f c
F_ f ully 2 × Nc f c

P_ f ully
/ 2 24.44 12.31

Figure 10 intuitively compares the space and time complexity. From the figure, it can
be concluded that, for the same performance, the time complexity and space complexity of
CvFNNC-2 are much higher than that of our proposed CvGNNC. This also proves that the
data obtained by constructing the feature map more easily fit the relationship between the
input and output terminals. Additionally, we can easily see that when the performance
is the same, the time and space complexity required by regressors is slightly higher than
that of classifiers. Therefore, in the application of optical fiber communication systems,
the classifiers are better than the regressors.
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Figure 10. The computational complexity of different NNs, including time and space complexity.

6. Conclusions

In this paper, we propose an equalization technique using a CvGNN at the receiver
of optical fiber communication systems. Based on the perturbation theory, we construct a
complex-valued single-channel feature map as input to make it more suitable for complex-
valued neural networks. We expand the convolution kernel to be equivalent to the feature
map to expand the ERF and reduce the model depth and then trade off the performance and
complexity to obtain the best parameters. Based on the optimal parameters, we select the
CvGNNC, CvGNNR, RvGNNC, RvGNNR, CvCNNC, RvCNNC, and CvFNNC to compare
the equalization performance and the equalization complexity. We find that at the same time
complexity, a global convolutional kernel structure can further improve the performance
compared with a normal convolutional kernel structure, and CvNNs are proven to be
more suitable for optical fiber communication signal processing than RvNNs. In the same
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performance, the time complexity and space complexity of the equalizer we proposed are
44.7% and 58.2% lower than those of the normal kernel real-valued network, respectively,
which further proves the superiority of CvGNNC. Because of its low complexity and
outstanding performance advantages, it can be better applied to the actual optical fiber
communication systems.
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