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Abstract: The precise estimation of fluid motion is critical across various fields, including aerody-
namics, hydrodynamics, and industrial fluid mechanics. However, refraction at complex interfaces in
the light path can cause image deterioration and lead to severe measurement errors if the aberration
changes with time, e.g., at fluctuating air–water interfaces. This challenge is particularly pronounced
in technical energy conversion processes such as bubble formation in electrolysis, droplet formation
in fuel cells, or film flows. In this paper, a flow field estimation algorithm that can perform the
aberration correction function is proposed, which integrates the flow field distribution estimation
algorithm based on the Particle Image Velocimetry (PIV) technique and the novel actuator-free adap-
tive optics technique. Two different multi-input convolutional neural network (CNN) structures are
established, with two frames of distorted PIV images and measured wavefront distortion information
as inputs. The corrected flow field results are directly output, which are divided into two types based
on different network structures: dense estimation and sparse estimation. Based on a series of models,
a corresponding dataset synthesis model is established to generate training datasets. Finally, the
algorithm performance is evaluated from different perspectives. Compared with traditional algo-
rithms, the two proposed algorithms achieves reductions in the root mean square value of velocity
residual error by 84% and 89%, respectively. By integrating both flow field measurement and novel
adaptive optics technique into deep CNNs, this method lays a foundation for future research aimed
at exploring more intricate distortion phenomena in flow field measurement.

Keywords: flow field measurement; Hartmann–Shack sensing; PIV; DCNNs; actuator-free adaptive
optics

1. Introduction

When we track and understand fluid mechanics, Particle Image Velocimetry (PIV) pro-
vides a non-invasive measurement of the fluid velocity field as an important experimental
technique [1]. Turbulence, a complex phenomenon ubiquitous in fluid dynamics, manifests
in chaotic and unpredictable flow patterns, making it essential to decipher its underlying
dynamics through particle trajectory analysis. To understand turbulence, we aim to capture
the trajectories of tiny particles within the fluid, enabling us to unravel the intricate motion
characteristics that define the entirety of the flow field. The distribution of fluid motion
velocity field is obtained by using the difference information between two consecutive PIV
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images, so it is necessary to extract and calculate the fluid velocity field within the field
of view from the two PIV images using certain algorithms [2,3]. The estimation algorithm
of fluid motion field in PIV is essentially a flexible matching process between images.
Traditional methods include cross-correlation (CC) and optical flow method. The CC is the
most common method in Particle Image Velocimetry. Its basic idea is to find the optimal
matching through statistical methods on local two-dimensional discrete image signals,
which is achieved by discrete CC function in PIV image signals. Optical flow method
is an important technology for motion analysis of objects in video or images in the field
of computer vision [4–6]. The definition of optical flow is the change in pixel brightness
exhibited by the motion projection of a three-dimensional target object during imaging.

The above two methods have been widely used in the field of Particle Image Ve-
locimetry, but both methods have certain shortcomings due to their basic principles. For
example, the CC algorithm requires window division of the entire particle image based
on the uniform linear motion assumption during the calculation process, which limits its
spatial resolution. In addition, peak extraction on the correlation plane also introduces
sampling errors: the optical flow method is based on the conservation assumption of optical
flow, which is extremely sensitive to noise and interference light, and lacks robustness.

To address these issues, researchers have developed deep learning-based fluid mo-
tion field estimation algorithms in conjunction with deep convolutional neural networks
(CNNs). The main works include the cascade-based deep neural network structures PIV-
DCNN [7], PIV-FlowNetS [8], and PIV-LiteFlowNet [9]. The basic principles of these three
algorithms are consistent; that is, building a certain CNN structure, taking two consecutive
frames of PIV images as input, and outputting the estimated velocity vector field. PIV-
DCNN is obtained by cascading four deep CNN modules to gradually obtain coarse-to-fine
velocity field vectors. By superimposing the number of CNN layers, the estimated vectors
are continuously corrected to improve measurement accuracy. This method improves the
measurement accuracy to a certain extent, but since the method is the same as the basic
principle of the CC analysis method, it needs to repeat the calculation for different windows,
which greatly increases the computation time. Unlike PIV-DCNN, references [8,9] adopted
FlowNetS [10–12], which were proposed for optical flow estimation, to improve two CNN
structures for optical flow computation. They were applied to Particle Image Velocimetry to
densely estimate the fluid motion velocity field. The resolution of the output flow field can
be consistent with the input PIV image, achieving pixel-level estimation. The reference [9]
compared the performance of these three network structures as well as the HS optical
flow method and WIDIM cross-correlation algorithm. PIV-LiteFlowNet outperformed
the others in measurement accuracy while PIV-FlowNetS demonstrated advantages in
computational efficiency.

All these algorithms are designed for ideal PIV images without distortion. However,
optical distortions introduced by inhomogeneous refractive index fields [13] or fluctuating
phase boundaries, such as those occurring at an open air–water interfaces at water chan-
nels [14] or basins, can lead to blurred particle images and uncertainty in the assignment
of particle positions, resulting in a degradation in velocity measurement accuracy [15].
Although static wavefront aberrations can be easily corrected through calibration measure-
ments or data analysis [16,17], eliminating time-varying distortions is a challenge.

Estimating the fluid motion field through the distorted PIV images can only yield
erroneous or distorted flow field measurements. In our previous work, a traditional
adaptive optics system [18,19] and novel actuator-free adaptive optics technique [20]
were used for correction distortion in a PIV imaging system. In [20], we established
an adaptive optics technique without wavefront correction devices to correct PIV images,
and then estimated the velocity distribution of the flow field using traditional Particle Image
Velocimetry algorithms. This technical approach effectively corrects the optical distortion
of PIV images, but for the entire process of flow field measurement, obtaining a corrected
undistorted PIV image and then using traditional Particle Image Velocimetry algorithms
for fluid motion field estimation still has drawbacks due to the inherent limitations of
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these traditional algorithms. Based on the above background, this paper combines an
actuator-free wavefront distortion correction method and PIV measurement, and proposes
a fluid motion field estimation algorithm that includes distortion correction. The basic idea
for flow field estimation and distortion correction based on so-called AOPIV-Net is shown
in Figure 1. The algorithm takes the distorted PIV image pairs and the wavefront distortion
information measured by Hartmann–Shack wavefront sensor as two inputs, builds two
different multi-input deep CNN structures, and outputs the corrected flow field.

The content structure of this paper is arranged as follows: First, the basic principle of
optical distortion caused by air–water interface in a PIV imaging system is analysed, and a
optical setup with laser-guide star and Hartmann–Shack wavefront sensor for the wavefront
distortion measurement is shown. Then proposed method with the detailed descriptions of
the two multi-input CNN structures proposed in this paper are provided. Furthermore,
the generation method of datasets required for training and testing of neural networks
is introduced. Next, the performance of the fluid motion field estimation algorithm after
training is tested and analyzed. Finally, conclusions are presented.

Figure 1. Principle of PIV estimator and corrector based on AOPIV-Net.

2. Principles and Methods

When the imaging system images through different refractive index media surfaces
and the surface morphology of the media changes dynamically, the imaging will severely
degrade due to changes in refractive index, resulting in severe random distortion. As shown
in Figure 2, the PIV imaging system vertically collects the PIV image generated by illumi-
nating particles in the fluid with a laser sheet light at the depth of interest (DOI) of the
measuring object. The imaging optical path passes through the surface of the perturbed
medium, causing optical path refraction and imaging distortion. At a point x ∈ Ω in the
spatial domain Ω, the real PIV image in the instantaneous state t can be equivalent to a
stationary plane scene Ig(x, t), the original undistorted image. The image captured by the
PIV imaging system I(x, t) is a distorted image Ig(x, t) due to the distortion caused by the
disturbance of the phase boundary:

I(x, t) = Ig(x + w(x, t)), (1)
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where w(x, t) is the distortion function at pixel x and time t. The distortion function w(x, t)
is related to the water surface height profile h(x, t) at time t, where ∇ is the gradient
operator [21]:

w(x, t) = α∇h(x, t) (2)

We can calculate that α = h0(1 − n′
n ) according to Snell’s Law under first-order

approximation, which shows α is a constant related to water surface reference height
h0 when the air–water interface is at rest and relative refraction index n′/n between two
media. From Equations (1) and (2), we know that at any time instant, the distortion function
results in local geometric distortions at each pixel, which depends on its location, relative
refraction index and surface height.

Figure 2. Distortion model and measurement principle for distorted phase from fluctuating air–
water interface.

Correcting such distortions from a single-frame image is challenging since the shape of
the air–water interface is unknown. The process is similar to blind deconvolution, but the
kernel, which is the unknown Point Spread Function (PSF) of the optical imaging system,
is spatially varying and can be much larger than what is typically considered in image
deblurring. Even by using the different neural network, such geometric distortion still can
not be corrected thoroughly [22].

In order to obtain more information from the phase boundary, we apply a spatially
distributed guide star technique, which was introduced in our previous work [23], and a
Hartmann–Shack wavefront sensor (HSWFS) for the wavefront measurement. Most of the
guide star techniques are using focused light into or through scattering or spatially diffusing
medium. However, for camera-based optical flow measurement, like PIV, the distortion
occurs on a 2D image, to track the optical path length change within the imaging system
path, a spatially resolved guide star needs to be used. As shown in Figure 2, a single
phase boundary is located between detecting setup and the measuring object, which is the
depth-of-interest (DOI) layer where particles illuminated by the light sheet. To obtain the
shape of fluctuating phase boundary, this optical path length change needs to be traced [23].
By using distributed guide star techniques for the fluctuating phase boundary, according
to the illustration in Figure 2 and Fermat’s principle, the reference phase can be obtained,
which means that when the air–water interface is steady and will not cause any distortion,
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ϕre f =
2π

λ
(h′0n′ + h0n) (3)

and also the distorted phase can be obtained

ϕdist =
2π

λ
[(h′0 − h(x, t))n′ + (h0 + h(x, t))n] (4)

the phase difference can be given as

∆ϕ(x, t) = ϕdist − ϕre f =
2π

λ
(n − n′)h(x, t) (5)

where n and n′ denotes the refractive indices of two media, λ is the wavelength of the laser
guide star, and h here can be considered as the spatially distributed height profile of the
phase boundary. From Equations (2) and (5), the relation between image distortion function
w and phase difference ∆ϕ is obtained

w(x, t) =
λh0

2πn
∇[∆ϕ(x, t)] (6)

which shows that w and the gradient of ∆ϕ are linearly related. Hence, in order to obtain
distortion information in an under-water image, we can use a wavefront sensor to measure
the phase difference ∆ϕ.

A HSWFS consists of a two-dimensional microlens array and a detector, which is a
charge-coupled device (CCD) in our case. The input wavefront is sampled by the microlens
array first, where each microlens focuses the sampled local wavefront into the CCD, which
is located in the focal plane of the microlens. The resulting Hartmannogram is a spot array
image. The average slope of the sampled sub-wavefront can be calculated by the spot
displacement from the reference position. The reference spot positions are the centroids
of the spots estimated when the air–water surface is at rest, i.e, laser guide star passing
through the optical setup without any distortion. Then the local wavefront gradient can be
calculated as follows:

[∇(∆ϕ)]ij =

[(
∂

∂x
∂

∂y

)
∆ϕ

]
ij

=

[
1
f

(
∆x
∆y

)]
ij

(7)

∆ϕ is the phase difference in Equation (6), which is the residual wavefront corresponding
to the difference between the distorted and the reference wavefronts; f is the focal length
of the microlens, also denoting the distance between the microlens and CCD; i, j denote the
ith and jth microlens; and (∆x, ∆y) are the displacements between corresponding distorted
and reference spot centroids. From Equations (6) and (7), the relation between image
distortion function w(x, t) and spot displacement is as follows:

[w(x, t)]ij =
[

λh0

2πn f

(
∆x(t)
∆y(t)

)]
ij

(8)

From Equation (8), we can conclude that the average value of distortion function
in the sampled region is linearly related to the spot displacement from HSWFS, which
shows that spot displacement represents the geometric distortion on the image. At any
time instant, ignoring the spatial sampling error from the microlens array, we can rewrite
Equation (1) as follows:

[I(x, y)]ij = [Ig(x +
λh0

2πn f
∆xspot, y +

λh0

2πn f
∆yspot)]ij (9)

Equation (9) shows that the fluctuating phase boundary causing geometric distortion
in an under-water image can be represented by the spot displacements of the HSWFS,
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which means this distortion can be directly measured by HSWFS. The spatial guide star is
used here for wavefront distortion measurement, so the measured wavefront is spatially
related to the distorted image. And because the convolutional neural network maintains a
spatial structure during the propagation, information from the measured wavefront can be
used for deep leaning-based image distortion correction. The necessity of using another
input for convolutional neural network comes from this principle. In this problem, unlike
other image translation problems, correction by convolutional neural network needs both
features from the distortion and image. The features that the convolutional neural network
can extract from a distorted image come from image itself, for numerous images are in flow
measurement and have dynamically changing distortions, meaning different distortions
can lead to different distorted images on one same real image, i.e., different inputs for the
neural network have same label. This will cause the so-called curse of dimensionality [24]
in deep learning. It is impossible for a single-input neural network to solve such a problem.
As concluded from Equations (1)–(9), spatially related distortion information can be easily
obtained by wavefront measurement; hence, we develop a multiple-input neural network
architecture for image distortion correction, and additional input for the neural network
will be spot displacements along the x and y direction because of its high spatial relevance
to the distorted image.

In order to quickly and accurately obtain aberration information from the phase
boundary, deep learning is used as a platform to achieve wavefront measurement. More
specifically, two multi-input deep CNN structures are constructed, both of which use the
aberration information, i.e., the local wavefront slope, measured by the Hartmann–Shack
wavefront sensor as the auxiliary information, to complete an end-to-end mapping relation-
ship from the aberrated PIV image to the corrected flow field distribution. The established
algorithm achieves the estimation of the fluid kinematic field distribution while completing
the correction of the aberrations, and the two network structures are collectively referred to
as AOPIV-MICNN (Adaptive Optics Particle Image Velocimetry-Multiple Input Convolu-
tional Neural Network). The basic framework of the algorithm is shown in Figure 3:

Figure 3. Principle of AOPIV-MICNN (Adaptive Optics Particle Image Velocimetry-Multiple Input
Convolutional Neural Network). The input of this network is wavefront distortion information
measured by Hartmann–Shack wavefront sensor and distorted PIV images, and the output is the
corrected flow field distribution.

The network input consists of two consecutive frames of PIV image pairs and two
consecutive frames of the spot displacement matrix. The labels used during the training
process are the true values of the flow field. Therefore, the first step is to synthesize the
undistorted PIV image based on the true flow field distribution. Then, the distorted PIV
image is synthesized through certain wavefront distortion. Finally, the spot displacement



Photonics 2024, 11, 452 7 of 19

matrix is obtained through the Hartmann–Shack simulation model to obtain the input
during the training process. After completing the training, the neural network can output
the corrected flow field distribution results based on the wavefront distortion information
and distorted PIV images measured by the Hartmann–Shack wavefront sensor.

Based on different requirements and theoretical models, we propose multi-input deep
CNN structures that can obtain estimation results of sparse and dense fluid motion fields.

2.1. Estimation of Dense Fluid Motion Field Based on U-Net Structure

The neural network structure proposed in this paper for estimating the motion field of
dense fluids is shown in Figure 4. Its main structure is inspired by the widely used U-Net
structure in recent years [25]. U-Net adopts a U-shaped architecture, which connects the
downsampling and upsampling paths of feature maps. This U-shaped structure can capture
contextual information at different scales and effectively transmit detailed information
through skip connections, which helps to improve the accuracy and stability of the model.
In addition, compared to some more complex neural network architectures, the training
and inference speed of U-Net is usually faster, making it suitable for real-time applications
in flow field measurements. The distortion correction process of PIV images can be defined
as an image regression problem from pixel to pixel. However, unlike the original U-Net,
this paper adds another input on the basis of the original structure. The displacement of the
light spot measured by the Hartmann–Shack wavefront sensor corresponds spatially to the
distortion function, that is, the displacement of the light spot within a single subaperture
represents the local geometric distortion within the sampling area corresponding to the
subaperture. According to this, this paper takes the displacement of the light spot calculated
from the centroid of the Hartmann–Shack wavefront sensor light spot array as a 16 × 16 × 2
tensor input to the dense estimation deep learning model.

Figure 4. Schematics of the proposed dense estimation deep learning model. The blue numbers
represent the size of the feature map, while the black numbers represent the number of channels.
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The main input of the neural network is two frames of distorted PIV images with a size
of 128 × 128 × 2 pixels (grayscale images, two frames, i.e., two channels). The additional
input is the spot displacement obtained from the Hartmann–Shack wavefront sensor,
with a size of 16 × 16, and since it is a two-frame wavefront slope matrix, there are four
channels of this input, which constitutes a 16 × 16 × 4 slope tensor as input. The output
is a 128 × 128 × 2 distribution of the flow field, with one channel for the x-direction
flow velocity vector and the other for the y-direction. The dataset is generated by a
synthetic model, and the specific generation method is described in detail in the subsequent
Section 2.4. The dense fluid motion field estimation neural network mainly consists of three
parts: the downsampling channel, the upsampling channel, and the multi-input channel
unique to the network.

In the downsampling channel, each downsampling module uses a depthwise sepa-
rable convolution layer, which performs channel-wise convolution on different channels
during the convolution process, and then fuses the feature maps through pointwise con-
volution. This architecture design reduces the number of trainable parameters in deep
models and thus improves training efficiency. The upsampling channel is the same as
the original U-Net, using upsampling layers to enlarge the feature map size, and then
bridging the feature maps of the downsampling channel through feature map merging
operations to preserve detailed information. The essential difference between the dense
fluid motion field estimation neural network proposed in this paper and the original U-Net
is a multi-input channel. The basic structure of the multi-input channel is similar to that
of the downsampling channel, with two depthwise separable convolution layers with a
kernel size of 3 × 3 connected. After the convolution layer, a Tahn activation function that
has no effect on negative weights is used. The feature maps after the convolution module
are added to the feature maps in the downsampling channel of the same size through
feature map merging operations, so that wavefront aberration information is input into
the main network structure of the dense fluid motion field estimation neural network.
The proposed network retains the core structure of U-Net, and introduces multiple input
channels to directly input wavefront aberration information into pixel-level resolution flow
field estimation. Furthermore, it fuses different input feature maps through feature map
merging. This improvement enables the network to effectively process highly linearly
correlated spatial structure information between PIV images and wavefront slopes.

2.2. Sparse Fluid Motion Field Estimation Based on Multi-Input Xception Structure

Although the dense fluid motion field estimation algorithm based on U-Net can output
pixel-level flow field distribution information, its distortion correction capability is actually
limited by the spatial resolution of Hartmann–Shack wavefront distortion information
in multiple input channels. The main input of the network structure in Section 2.1 is a
distorted PIV image pair with a size of 128 × 128, and the secondary input is a 16 × 16
wavefront slope matrix. The displacement obtained for each light spot actually represents
the average wavefront slope information within an 8 × 8 region on the distortion PIV
image. The spatial resolution of the wavefront slope matrix is lower than the resolution of
the flow field distribution represented by the PIV image pair, so from an actual physical
model analysis, if the output has the same spatial resolution as the wavefront distortion
information, then the neural network has a more significant effect on distortion correction.
To improve the performance of distortion correction, this paper proposes a new network
structure based on the Xception algorithm framework.

Xception is a network that performs well in image classification and recognition tasks,
with advantages such as parameter efficiency, high computational efficiency, and effective
feature learning. The residual connection mechanism similar to ResNet added to Xception
significantly accelerates the convergence process of Xception and makes it easier to achieve
higher accuracy [26]. The structure outputs a sparse fluid motion field distribution with
the same spatial resolution as the Hartmann–Shack wavefront sensor. Compared with
dense fluid motion field estimation algorithms, this algorithm theoretically achieves higher
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distortion correction performance at the expense of sacrificing flow field resolution. As
shown in Figure 5, the sparse flow field estimation algorithm is based on the multi-input
Xception deep neural network.

Figure 5. Schematics of the proposed sparse estimation deep learning model.



Photonics 2024, 11, 452 10 of 19

Since the final output scale is no longer at the pixel level, this algorithm adopts a
completely different framework structure from the dense estimation deep learning model.
It adds multiple input channels based on the Xception basic framework. In addition, since
Xception was originally used to solve image classification problems, the final output part
has been modified accordingly. The network structure is divided into a main input channel,
a secondary input channel, an intermediate channel, and an output channel. The main
input channel uses three modules similar to ResNet, each of which includes a deep sepa-
rable convolutional layer and a max pooling layer to preserve detail information through
Shortcut connections. The secondary input channel connects two deep separable convo-
lutional layers, and integrates wavefront distortion information into the main network
through feature map merging. The intermediate channel is consistent with the interme-
diate channel in Xception, using four convolutional modules in residual neural networks
plus a deep separable convolutional module to obtain feature maps. For the final output
layer, unlike the original Xception, the output here is the flow field result, which has both
negative and positive values and is essentially a regression problem. It does not require
a fully connected layer to shrink the dimension of the feature map, nor does it require
any activation function. It directly outputs the result linearly after the last convolutional
layer. The proposed dense and sparse estimation deep learning model are collectively
referred to as AOPIV-MICNN (Adaptive Optics Particle Image Velocimetry-Multiple Input
Convolutional Neural Network).

2.3. Training of AOPIV-MICNN

The mathematical representation of the training process is

F : {I, S} → F, (10)

that is, the neural network is made to learn a complex functional mapping from the
distorted PIV images and wavefront distortion input tensor to the ideal distortion-free flow
field distribution (i.e., the true-value labels). The MSE loss function was used for training
and the training procedure was rewritten as

arg min
F

∑
{I,S}∈Ω

∥F{I, S} − F∥2
2. (11)

Adam optimizer is also used in the training process. In total, 5000 pairs of data
are divided into training, validation, and testing datasets according to a ratio of 8:1:1.
The datasets are generated synthetically, and the specific generation method is described in
detail in the next section. The implementation of the algorithm is done on the Tensorflow
framework. It is worth mentioning that since the altered dataset is obtained by synthesis,
white noise of different intensities is added to the PIV image pairs during the training
process to avoid overfitting.

2.4. Dataset Generation Based on the Synthetic Model

The learning process of deep neural networks is a supervised learning process, which
requires ground-truth data as labels for training. However, the flow field data obtained
through the Particle Image Velocimetry experimental platform is not the true value of the
flow field, and there is always a certain systematic error. Therefore, the dataset needs to be
obtained through a certain synthetic model. A set of data includes the distortion PIV image
pair, the wavefront slope pair in the Hartmann–Shack wavefront sensor, and the true value
of the flow field distribution as a label. This paper proposes a dataset generation method
based on a synthetic model the specific generation method idea is shown in Figure 6:
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Figure 6. Synthetic dataset generation.

First, a certain fluid velocity field is generated as the true value of the dataset, and a
particle distribution is also obtained, and then the corresponding two consecutive frames
of PIV images are generated from the particle distribution and the flow field distribution;
however, at this time, the PIV images are distortion-free, so it is necessary to generate the
distorted PIV images through a distortion model. The wavefront aberration measurements
on the surface of the shaking air–water medium measured on the actual platform are
used, and two consecutive frames of wavefront aberration measurements are taken to
compute the aberrated PIV images under the corresponding wavefront aberration to obtain
the main input of the dataset. Then the wavefront aberration measurement results and
the simulation model of Hartmann–Shack wavefront sensor are simulated to obtain the
Hartmann–Shack spot array map, and another input, i.e., the slope value of the wavefront
aberration, is obtained after center-of-mass calculation to complete the generation of the
dataset. Each frame in the dataset contains two frames of distorted PIV images, two frames
of wavefront distortion slope tensors, and a real flow field distribution tensor as a training
label. The specific implementation process of each step is introduced below.

Generation of Distorted PIV Image Pairs and Corresponding Flow Fields

As shown in Figure 6, the generation of distorted PIV image pairs firstly generates
a flow field distribution, and then generates particle images through the particle image
model. The combination of different types and parameters of flow fields and different
parameters of PIV images yields distortion-free PIV image pairs, which are then distorted
on the image through the distortion model to obtain distorted PIV image pairs. For the
generation of ideal distortion-free PIV images, this paper adopts the open source software
piv-image-generator (PIG) established in [27]. In addition, in order to increase the diversity
of datasets, a large number of datasets were obtained from different open source databases.

• Fluid velocity field generation. The PIG used in this paper can simulate uniform flow,
simple shear flow, vortex flow, Poiseuille flow, stagnation point flow, etc. However,
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in practical Particle Image Velocimetry, the flow fields faced are often more complex
and difficult to obtain through software simulation. Therefore, a variety of flow
fields through open-source flow field databases are also obtained, such as the back-
step flow and cylinder flow in [9], the isotropic free turbulence provided in [28],
and the surface quasi-geostrophic (SQG) flow provided in [29]. In addition, various
types of different parameters of flow fields such as MHD turbulence, forced isotropic
turbulence, and channel flow are obtained in the Johns Hopkins Turbulence Databases.
Through these simulations or open-source databases, a total of 5000 frames of different
flow field distributions are generated as labels for the dataset. Figure 7 shows several
representative flow field distribution maps in the dataset.

• Particle image generation. The generation of particle images is also achieved using
the open-source PIG software, which is based on a Gaussian grayscale contour model
of the particles [1]:

I(x, y) = I0exp(− (x − x0)
2 + (y − y0)

2

(1/8)d2
p

), (12)

where I0 is the peak gray value of the particle center, dp is the particle diameter,
and (x0, y0) is the center position of the particle. These are the parameters that
can be adjusted when generating particle images. In addition, PIG defines particle
density, noise intensity, and particle off-plane deviation. Table 1 shows the parameter
ranges when generating PIV images using PIG open source software in this paper,
and Figure 8 shows PIV images generated by differentparameters. The first PIV
image obtained is combined with the generated flow field distribution to obtain a set
of particle image pairs that represent the flow field distribution. When generating
particle images, the distribution of particle positions is random. The displacement of
the particle positions in this frame is calculated based on the direction and velocity
of the flow field to obtain the particle distribution in the second frame. Then, based
on the definition of each particle parameter in the previous frame, the PIV image in
the second frame is obtained to form a particle image pair. The size of the particle
images generated in this paper is 128 × 128, and a total of 5000 frames of flow field
distributions are generated, thus corresponding to 5000 PIV image pairs, i.e., 10,000
frames of particle images.

• Distorted PIV image generation. After obtaining the ideal particle image pair, the dis-
torted PIV image is calculated based on the distortion model of the turbulent air–water
two-phase medium surface on the PIV image and the wavefront distortion results
obtained from simulation [20]. The wavefront distortion measured and restored by
the Hartmann–Shack wavefront sensor can be represented by Zernike polynomials.
After obtaining the wavefront distortions, the distortion function on the PIV image
can be calculated:

w(x, t) =
λh0

2πn0
∇[∆ϕ(x, t)], (13)

where λ is the wavelength of the laser beacon, h0 is the depth of the imaging target, n0
is the refractive index of the medium in which the imaging target is located, and ∇ is
the gradient operator. It can be concluded that the distortion function on the PIV image
w(x, t) is linearly related to the gradient of the wavefront distortion phase ∆ϕ(x, t).
Then interpolation operation is performed on the ideal undistorted PIV image to
obtain the distorted PIV image. The parameters are set as follows: h0 = 20 mm,
n0 = 1.33, λ = 660 nm The dataset contains a total of 10,000 frames of PIV images,
and the consecutive 10,000 frames of wavefront aberrations are added frame-by-frame
to each PIV image pair to obtain 10,000 frames of aberrated PIV images.
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Figure 7. Different types of flow field.

Figure 8. Particle image under different parameter.

Table 1. Parameters of PIV image generation.

Parameters Value Range Units

Particle central peak I0 220–255 ADU
Particle diameter dp 1–3 Pixel
Particle Density Ni 6–12 Number of windows per IA

Particle off plane deviation 0.025–0.1 pixel/s
Noise intensity 0–15 dB

2.5. Simulation Model of Hartmann–Shack Wavefront Sensor

For the other input of the neural network, the wavefront slope matrix is obtained
through a Hartmann–Shack wavefront sensor simulation model. In order to improve
the diversity of the dataset and enhance the generalization ability of the neural network,
different intensities of noise were added to the generated dataset on the spot array images.
Figure 9 shows the implementation process of the simulation model. Firstly, the parameters
of the sensor are set, which are summarized in Table 2. Then the randomly generated
Zernike coefficients are used to express the wavefront distortion. Finally, by setting the
parameters of the microlens array, the incident wavefront is sampled and segmented,
and the spot is imaged separately in each subaperture.

Table 2. Parameter of Hartmann–Shack wavefront sensor simulator.

Parameters Value Parameters Value

Zernike order 64 CCD resolution 800 × 800
Incident wavelength 532 nm Exposure time 5 ms

Entrance pupil diameter 4 mm Pixel size 5 µm
Microlens focal length 5 mm Camera bit-width 8 bits

Number of microlenses 16 × 16 Read out noise (RMS) 8 ADU
Microlens type Spherical mirror Black level 0.01 e-/pixel/s
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Figure 9. Hartmann–Shack wavefront sensor simulator.

The complex amplitude distribution of the light field on the image plane can be
obtained by Fourier transform of the light field distribution of the subaperture entering
the pupil, and then the light intensity distribution on the focal plane can be obtained by
conjugate multiplication of the complex amplitude of the light field, thereby obtaining the
light spot imaged by the microlens. Then, based on the parameter settings of the CCD,
the spot is spatially sampled to obtain the spot image. Finally, by calculating the centroid
of the spot and obtaining the wavefront slope matrix, it serves as another input in the
dataset. In addition, to verify the correctness of the simulation model, the wavefront was
reconstructed using the least squares method and compared with the incident wavefront,
proving the reliability of the simulation model. Finally, a dataset containing 10,000 frames
of PIV distorted images, 10,000 frames of wavefront slope matrices, and 5000 frames of flow
field distributions is generated. The dataset is split into training, validation, and testing sets
in a ratio of 8:1:1. It is worth noting that due to the inconsistent final output size of the two
neural networks, the flow field distribution generated by the synthetic model has a size
of 128 × 128 × 2, which can be directly used for network training of dense fluid motion
fields. Network training for sparse fluid motion fields is obtained by sampling the flow
field distribution with mean value, with a size of 16 × 16 × 2.

3. Results and Discussions

The neural networks can output corrected flow fields through distorted PIV images
and wavefront slope after training. Figures 10–14 show the estimated results of several
different flow fields obtained through two deep CNN algorithms and traditional CC
algorithms without correction, along with the actual flow field distribution for comparison.
From the results, it can be seen that the wavefront distortion caused by the surface of the
fluctuating air–water two-phase medium creates a virtual turbulence in the PIV image
distribution. The traditional CC algorithm cannot correct this virtual flow field, but the
distortion correction estimation algorithm proposed in this paper can effectively correct the
distortion, resulting in a result that is more consistent with the actual flow field distribution.
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Figure 10. Channel flow estimation from different algorithms and ground truths.

Figure 11. SQG flow estimation from different algorithms and ground truths.

Figure 12. Back-Step flow estimation from different algorithms and ground truths.



Photonics 2024, 11, 452 16 of 19

Figure 13. DNS flow estimation from different algorithms and ground truths.

Figure 14. MHD flow estimation from different algorithms and ground truths.

The top left of each image is the sparse flow field ground truth, and the top right is
the dense ground truth. From left to right, the bottom images are the results of the CC
method, the sparse neural network algorithm, and the dense neural network algorithm.
The background color of each image represents the flow field velocity at that point, and the
black arrows represent the fluid motion velocity vectors in that region. In the dense result
representation, for clarity, not all velocity vector arrows are displayed, but the velocity
results are still calculated from the original 128 × 128 results. It can be seen that neural
networks not only estimate the flow field distribution, but also correct the distortion. Even
when traditional algorithms fail due to excessive local perturbations, both neural networks
can still provide accurate results. In order to comprehensively evaluate the performance
of the algorithm, the mean absolute error (MAE) of the estimated velocity vectors are
calculated on the test set. The MAE is equivalent to the absolute value of the velocity vector
residual, and the resulting value is on a two-dimensional plane. Therefore, the mean and
root mean square (RMS) values on the entire plane are further calculated to evaluate the
performance of the algorithms. The velocity residual can be used to analyze the systematic
error of the estimation algorithm:

MAE = |v − v0| =
√
(vx − vx0)2 + (vy − vy0)2, (14)
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where v and v0 are the estimated and true values of the flow field velocity vector, respec-
tively. The average and mean square values of all the residuals in the entire flow field can
reflect the overall deviation of the algorithm and the fluctuation of the measurement results
relative to the true value, respectively. The results of analyzing the residuals of velocity
vectors on the test data are shown in Figure 15. It can be seen that the performance of both
algorithms is superior to that of traditional CC method. Table 3 provides the average and
RMS values of the residuals for different algorithms on the entire test set. It can be seen
that, compared with traditional cross-correlation algorithms, the two algorithms reduced
the root mean square value of velocity residual error by 84% and 89%, respectively.

Figure 15. Residual error from different algorithm.

Table 3. Mean and RMS of absolute velocity residual error.

Algorithms Mean (pixel/s) RMS (pixel/s)

CC 0.4013 0.2028
Dense motion estimation 0.1558 0.0313
Sparse motion estimation 0.1339 0.0229

The above results demonstrate that the estimation accuracy of the two neural network-
based fluid motion field estimation algorithms is superior to that of traditional CC algorithm
under the influence of distortions. They can estimate the correct flow field distribution
under distorted interference conditions, and perform distortion correction while estimating
the flow field. For the performance comparison between two neural networks, the mea-
surement accuracy of the sparse neural network structure is slightly better than that of the
dense neural network structure in terms of performance indicators, but this is achieved at
the expense of spatial resolution. Therefore, both algorithms have their own advantages. In
addition, in order to verify the distortion correction function of neural networks, this paper
statistically analyzes the measurement errors of different algorithms. Figure 16 shows a
box plot of measurement error statistics for 500 sets of test data under different algorithms.
The horizontal axis in the figure represents three different algorithms, and the vertical
axis represents the MAE of each estimated flow field. From the results, it can be seen that
the average measurement error of the flow field results obtained by the traditional CC
algorithm is large and fluctuates greatly, while the error of the algorithm based on neural
networks is significantly reduced, which once again verifies the distortion correction ability
of the neural network. Among them, sparse estimation algorithms have a slightly higher
distortion correction ability than dense estimation algorithms.
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Figure 16. Comparison of MAE values from three algorithms. Box plots can be used to observe the
overall distribution of data, using statistics such as median, 25% quantile, 75% quantile, and upper
and lower bounds to describe the overall distribution of data. The gray circles represent outliers.

4. Conclusions

Deep learning with various multi-input CNN structures for the adaptive correction
of aberrations for the precise velocity measurement of multi-phase flows was presented.
The two distorted PIV images and the measured wavefront distortion information are used
as inputs to directly output the corrected flow field results. Based on the model generated
from the PIV image and the simulation model of the Hartmann–Shack wavefront sensor,
a model of synthetic dataset is established. After training, the performance of the two
algorithms is evaluated and analyzed on the test dataset. These two algorithms estimate the
velocity distribution of fluid motion while correcting distortion, and solves the problem of
measurement inaccuracy caused by wavefront distortion in flow field measurement through
an end-to-end approach. Compared with traditional cross-correlation algorithms, the two
algorithms reduced the root mean square value of velocity residual error by 84% and 89%,
respectively. This paper integrates fluid motion field estimation and wavefront distortion
correction technology through a deep learning model for the first time, thereby achieving an
algorithm that can directly output the corrected flow field distribution based on wavefront
distortion measurement results, and completing the intersection of two different disciplines.
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