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Abstract: A typical solid-state quantum sensor can be developed based on negatively charged
nitrogen-vacancy (NV−) centers in diamond. The electron spin state of NV− can be controlled
and read at room temperature. Through optical detection magnetic resonance (ODMR) technology,
temperature measurement can be achieved at the nanoscale. The key to ODMR technology is
to apply microwave resonance to manipulate the electron spin state of the NV−. Therefore, the
microwave field characteristics formed near the NV− have a crucial impact on the sensitivity of
ODMR measurement. This article mainly focuses on the temperature situation in cellular applications
and simulates the influence of structural parameters of double open loop resonant (DOLR) microwave
antennas and broadband large-area (BLA) microwave antennas on the microwave field’s resonance
frequency, quality factor Q, magnetic field strength, uniformity, etc. The parameters are optimized
to have sufficient bandwidth, high signal-to-noise ratio, low power loss, and high magnetic field
strength in the temperature range of 36 ◦C to 42.5 ◦C. Finally, the ODMR spectra are used for effect
comparison, and the signal-to-noise ratio and Q values of the ODMR spectra are compared when
using different antennas. We have provided an optimization method for the design of microwave
antennas and it is concluded that the DOLR microwave antenna is more suitable for living cell
temperature measurement in the future.

Keywords: NV− centers in diamond; microwave field characteristics; microwave antenna; living cell
temperature measurement

1. Introduction

Temperature is a fundamental factor reflecting the physical and chemical changes in
living organisms. For example, living cells can cause internal temperature changes when
responding to environmental changes [1,2], but the temperature changes generated by this
process are usually small and brief [3], posing a challenge to temperature measurement
technology. In recent years, existing intracellular temperature measurement technologies,
such as fluorescent proteins [4], organic dyes [5], and rare earth particles [6], have generally
suffered from low measurement accuracy [7], insufficient temporal and spatial resolution,
and unstable fluorescence [8]. The method of NV centers in diamond stands out due to
its stable physical and chemical properties, good biocompatibility [9,10], and ultra-high
sensitivity in electronic spin measurement [11]. Meanwhile, it can measure multiple physi-
cal quantities such as temperature [12–14], magnetic field [15,16], pressure [17,18], electric
field [19,20], etc. Therefore, it has become an emerging micro–nanoscale quantum measure-
ment technology, especially in the fields of temperature and magnetic measurement. In
2010, the principle of temperature measurement was first proposed by D. Budker et al. [21]
and the sensitivity of zero field splitting energy D to temperature was discovered. In 2021,
the sensitivity (the noise spectral density) reached the level of 76 µK/

√
Hz [7]. The NV
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center sensing technology requires microwave tuning, and the microwave field character-
istics will directly affect the measurement signal-to-noise ratio. Microwave fields can be
generated through different types of microwave antennas, among which the microwave
field generated by straight copper wire antennas has poor uniformity, and the field strength
decreases rapidly with increasing distance from the wire. The microwave field strength
generated by a circular antenna is more uniform, but the field strength is often much
weaker than that of a single copper wire [22]. For a resonator antenna, the shape, size,
and thickness of the surface copper will determine the resonance frequency and magnetic
field uniformity.

Therefore, in recent years, domestic and foreign research groups have designed various
microwave antennas to meet the different requirements of NV center thermometers applied
in different scenarios. In 2014, K. Bayat et al. designed a double open loop resonant
(DOLR) microwave antenna with a resonance frequency near 2.87 GHz at room temperature.
The antenna has a good quality factor, narrow bandwidth, and is suitable for ODMR
spectral line measurement with a single resonant peak [23]. In 2015, D. S. Rudnicki et al.
designed a microwave antenna that can adjust the resonance frequency between 2.7 GHz
and 3.1 GHz, corresponding to a magnetic field of 0-100 Gauss, allowing the microwave
to be arbitrarily adjusted between linear polarization and circular polarization. However,
the distance between microstrip lines must match the distance between the microstrip
line and the excitation point in order to obtain a good polarization state, resulting in
strong position dependence and high calibration difficulty [24]. In 2016, K. Sasaki et al.
designed a microwave antenna that operates near 2.87 GHz at room temperature, with
a bandwidth of around 400 MHz. It can be directly applied to observe multiple Zeeman
level splitting peaks under an external magnetic field, without readjusting the antenna’s
resonance frequency [22]. Qin et al. compared the performance between copper wire and
ring microstrip antennas in 2018 [25]. After 2018, research on antennas mainly focused
on optimizing uniformity in three-dimensional space. Among them, Tang Jun’s team [26]
designed a large-area three-dimensional uniform microwave antenna, which can increase
the bandwidth and improve the contrast of ODMR. Multiple resonance frequencies can be
manipulated and the antenna can be kept away from the sample without interfering with
the objective lens or sample by increasing the signal-to-noise ratio (SNR) of the antenna.
Moreover, the impact of microwave heating on diamond can be suppressed and quality
factors can be improved. In the same year, Chu-Feng Liu’s team [7] designed a dielectric
resonator antenna for three-dimensional uniform operation of NV centers, achieving a Rabi
frequency of 10 MHz in a 7 mm3 space, which can increase the sensitivity of magnetometers
by two orders of magnitude. Fujiwara and Shikano also reviewed the different kinds of
antennas [27].

At present, the design of microwave antennas is mainly aimed at applications at room
temperature or situations with external magnetic fields. However, there is a lack of further
analysis on antennas used in cellular environments. On the basis of existing antenna design,
this study conducts parameter optimization design research to meet the requirements of
microwave fields in cell experiments. In recent years, the electromagnetic properties of
cells and molecules have also received attention with the deepening of interdisciplinary
research. The configuration of culture dishes [28], dielectric parameters, and electromag-
netic parameters of culture media can all affect the microwave field characteristics, thereby
affecting the temperature measurement of NV centers. The temperature range of the cell
activity research is 36~42.5 ◦C, that is, from the optimal culture temperature for live cells
to the temperature at which tumor cell are killed. The corresponding frequencies of zero
field splitting energy are about 2.86892~2.86844 GHz. The microwave antenna itself has
a more significant thermal effect compared with the relatively small changes in the ther-
mal environment of cells. Thus, the influence of microwave thermal effect needs to be
considered, and it was first observed in the study of Fujiwara et al. [29]. However, it only
qualitatively revealed the existence of this phenomenon and its impact on temperature
measurement accuracy. Quantitative research can be found in Ref. [30], which showed that
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the temperature rise caused by microwave thermal effect increases with the increase in the
application time and power. At a microwave power of 6 dBm, the maximum temperature
rise can reach 43.68 K. The temperature difference that living cells can adapt to is only about
5.5 K. The heat generated by microwaves is transferred to cells through the culture medium,
which not only affects the accuracy of temperature measurement but also causes cell death.
In summary, the requirements for microwave field characteristics in living cell temperature
measurement mainly include: 1. High Q value and low heat production; 2. low return
loss and high energy transmission efficiency of microwave antennas; 3. bandwidth and
magnetic field uniformity meet requirements but are not demanding.

This article describes in-depth research on the microwave characteristics of two types
of irregular microwave antennas, double open loop resonance (DOLR) and broadband
and large-area (BLA) microwave antennas, in the temperature measurement of living cells.
Firstly, the characteristics of microwave fields required for cell temperature measurement
have been analyzed. Secondly, the characteristics of antenna microwave reflection param-
eters (S11), magnetic field strength and uniformity, as well as quality factor have been
simulated, and parameter optimization methods were studied. Finally, ODMR spectral line
tests were conducted to compare performance of a straight copper wire (SCW) antenna and
the optimized irregular antenna. The improvement of microwave field characteristics was
verified through changes in spectral line contrast, line width, and signal-to-noise ratio.

2. The Fundamental Principles

Diamond crystal is a tetrahedron composed of carbon atoms, each of which forms
a covalent bond with the other four carbon atoms in a sp3 hybrid orbital, exhibiting
high symmetry [31]. When one of the carbon atoms is replaced by a nitrogen atom and
the adjacent carbon atom is replaced by a vacancy, a nitrogen vacancy center is formed.
According to whether they are negatively charged or not, the nitrogen vacancy centers
can be divided into two types: NV0 and NV−, which can be converted to each other
under certain environmental conditions [32,33]. The outermost layer of NV− has two free
electrons that can generate zero field splitting through spin–spin interaction. The zero field
splitting energy D is temperature dependent, so temperature measurement can be achieved
through spin manipulation.

As shown in Figure 1, the ground state of the NV center includes ms = ±1 and ms = 0.
The zero field splitting D of the ground state electronic spins at room temperature is about
2.87 GHz. ODMR spectral lines can be obtained by scanning the microwave frequency
and collecting the fluorescence [34–36]. When the NV color center is excited from the
ground state to the excited state, there are two ways of de-excitation. One is spontaneous
emission transition, which mainly occurs in the electronic spins in the excited state of | 0>.
The electronic spin in this process directly returns from the excited state to the ground
state and radiates photons. Another type is intersystem crossing (ISC), which mainly
occurs when the electronic spin is in the excited state of | ± 1>. This process reaches a
metastable state before returning to the ground state without radiating photons. From
the perspective of fluorescence brightness, | 0> is in the bright state and | ± 1> is in
the dark state. The function of microwaves is to manipulate the electronic spins between
the | 0> state and the | ± 1> state, causing population flipping. When the microwave
frequency is the same as the frequency of zero field splitting energy D, the population
of electronic spins in the | ± 1> state is the highest, resulting in the lowest fluorescence
emitted by the NV−. Moreover, the variation of microwave power can cause a change in
the population of electron spin in the | ± 1> state, manifested as a variation in ODMR
contrast. In addition, changes in microwave power can cause changes in the spectral line
width [27]. The contrast C and line width ∆υ directly affect the theoretical signal-to-noise
ratio of temperature measurement ηT(K/

√
Hz), i.e., ηT(K/

√
Hz) ≈ PF(

dT
dυ )T0

∆υ/(C
√

R).
It is known that the larger the contrast C and the narrower the line width ∆υ, the lower the
noise spectral density. Therefore, the design of microwave antennas is crucial.
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about 3.4%. The center frequency of the DOLR microwave antenna is 2.8797 GHz, which 
is close to the microwave frequency corresponding to zero field splitting energy at room 
temperature, with a frequency deviation of only 0.3%. The center frequency of the two 
types of antennas can be adjusted later by pasting copper strips. The bandwidth of BLA 
microwave antennas can reach 400 MHz, ensuring that Zeeman level splitting lines can be 
observed under an external magnetic field of up to 100 Gauss. For DOLR microwave an-
tennas, the bandwidth is only a few tens of megahertz, making it difficult to measure mul-
tiple resonance peaks simultaneously within the bandwidth range. However, for the tem-
perature measurement of the cell environment, the D value changes by about 400 kHz, 

Figure 1. The energy level structure of NV− center without considering external magnetic field and stress.

The DOLR and BLA microwave antennas studied by K. Bayat [23] and K. Sasaki [22]
are suitable for room temperature applications, as shown in Figure 2. The impact of
culture dishes and media on the performance of microwave antennas in cell temperature
measurement was not considered. Therefore, it is necessary to optimize the structural
parameters to make them suitable for cell research scenarios.
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Figure 2. Schematic diagram of two types of irregular microwave antennas. (a) BLA microwave
antenna structure; (b) DOLR microwave antenna structure.

3. Simulation and Optimization of Irregular Antennas
3.1. Microwave Radiation Element Simulation

Firstly, numerical simulation was conducted based on the microwave antenna struc-
tural parameters set in the K. Bayat [23] and K. Sasaki [22] papers. The simulation results
are analyzed from the aspects of reflection parameter S11, quality factor Q, magnetic field
strength, uniformity, etc.

For the center frequency of microwave antennas, that of the BLA microwave antenna
is 2.9680 GHz, which is 0.098 GHz larger than 2.87 GHz with a frequency deviation of
about 3.4%. The center frequency of the DOLR microwave antenna is 2.8797 GHz, which
is close to the microwave frequency corresponding to zero field splitting energy at room
temperature, with a frequency deviation of only 0.3%. The center frequency of the two
types of antennas can be adjusted later by pasting copper strips. The bandwidth of BLA
microwave antennas can reach 400 MHz, ensuring that Zeeman level splitting lines can
be observed under an external magnetic field of up to 100 Gauss. For DOLR microwave
antennas, the bandwidth is only a few tens of megahertz, making it difficult to measure
multiple resonance peaks simultaneously within the bandwidth range. However, for the
temperature measurement of the cell environment, the D value changes by about 400 kHz,
and the bandwidth requirement is not strict. The reflection parameter S11 of the two
antennas is shown in Figure 3. The S11 of the DOLR is about −9 dBm and that of BLA is
about −5 dBm, thus the return loss of the DOLR microwave antenna is relatively small
and the power transmission efficiency will be higher. The quality factor Q is the ratio of
the electromagnetic energy stored in the resonator to the energy lost in one cycle, which is
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related to the ohmic loss of the metal wire, the dielectric loss of the printed circuit board,
the radiation loss, and the coupling loss of the microstrip line. Its value can be obtained
by the ratio of center frequency to line width. The microwave field characteristics of the
two antennas are listed in Table 1, and the Q value of DOLR is 18 times larger than that of
BLA. In summary, the DOLR microwave antenna is more suitable for situations where the
antenna heating effects need to be weakened and measured at the nanoscale.
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Table 1. Microwave Field Characteristics of Microwave Antennas.

Microwave Field
Characteristics

Antenna Type
BLA Microwave Antenna DOLR Microwave

Antenna

Center frequency (GHz) 2.968 2.880

Bandwidth (MHz) 379 19

Q value 7.8 151.6

Uniformity of microwave field on different areas of
microwave antennas

(H’
homogeneity = (Hmax − Hmin)/Hmid)

4 mm × 4 mm 1.95 1.80

3 mm × 3 mm 1.89 1.75

2 mm × 2 mm 1.80 1.27

1 mm × 1 mm 0.77 0.65

Radiation element microwave field strength
Hmax (A/m) 4405.7 2569.5

Considering the microwave field strength under the
diamond chip model H’

max (A/m) 82.8 36.6

For BLA microwave antennas, the overall field strength distribution decreases outward
from the center of a small circular notch with a microwave element radius of r (Figure 2)
and is symmetrically distributed along the gap g (Figure 2). Therefore, diamond samples
should be placed at the center of the small circular notch, and the microwave field strength
in the radiation element region at the sample placement is shown in Figure 4a, with a
maximum field strength of 82.8A/m. For the DOLR microwave antenna, it is symmetrical
along the x-axis at the center (the x-axis and y-axis are in the diamond horizontal plane,
and the z-axis is perpendicular to the plane), decreasing along the z-axis. Therefore, the
sample should be placed at the center of the antenna, and the field strength near the sample
placement is shown in Figure 4b, with a maximum field strength of 36.6 A/m. In terms
of microwave field uniformity, we use (Hmax − Hmin)/Hmid to calculate the magnetic field
uniformity H′

homogeneity, and the smaller the value, the better the surface uniformity. For
the xy plane, as shown in Table 1, for BLA microwave antennas and DOLR microwave
antennas, the smaller the area, the better the uniformity. When the area is less than 1 mm2,
the uniformity is close to but less than 1, and the planar uniformity of the DOLR microwave
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antenna is slightly better. In addition, the microwave field strength within the range of
0–10 mm from the antenna surface in the z-axis direction has been analyzed. As shown
in Figure 5, the field strength of both types of antennas shows a trend of first increasing
and then decreasing with increasing distance, whose maximum points are located around
2 mm from the xy plane of the antenna. Therefore, the NV centers are recommended to be
placed at about 2 mm away from the surface of the antenna. Moreover, the diamond does
not directly contact the antenna, and the heating effect on the diamond is also reduced.
Diamond can be placed on 3D printed hollow brackets, or optical tweezers can be used to
control the position of the nanodiamonds to achieve this goal. In theory, considering the
effects of return loss, thermal effects, magnetic field strength, etc., the DOLR antenna may
be more suitable for applications in cellular environments.
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3.2. Model Optimization

In recent years, the D-T relationship of NV center thermometers has been studied [37].
For instance, a third-order polynomial has been proposed to fit the D-T relationship in the
temperature range of 300–600 K [35]. The optimal temperature for human cell activity is
known to be (36.5 ± 0.5) ◦C. If the temperature inside the cells exceeds 42.5 ◦C or they
are irradiated for a long time at this temperature, the active cells, and even tumor cells,
will be uniformly killed [38–41]. Therefore, we set the experimental study temperature at
36–42.5 ◦C, at which dD/Dt ≈ −74.2 kHz/K, and the corresponding change in D value is
about 400 kHz. In the cellular application scenario, diamond does not directly contact the
microwave antenna but is swallowed by the cells. The simulations in Figure 5 show that
the maximum field intensities of the two irregular antennas are about 2 mm away from
the surface, so there is a natural advantage in this aspect. Both cells and diamonds are
suspended in a solution environment, so that microwaves need to pass through the culture
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dish (dielectric constant εr = 3.01, loss tangent angle tanδ = 0.0015), glass slide (dielectric
constant εr = 5.42, loss tangent angle tanδ = 0.044), and culture medium (conductivity
σ = 5400 ± 100 µS/cm) to act on the NV centers. The culture medium, culture dish, and
glass slide will affect the center frequency and the heating effect of the microwave antenna.
Water is the main component of the culture medium, with a higher specific heat capacity,
making it easy to absorb the heat generated by the antenna. Therefore, it directly affects
the environmental temperature and cell activity. In the design process, it is necessary to
consider correcting the offset of the center frequency in advance and focus on reducing
the influence of thermal effects, that is, improving the quality factor Q and S11 parameters
of the microwave antenna. In addition, media such as culture dishes and culture media
can cause microwave power loss. On the premise of ensuring the accuracy of the center
frequency and minimal heating effect, the microwave field strength should be increased as
much as possible to improve the effectiveness of microwave power acting on cells. Based
on the above analysis, we established a model in the cellular environment, as shown in
Figure 6.
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Figure 6. Model diagrams of two types of microwave antennas in a cellular environment. (a) Model
diagram of the BLA microwave antenna; (b) Model diagram of the DOLR microwave antenna.

As shown in Figure 7, materials such as diamond samples and culture dishes will
affect the microwave resonance frequency of the antenna, causing a left shift of the center
frequency. Compared to the resonance frequency of the original design of the antenna in
Table 2, sheet-like diamond only causes a frequency shift of 0.0105 GHz, while the cellular
environment causes a frequency shift of 0.4009 GHz for BLA microwave antennas, which is
40 times greater than that in the case of sheet-like diamonds. For the DOLR microwave
antenna, the sheet-like diamond causes a frequency shift of 0.0069 GHz, and the cellular
environment causes a frequency shift of 0.1589 GHz, which is about 23 times more than that
in the case of sheet-like diamonds. The DOLR antenna has a smaller offset than the BLA
antennas. For the cellular environment, it is necessary to optimize the antenna size again
based on the influence of culture dishes, culture media, and glass slides to reduce the center
frequency offset. Moreover, the bandwidth of the BLA antenna can reach 400 MHz, while
the bandwidth of the DOLR antenna is only about 20 MHz. It is known that the frequency
variation of zero field splitting energy D caused by temperature changes in the cellular
environment is about 400 kHz, so both the antennas meet the bandwidth requirements. The
heating effect of microwave antennas can be reflected by their quality factor Q value, where
the larger the Q value, the smaller the heating effect. As shown in Table 2, the Q value of
a BLA antenna is about 7 in different environments. The Q value of a DOLR microwave
antenna is about 130 in a single radiation element and diamond sheet, which is about
18 times more than that of BLA antenna. The Q value is about 32 in a cellular environment,
which is 4.6 times more than that of a BLA antenna. Therefore, the heating effect of the BLA
antenna is larger. Both types of antennas have the highest Q value under the condition
of pure radiation element without media. The Q value of the DOLR antenna significantly
decreases in the cellular environment, while that of BLA remains almost unchanged.
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Table 2. The microwave field characteristics of two types of microwave antennas in different environments.

Microwave Field
Characteristics

Antenna Type
BLA Microwave

Antenna
DOLR Microwave

Antenna

Center frequency (GHz)

Radiation element 2.990 2.890

Diamond sheet 2.979 2.897

Cellular environment 2.589 2.731

Bandwidth (MHz)

Radiation element 382 20

Diamond sheet 422 22

Cellular environment 337 84

Q value

Radiation element 7.8 148.2

Diamond sheet 7.1 130.0

Cellular environment 7.7 32.7

Magnetic field
strength (A/m)

Radiation element 2366.5 948.5

Diamond sheet 2871.5 413.00

Cellular environment 236.9 161.4

Magnetic field uniformity

Radiation element 2.00 1.93

Diamond sheet 1.98 1.88

Cellular environment 0.96 0.42

In terms of magnetic field strength, as shown in Table 2, it can be seen that BLA
microwave antennas have a greater advantage in magnetic field strength for diamond
sheets, which can still reach over 2000 A/m. However, it drops sharply to 236.9 A/m in
cellular application environments. The value of the DOLR microwave antenna is less than
1000 A/m in all the three environments. In the cellular environment, the magnetic field
strength of the DOLR antenna is only about 70 A/m less than that of the BLA antenna. In
terms of magnetic field uniformity, the diamond sheet environment is analyzed based on a
4 mm × 4 mm region. The uniformity of the DOLR and BLA antennas is 1.975 and 1.882,
respectively. The case of cellular environment is analyzed based on a 1 mm × 1 mm region.
The uniformity of the DOLR and BLA antennas is 0.424 and 0.958, respectively. Thus, the
uniformity of the DOLR antenna is better than that of the BLA antenna.

In summary, for the application scenarios of diamond sheets, the advantages of BLA
antennas lie in their wide bandwidth and strong magnetic field strength. The advantages
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of DOLR antennas are low heat loss, high signal-to-noise ratio Q value, and good magnetic
field uniformity. For cellular applications, high Q value and low heat loss are required, and
DOLR antennas are more suitable for this situation. In addition, it can be concluded that
the impact of culture dishes, culture media, and other factors on the antenna in cellular
applications is significantly different from that of diamond sheets. Thus, it is necessary to
optimize the size of the irregular antennas to make their microwave field characteristics
such as center frequency, heat loss, and magnetic field uniformity more in line with the
needs of cellular applications.

For cellular application scenarios, the requirements for the center frequency offset,
magnetic field uniformity, and heating effects of the microwave field generated by the
antenna are different from those of the diamond sheets. The optimization conditions are
determined as follows: the center frequency is around 2.87 GHz to achieve the conditions
of NV center resonance. Heat loss depletion and return loss should be minimized as
much as possible, that is, the Q value and S11 parameter should be as large as possible,
in order to reduce the impact of heat loss on temperature measurement accuracy and cell
activity. Furthermore, the magnetic field uniformity may be improved under the premise
of meeting the previous requirements to reduce the impact of NV centers’ position on
measurement accuracy.

The optimization design of the DOLR antenna is carried out in Figure 8. The original
dimensions (as shown in Figure 2b) are as follows. The radii of inner and outer rings are
r1 = 1.2 mm, r2 = 2.4 mm and the ring width is d = r2 − r1 = 1.2 mm. The coupling gap is
gc = 0.05 mm, and the gap at the crack is gs = 0.4 mm. The gap between the two rings is
gr = 0.2 mm, and the lead width is w = 1 mm. Based on the above dimensions, a univariate
control method is adopted to simulate the effects of different dimensions on the center
frequency and bandwidth. In Figure 8, it can be seen that when the coupling gap gc is
0.04 mm, both the center frequency and bandwidth can be maximized simultaneously.
When the gap between the two rings gr is 0.2 mm, the center frequency is the highest but
the bandwidth is reduced by 20 MHz. When gr is 0.15 mm, the bandwidth is maximum,
but the center frequency is offset by about 0.1 GHz, which is relatively larger compared
to the bandwidth offset of diamond itself. The requirement of bandwidth is not high, so
priority is given to meeting the center frequency requirement of the ODMR spectral lines.
Therefore, a gap gr of 0.2 mm between the two rings is selected. The inner ring radius r1
is optimized from 1.0 mm to 1.2 mm. The center frequency is closest to 2.87 GHz with
a value of r1 = 1.085 mm. When the lead width w is between 1.2 mm and 1.6 mm, the
difference in center frequency and bandwidth is not significant. Considering reducing the
thermal contact area and saving metal materials, it is decided to choose a lead width of
1.2 mm. Based on the simulation parameters of gc = 0.04 mm, gr = 0.2 mm, r1 = 1.085 mm,
w = 1.2 mm, gs = 0.4 mm, and d = 1.2 mm, it was found that the center frequency would
be larger than 2.87 GHz. Therefore, adjustments are made to r1 and w in the direction of
slightly reducing the center frequency. When the gap gs is 0.45 mm, the center frequency is
maximum, followed by 0.35 mm. In order to bring the center frequency back to around
2.87 GHz, gs = 0.35 mm is chosen. Based on the determination of the first five dimensions,
the ring width d (d = r2 − r1) is adjusted from 1.2 mm to 1.0 mm as shown in Figure 8f. As
shown in Figure 9, the center frequency of the antenna is 2.8744 GHz, and the bandwidth is
71 MHz. The return loss S11 is −6.8 dBm at the center frequency, and the quality factor Q
value is 40.43, which meets the requirements.

Similarly, for BLA microwave antennas, the parameter optimization process is shown
in Appendix A. After optimizing the center frequency and bandwidth, the following
parameters are selected: r = 0.20 mm, R = 6.98 mm, g = 0.2 mm, and S = 3.9 mm. The results
are shown by the blue line in Figure 10. At this time, the center frequency is 2.8715 GHz,
and the bandwidth is about 311 MHz. The return loss S11 is −7 dBm at the center frequency,
and the quality factor Q value is 9.22.
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The optimization results of the above two microwave antennas have been analyzed
for Q value, magnetic field uniformity, and magnetic field strength. As shown in Table 3,
the Q value of the DOLR antenna is nearly three times that of the BLA antenna. Therefore,
the DOLR antenna has smaller heating effect. In terms of planar magnetic field uniformity
based on the analysis of 4 mm × 4 mm, that of the BLA antenna is 0.992 larger than that of
the DOLR antenna. In terms of magnetic field strength, that of the DOLR antenna is nearly
three times that of the BLA microwave antenna. In summary, the DOLR antenna has higher
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signal-to-noise ratio, better magnetic field performance, and smaller heat effect, making it
more suitable for cell research experiments.
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Table 3. Microwave field characteristics of optimized microwave antennas.

Antenna Type Q Value Uniformity of Planar Magnetic Field Magnetic Field Strength (A/m)

BLA microwave antenna 9.22 1.97 144.1

DOLR microwave antenna 40.43 0.98 344.9

4. ODMR Experiments and Discussion

The experimental platform is shown in Figure 10. A continuous laser emitted at 532 nm
undergoes collimation and beam expansion after changing the direction of the optical path
through planar reflectors. Then, it is incident onto an acousto-optic modulator (AOM)
(AODR 1080AF-DIF0-1.0, Gooch & Housego, Ilminster, UK), which generates high-speed
switching modulation of the laser. The laser is reflected through a dichroic mirror and enters
the objective lens to focus on the sample. The NV centers in diamond emit fluorescence
ranging from 600 nm to 800 nm after laser excitation. It passes through a dichroic mirror
and the remaining reflected laser at 532 nm passes through a filter (FELH0600, Thorlabs,
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Newton, NJ, USA). Finally, the fluorescence is collected by a converging lens and incident
onto a single photo counting module (SPCM). A data acquisition (DAQ) system is used
to process the number of photons collected by the SPCM. A microwave is generated by a
microwave source (SMIQ 06B, Rohde & Schwarz, Columbia, MD, USA), and then amplified
by an amplifier (ZHL-16W-43-S+, Mini Circuits, Brooklyn, NY, USA) to a microwave
antenna. The RF switch (ZASWA-2-50DRA+, Mini Circuits, USA) is applied to control the
on/off of the microwave signal. The system uses a pulse generator (PBESR-PRO-500-PCI,
SpinCore, Gainesville, FL, USA) to achieve pulse control of microwave and laser.

Three types of antennas were applied in the experiments. The straight wire microwave
antenna used in the comparative experiment has a diameter of 0.06 mm and a length of
3 cm. The dimensions of DOLR and BLA microwave antennas used in the experiment are
determined by the optimization in Section 3.2. The ODMR spectral lines of NV centers
have been measured at −24 dBm, −20 dBm, −15 dBm, -10 dBm, and −5 dBm based on a
straight wire antenna. The changes in contrast and bandwidth are shown in Figure 11. With
the increase in microwave power, both the contrast and bandwidth of the ODMR spectrum
become larger. The value of zero field splitting energy D shifted to the left, indicating an
increase in microwave heating effect and thermal noise. As shown in Figure 12, using line
bandwidth/contrast represents the signal-to-noise ratio (SNR) of spectral line measurement.
It can be seen that the smaller the value, the higher the SNR and the higher the limit
sensitivity level of the system measurement. As the microwave power increases, the SNR
first increases and then decreases, indicating the existence of an optimal value. After the
microwave power in this system exceeds −10 dBm, the SNR will slightly decrease due
to the heating effect and thermal noise. Therefore, when the microwave power is set
at −10 dBm, the SNR is optimal, and the heating effect and thermal noise are lower at
this time.
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As shown in Figure 13, the values of bandwidth/contrast for the three antennas have
been compared. For DOLR microwave antennas, the SNR reaches its optimal value when
the microwave power is around −10 dBm. The optimal microwave power of the straight
wire microwave antenna is also around −10 dBm, but its SNR is lower than that of the
DOLR microwave antenna. For the BLA microwave antenna, the optimal microwave power
is around −15 dBm. The SNR rapidly decreases above −15 dBm, and the SNR remains
basically unchanged in the range of −25 dBm to −15 dBm. Its overall SNR is also lower
than that of the DOLR antenna. In the range of −25 dBm to −16 dBm, the SNR of the
BLA antenna is better than that of straight wire antenna. In summary, within the power
range of −25 dBm to −5 dBm, the DOLR antenna has the best ultimate sensitivity and
signal-to-noise ratio.
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It is also important to ensure the accuracy of temperature measurement while improv-
ing the signal-to-noise ratio. Therefore, the heating effect of the antenna itself is expected to
be as small as possible, and the quality factor Q is increased. The quality factor Q of the
three antennas can be calculated by the center frequency/bandwidth (full width at half
height), as shown in Figure 14. It can be seen that the DOLR antenna is generally superior
to the other two antennas. For the DOLR antenna, the Q value attenuation is not significant
in the microwave power range of −25 dBm to −15 dBm. However, when the microwave
power is greater than −15 dBm, the Q values will quickly decrease. Therefore, the DOLR
antenna has the best SNR at −15 dBm with high quality factor and small heating effect.
The Q values of the other two antennas show an approximately linear decreasing trend
with increasing microwave power. When the microwave power is less than −15 dBm, the
Q value of the BLA antenna is slightly better than that of the straight wire antenna. When
the microwave power is greater than −15 dBm, the Q value of the straight wire antenna
is higher. Considering both the heating effect and SNR, the DOLR microwave antenna is
the optimal choice, and its microwave power can be optimized in the range of −15 dBm to
−10 dBm.
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5. Conclusions

This paper focuses on the application scenarios of cell temperature measurement,
which require microwave antennas with high Q value, low return loss, and small heating
effect. The comparative analysis was conducted on the characteristics of a DOLR antenna
and BLA microwave antenna. The advantages of BLA microwave antennas lie in their
wide bandwidth and high magnetic field strength, but their obvious disadvantages lie in
their large heating effect and return loss. The advantages of DOLR microwave antennas lie
in their high Q value, small reflection parameter S11, and the heating effect. Its magnetic
field uniformity is good, so the DOLR antenna is more suitable for cellular applications.
Moreover, the influence of culture medium, culture dish, etc. on the center frequency,
bandwidth, magnetic field properties, etc. of the microwave antennas has been analyzed.
The structure parameters of the microwave antenna have been optimized to ensure that
the center frequency and bandwidth of the antenna meet the requirements. On this basis,
the Q value and magnetic field strength should be maximized as much as possible, and
the heat loss and thermal effect should be minimized as much as possible. Finally, the
signal-to-noise ratio and Q value of the straight wire antenna, DOLR antenna, and BLA
antenna were quantified and compared through ODMR experiments. The advantages
of DOLR microwave antennas of low heating effect and high SNR have been proved.
Secondly, the trends of SNR and Q value with microwave power variation, as well as
the optimal power value, were obtained by power optimization. This article provides a
simulation and verification method for designing and optimizing microwave antennas
in special environments. Its partial requirements for antennas are also applicable to the
magnetic field measurement of NV centers in diamond.
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Figure A1. Simulation results of structural parameter optimization of BLA microwave antenna. (a) 
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Figure A1. Simulation results of structural parameter optimization of BLA microwave antenna.
(a) The relationship between ring radius r and center frequency or bandwidth; (b) The relationship
between hole radius R and center frequency or bandwidth; (c) The relationship between gap g and
center frequency or bandwidth; (d) The relationship between the distance S and center frequency
or bandwidth.
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