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Abstract: A multifunctional switchable metamaterial device based on graphene, a gold layer, poly-
imide, vanadiµm dioxide (VO2), and the sapphire substrate is designed in this paper. The top layer
consists of a gold wire, graphene, and two split-ring resonators with the same parameters. By adjust-
ing the Fermi level of graphene, the regulation of BIC and quasi-BIC is realized, and the conversion
between BIC and absorber is realized by adjusting the conductivity of VO2. When the device is
converted into a wave-absorbing device with single-band absorption characteristics, the Fermi level
of graphene at this time is 0.001 eV, the absorption peak at 0.820 THz is higher than 99.5%, and when
the Fermi level of regulated graphene is 1 eV, the absorption peak at 0.667 THz is also higher than
99.5%. The peak frequency of the device is 0.640 THz when it converts to quasi-BIC. To the best of
our knowledge, this is the first time that the conversion and regulation of BIC and absorber have
been achieved using these two phase change materials. Moreover, by adjusting the parameters of the
metamaterial structure, the working efficiency and frequency of BIC and absorber can be dynamically
adjusted. The electric field distribution and surface current of metamaterials are further studied, and
the physical mechanism of effective absorption and BIC is discussed. These results show that the
metamaterials proposed in this paper have many advantages, such as terahertz absorption, BIC, and
active device control, and are of great significance for developing terahertz multifunctional devices.

Keywords: multifunctional metamaterial; BIC; absorber; VO2; graphene

1. Introduction

The terahertz frequency range spans from 0.1 to 10 THz in the electromagnetic spec-
trum and is characterized by low energy, wide bandwidth, and high transmittance to
non-polar objects [1]. Metamaterials, as periodically structured sub-wavelength composites,
exhibit unique electromagnetic properties absent in natural materials and find widespread
application in research domains such as security detection, biosensing, wireless commu-
nication, and medical imaging [2]. At the same time, metasurface, as a two-dimensional
metamaterial with a thickness much smaller than the operating wavelength, can be de-
signed to optimize the structure to achieve terahertz wave modulation [3–5]. Leveraging
artificially designed composite metasurface structures, efficient modulation of electromag-
netic wave phase, amplitude, and polarization is achievable [6–9]. However, since the
properties of the traditional metasurface are fixed after machining, the traditional meta-
surface has no active modulation capability and no multifunctional conversion capability.
Therefore, the design and research of multifunctional terahertz devices by incorporating
phase change materials into the design of metasurface has become one of the research
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hotspots, including perfect absorption, polarization conversion, continuous domain bound
states (BIC), and so on [10–16].

The concept of BIC originated from quantum systems. However, quantum experi-
mental systems are often prohibitively expensive and complex. Therefore, the flexibility
of metasurface design and the modulation of electromagnetic waves offer a promising
platform for studying BIC [17–19]. There are two main coupling ways to achieve BIC
in metasurfaces: The first method is the coupling between two structures to produce a
BIC. This coupling usually produces a quasi-BIC peak by breaking the symmetry between
structures, i.e., by adjusting one of the structural parameters [20–24]. The BIC generated by
such structures is called the BIC of symmetry protection [25–29]. Another kind, although
it is composed of two symmetric structures, the nature of its generation of BIC for the
two modes (electric dipole and magnetic dipole) between the mutual coupling, that is, in
the process of changing the structural parameters, always maintains the symmetry of the
hypersurface structure is not broken [30–34]. When the BIC phenomenon occurs under
certain structural parameters, the Fano peak disappears, and the BIC pattern produced by
such structures is called accidental BIC [35]. In recent years, numerous research papers
on BIC devices and absorbers have been published successively [36–39]. With the con-
tinuous research and discovery of researchers, only focusing on the tunability of a single
function, such as a single absorption characteristic or a single BIC device, cannot meet the
actual needs. Therefore, researchers have utilized phase change materials such as VO2 and
graphene, among others, to engineer terahertz devices with multifunctionality. Vanadium
dioxide (VO2) serves as a foundational material undergoing a remarkable transition from
an insulating phase to a metallic phase at 68 ◦C [40–45]. This phase transition results in
a significant alteration in electrical conductivity. Graphene can adjust the Fermi level to
adjust the graphene insulation state to the metal state. Therefore, the multifunctional con-
trol of the device can be realized by adjusting the properties of the phase change material.
Ranjan Singh et al. produced a Fano peak with a high Q value by breaking the symmetry
of the structure [46]. Silvia Romano et al. utilized photonic crystals to generate quasi-
BIC peaks with high Q-values, enabling high-sensitivity sensing detection of biological
cells [47]. Guozheng Wu et al. used a vanadium dioxide (VO2) resonance structure to
achieve a metamaterial absorber with a simple structure [48]. Ruyuan Zheng et al. utilized
a single layer of graphene to combine patterns, achieving a very simple terahertz-absorbing
material [49]. With the rapid advancement of practical applications, single-function devices
cannot meet the growing demand, leading to increased attention on the research of multi-
functional devices. Huihui Jing et al. proposed a bi-functional metamaterial device based
on vanadium dioxide (VO2), achieving an absorption rate of more than 90% [50]. Jitao Li
et al. introduced graphene into the BIC metasurface and realized the control of quasi-BIC
and BIC by adjusting the Fermi level of graphene [51]. Gao et al. proposed a bi-functional
metasurface with a maximum absorption rate of 90.3% and generated a secondary Fano-like
structure [52]. Li et al. proposed two dual-function terahertz switchable metasurfaces,
exhibiting absorption rates exceeding 90% and producing Fano-like structures [53]. As far
as we know, most of the devices designed in the reported papers can realize switching
between absorption and Fano-like effects or quasi-BIC and BIC effect functions, but the
design of metasurface structures satisfying both functions has yet to be reported. However,
the device designed in this paper not only has the above-mentioned two types of switching
functions but also can realize the metasurface with efficient absorption and BIC regulation
functions, which can greatly improve the adjustability and practicability of the device in
practical applications and has the potential application prospects in other terahertz fields.

In this paper, an efficient tunable dual-function terahertz device is proposed. By
introducing phase change materials into the device, we achieve not only the conversion
from an absorber to a BIC device but also the transition between BIC and quasi-BIC states,
and high absorptivity and excellent tunability are achieved. When VO2 is converted from
an insulating state to a metallic state, and the Fermi levels of graphene are 0.001 eV and
1 eV, respectively, the absorption efficiency is above 99.5% at 0.820 THz and 0.667 THz.
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Secondly, by adjusting the Fermi level of graphene, we achieve dynamic regulation from
BIC to quasi-BIC. Furthermore, we also studied and analyzed the influence of structural
parameter changes on the performance of the device. The proposed structure is significant
in biosensors, imaging, and multifunctional terahertz devices.

2. Design and Methods

We used the CST Microwave Studio to conduct numerical simulations using a fre-
quency domain solver to investigate the transmission and absorption properties of the
structure. The proposed structure diagram is shown in Figure 1. The unit structure period
is 240 µm, the outer diameter R1 of the top ring is 100 µm, the inner diameter R2 is 80 µm,
and the linear distance g2 between the opening of the upper and lower half rings is 20 µm.
The CW structure in the middle of the ring is composed of gold and graphene material; the
length of the graphene g1 is 36 µm, and the lengths of the two gold CW are the same. As
shown in Figure 1a, the structure has a total of four layers, from top to bottom, which are
patterned metal and graphene, polyimide, VO2 film, and sapphire substrate. Among them,
the relative dielectric constants of sapphire, polyimide, and VO2 (thickness t is 1.2 µm)
are 9.67, 3.1, and 9, respectively, and the polyimide loss tan δ = 0.07. The thickness of the
top metal is 0.2 µm, the polyimide thickness h2 is 20 µm, and the sapphire thickness h1 is
50 µm.
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Figure 1. (a) Schematic of the metamaterial composed of Au and graphene–polyimide–VO2–sapphire
multilayer. Parameters: h2 = 20 µm, t = 1.2 µm, h1 =50 µm. (b) Top view of metamaterial unit cell
with parameters: Py = Px = 240 µm, g1 = 36 µm, g2 =20 µm, R1 = 100 µm, R2 = 80 µm.

3. The Performance of BIC Conversion to Quasi-BIC

When the conductivity of VO2 is 10 S/m, the transmission spectrum of the whole
structure is shown in Figure 2a. As shown in Figure 2b, we can know from the surface
current diagram that the quasi-BIC peak of the structure is generated by the coupling of a
magnetic dipole and an electric dipole, and the two modes are excited simultaneously at
the quasi-BIC frequency, so that they can be regarded as two bright modes.
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Based on the coupled mode theory, the expression of mutual coupling between two
bright modes is as follows:(

ω − ωa − iγa Ω
Ω ω − ωb − iγb

)(
a
b

)
=

( √
γaE√
γbeiϕE

)
(1)

Ω = g − i
√

γaγbeiϕ (2)

The parameter ω represents the frequency of the incident electromagnetic wave, whose
amplitude is represented by E; ωa and ωb represent the resonant frequencies of the two
open-mode structures, respectively. The non-diagonal term Ω in the matrix represents the
lossy coupling strength. The parameters g represents the coupling strength between the
two bright modes, and γa and γb represent the loss of the two bright modes, respectively.
The physical quantity ϕ is phase information, which can be calculated from the phase
corresponding to the resonant frequency of a single bright mode, i.e., ϕ = ϕ1 − ϕ2.

By solving Equation (1), we can obtain the metasurface structure’s energy amplitude a
and b. The expressions for a and b are as follows:

a =
(
√

γa(ω − ωb − iγb)− Ω
√

γbeiϕ)E
(ω − ωa − iγa)(ω − ωb − iγb)− Ω2 (3)

b =
(
√

γb(ω − ωa − iγa)− Ω
√

γa)E
(ω − ωa − iγa)(ω − ωb − iγb)− Ω2 (4)

Then the effective electrical polarizability of the entire metasurface structure can be
calculated according to Formula (5).

χe f f =

√
γaa +

√
γbeiϕb

ε0E
(5)

χe f f represents the effective electrical polarizability of the metasurface structure, which
is obtained by linear superposition of the energy amplitudes a and b. ε0 represents the
dielectric constant in a vacuum, with a value of magnitude 1.

Finally, the transmission spectral line can be obtained according to Formula (6).

T ≈ 1 − Im(χe f f ) ≈ 1 − Im(
(ω − ωb − iγb)γbe2iϕ + (ω − ωb − iγb)γa − 2Ω

√
γaγbeiϕ

(ω − ωa − iγa)(ω − ωb − iγb)− Ω2 ) (6)

As shown in Figure 3a, when VO2 is in a nonmetallic state, BIC can be regulated by
regulating the Fermi level of graphene. When the Fermi level of graphene is 0.001 eV, there
is no resonance peak at 0.59–0.65 THz, and the transmission of terahertz waves is greater
than 0.62. When the Fermi level of graphene increases, the transmission spectrum of the
device will change correspondingly; the Fano peak (quasi-BIC peak) is produced in the
0.59 to 0.65 THz interval, and the transmittance drops sharply in this resonant interval. It
can be seen from the above analysis that the device designed in this paper can regulate the
resonance frequency and amplitude by changing the Fermi level of graphene. In order to
further discuss the coupling effect of this structure, we discuss the effects of changes in
graphene length g1, ring outer diameter R1, ring inner diameter R2, ring opening g2, and PI
thickness h2.

As shown in Figure 3b, when the length of graphene increases, the transmittance
increases, the Fano peak gradually disappears, and the adjustment of g1 can also improve
the Q value of the structure. As shown in Figure 3c, when the outer diameter of the ring
increases, the interaction between the structures is enhanced, the distance between the
two resonant peaks gradually increases, and the peak value slowly decreases. At the
same time, the increase in the whole structure’s metal area will cause the system’s loss to
increase, and the half-height full width will become wider. As shown in Figure 3d, on the
contrary, when the inner diameter of the ring increases, the peak value slowly decreases,
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the distance between the two peaks decreases, and the half-height full width gradually
decreases. As shown in Figure 3e, when the ring opening becomes larger, the transmittance
increases slowly, and the resonant frequency moves slowly to the high frequency. As
shown in Figure 3f, when the thickness of the polyimide increases, the peak value is almost
unchanged, and the resonant frequency slowly moves to the high frequency.
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Figure 3. (a) Transmission spectra of different Fermi levels of graphene. (b) Transmission spectra of
different graphene lengths (the graphene Fermi level is 0.001 eV). (c) Transmission spectrum with
different outer radius of the ring (the graphene Fermi level is 1 eV). (d) Transmission spectrum with
different inner ring radius (the graphene Fermi level is 1 eV). (e) Transmission spectrum of different
ring openings (the graphene Fermi level is 1 eV). (f) Transmission spectra of different polyimide
thicknesses (the graphene Fermi level is 1 eV).

4. Performance of BIC Transabsorbers

In practical applications, the absorber is also an important functional device, so we
analyze and discuss the performance of the absorber. We compared the influence of
structural parameters on BIC and the influence of structural parameters on the absorber.
Through analysis, we found that the influence of changing structural parameters on the
BIC is small, and the influence on the absorption of the absorber is larger. Therefore, in
this section, we only discuss the variation in the absorption spectrum of the absorber,
i.e., the case of VO2 conductivity of 2 × 105 S/m. (that is when the VO2 layer is in a
metallic state). When the temperature change causes VO2 to be in a metallic state, its
structure transforms into a metal-media-metal-like structure. This transformation produces
an absorption peak of over 99.5% at 0.667 THz, enabling efficient single-band absorption.
The specific simulation effect of the model is shown in Figure 4a.

As shown in Figure 4b, when the Fermi level of graphene increases, the resonant fre-
quency becomes smaller, the absorption efficiency is more than 99.5%, and the absorption
bandwidth changes from 0.05 THz to 0.02 THz. As shown in Figure 4c, when the thickness
of polyimide increases, the resonant frequency moves to the low frequency, and the ab-
sorption efficiency of the absorption peak decreases with the increase in h2, so the optimal
thickness of polyimide is determined to be 20 µm. At this time, the entire metasurface
structure meets the impedance matching condition, and the equivalent refractive index
meets the real part of 1 and the imaginary part of 0. As shown in Figure 4d, when the
radius of the ring R1 increases, the resonant frequency moves to the low frequency, and
the absorption efficiency of the absorption peak decreases with the increase in R1, but the
amplitude of each reduction is small, so the radius of the ring is selected to 100 µm for
the best absorption effect. As shown in Figure 4e, when the inner diameter R2 of the ring
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increases, the resonant frequency moves to the low frequency, and the absorption efficiency
of the absorption peak decreases with the increase in R2. As shown in Figure 4f, when the
ring opening g2 becomes larger, the resonant frequency moves to the high frequency, and
the absorption efficiency of the absorption peak decreases with the increase in g2.
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Figure 4. (a) When the VO2 conductivity is 200,000 S/m, the absorption (black line), reflection (red
line), and transmission (blue line) of the metal-dielectric-metal-like structure absorber. (b) Absorbance
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Then, we further study the influence of structural parameters on the absorber, and we
discuss the influence of the structure period size on the absorption efficiency. As shown
in Figure 5a, when the period length Px increases, the peak value of the absorption peak
slowly decreases, and the resonant frequency moves to the high frequency. It can be seen
from Figure 5b that when the period length Py increases, the peak value of the absorption
peak decreases slowly, and the resonant frequency moves to the low frequency. Through
the analysis of simulation experiments, we can think that the absorption efficiency of
the structure does not change significantly when the period length is changed, which is
a very important phenomenon. Therefore, combined with the above parameter change
experiment, we can generate resonance absorption of specific frequencies by adjusting
structural parameters. We can also optimize the parameters of the geometry to improve
the absorption efficiency. Furthermore, we can also change the scale of the metasurface
structure to extend it to other frequency bands.
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5. Discussion

The BIC generation mechanism in this paper is generated by the coupling of an electric
dipole and a magnetic dipole. When the resonant frequencies corresponding to the two
polarons are the same (ωa = ωb), the phase of the two polarons is the same, so the leakage
waves of the two structures will interfere with each other in the far field and cancel each
other, resulting in the BIC effect. When g1 is changed, the resonant frequency ωa of the
electric dipole will change, and the phase will also change so that the leakage wave cannot
be altogether canceled out, resulting in a quasi-BIC effect. When g2 is changed, the resonant
frequency of the magnetic dipole is changed, that is, the parameter ωb in the coupling
mode equation. The parameters γa and γb in the coupled mode equation correspond to
the line width of the hypersurface structure. When the line width narrows, the loss of the
structure will decrease in response.

Under the existing processing technology, switching and tunable broadband tera-
hertz absorption based on graphene and vanadium dioxide has been fabricated using
deposition, chemical vapor deposition, wet transfer technology, gas equivalent ionization
etching technology, and magnetron sputtering deposition technology [54]. Switching and
tunable wideband terahertz absorption based on graphene and vanadium dioxide has been
achieved using thermal evaporation systems, spin coating and ground curing processes,
magnetron sputtering, and wet transfer techniques [55]. Using atomic layer deposition
(ALD) technology and lithographic electron beam lithography (EBL) technology, EBL tech-
nology has achieved a tunable multi-band metamaterial coherently perfect absorber based
on graphene and vanadium dioxide [56]. With the continuous maturity and improvement
of processing technology, terahertz devices with multiple functions can be successfully
processed, laying the foundation for the future sustainable development of multifunctional
devices.

6. Conclusions

In this study, a novel and multifunctional metasurface is proposed. By controlling two
phase change materials, graphene and vanadium dioxide (VO2), we achieve the regulation
of BIC and quasi-BIC, as well as the switching and transformation of the absorber and
BIC. By adjusting the Fermi level of graphene, we can effectively regulate the conversion
between BIC and quasi-BIC. Secondly, when we actively raise the temperature, VO2 changes
from an insulating state to a metallic state, and the structure designed in this paper changes
from BIC to an absorber. In addition, the mechanism of the proposed structure is analyzed
using the current distribution. The effects of different functions of the metasurface are
discussed by changing the different structural parameters of the metasurface, which is of
great significance for developing terahertz devices in the future. These findings provide
some potential applications for studying terahertz absorption, polarization conversion,
modulation, and imaging.
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