16 pages, 979 KiB  
Review
Fermented Black Tea and Its Relationship with Gut Microbiota and Obesity: A Mini Review
by Nurul Farhana Nasir, Nurul Elyani Mohamad and Noorjahan Banu Alitheen
Fermentation 2022, 8(11), 603; https://doi.org/10.3390/fermentation8110603 - 4 Nov 2022
Cited by 4 | Viewed by 7729
Abstract
Fermentation is one of the world’s oldest techniques for food preservation, nutrient enhancement, and alcohol manufacturing. During fermentation, carbohydrates such as glucose and starch are converted into other molecules, such as alcohol and acid, anaerobically through enzymatic action while generating energy for the [...] Read more.
Fermentation is one of the world’s oldest techniques for food preservation, nutrient enhancement, and alcohol manufacturing. During fermentation, carbohydrates such as glucose and starch are converted into other molecules, such as alcohol and acid, anaerobically through enzymatic action while generating energy for the microorganism or cells involved. Black tea is among the most popular fermented beverages; it is made from the dried tea leaves of the evergreen shrub plant known as Camellia sinensis. The adequate consumption of black tea is beneficial to health as it contains high levels of flavanols, also known as catechins, which act as effective antioxidants and are responsible for protecting the body against the development of illnesses, such as inflammation, diabetes, hypertension, cancer, and obesity. The prevalence of obesity is a severe public health concern associated with the incidence of various serious diseases and is now increasing, including in Malaysia. Advances in ‘omic’ research have allowed researchers to identify the pivotal role of the gut microbiota in the development of obesity. This review explores fermented black tea and its correlation with the regulation of the gut microbiota and obesity. Full article
(This article belongs to the Special Issue Plant-Based Fermented Foods and Civilization Diseases)
Show Figures

Graphical abstract

15 pages, 1086 KiB  
Article
Probiotic Properties of Lactobacillus fermentum InaCC B1295 Encapsulated by Cellulose Microfiber from Oil Palm Empty Fruit Bunches
by Usman Pato, Yusmarini, Emma Riftyan, Evy Rossi, Rahmad Hidayat, Sandra Fitri Anjani, Nabila Riadi, Ika Nur Octaviani, Agrina, Daimon Syukri and Ingrid Suryanti Surono
Fermentation 2022, 8(11), 602; https://doi.org/10.3390/fermentation8110602 - 3 Nov 2022
Cited by 6 | Viewed by 3542
Abstract
This study aims at an in vitro characterization of the acid and bile tolerance of Lactobacillus fermentum InaCC B1295 (LFB1295) encapsulated with hydrogel cellulose microfibers (CMF) from oil palm empty fruit bunches (OPEFBs). The viability at different storage temperatures was assessed. The experimental [...] Read more.
This study aims at an in vitro characterization of the acid and bile tolerance of Lactobacillus fermentum InaCC B1295 (LFB1295) encapsulated with hydrogel cellulose microfibers (CMF) from oil palm empty fruit bunches (OPEFBs). The viability at different storage temperatures was assessed. The experimental design used in this research was an in vitro trial. The microencapsulated probiotic was stored at 25 °C and 4 °C for 28 days. LFB1295 encapsulated with cellulose microfiber hydrogel from OPEFB showed a stable viability of probiotic bacteria at pH 2 and 0.5% (m/v) oxgall. In addition, the microencapsulation maintained the viability at 25 °C and 4 °C at 0, 14, and 28 days. The characterization of the encapsulant CMF-OPEFB showed that the thickness of CMF was in the range of 5–15 μm, and XRD patterns showed that CMF was of the cellulose I type with a crystallinity index of 77.08%. Based on its resistance to hydrogen peroxide, ability to scavenge DPPH radicals, and activity in scavenging hydroxyl radicals, LFB1295 encapsulated with CMF hydrogel of OPEFB exhibits antioxidant properties as good as the scavenging ability of DPPH radicals with IC50 of 36.880, 188.530, and 195.358 µg/mL, respectively, during storage for 0, 14, and 28 days at room and refrigerated temperature. Furthermore, hydroxyl radicals (HR)-scavenging activity showed an increased inhibition along with the increasing concentration of the Fenton reaction and decreasing concentration of cell-free supernatant (CFS) during storage time. In vitro safety tests, including hemolytic activity, biogenic amines, cytolysin, and gelatinase production, showed that the encapsulated LFB1295 was safe to use as a probiotic. The results of the inhibitory activity against hydrogen peroxide LFB1295 show that the higher the concentration of H2O2, the lower the inhibition value during 28 days of storage. Based on the storage temperature, the inhibition of LAB against H2O2 based on different storage temperatures showed a better level of the inhibition at cold temperatures compared to at room temperature. Full article
(This article belongs to the Special Issue Recent Trends in Lactobacillus and Fermented Food)
Show Figures

Figure 1

12 pages, 1096 KiB  
Article
Temperature and pH Profiling of Extracellular Amylase from Antarctic and Arctic Soil Microfungi
by Abiramy Krishnan, Zazali Alias, Peter Convey, Marcelo González-Aravena, Jerzy Smykla, Mohammed Rizman-Idid and Siti Aisyah Alias
Fermentation 2022, 8(11), 601; https://doi.org/10.3390/fermentation8110601 - 3 Nov 2022
Cited by 9 | Viewed by 6553
Abstract
While diversity studies and screening for enzyme activities are important elements of understanding fungal roles in the soil ecosystem, extracting and purifying the target enzyme from the fungal cellular system is also required to characterize the enzyme. This is, in particular, necessary before [...] Read more.
While diversity studies and screening for enzyme activities are important elements of understanding fungal roles in the soil ecosystem, extracting and purifying the target enzyme from the fungal cellular system is also required to characterize the enzyme. This is, in particular, necessary before developing the enzyme for industrial-scale production. In the present study, partially purified α-amylase was obtained from strains of Pseudogymnoascus sp. obtained from Antarctic and Arctic locations. Partially purified α-amylases from these polar fungi exhibited very similar characteristics, including being active at 15 °C, although having a small difference in optimum pH. Both fungal taxa are good candidates for the potential application of cold-active enzymes in biotechnological industries, and further purification and characterization steps are now required. The α-amylases from polar fungi are attractive in terms of industrial development because they are active at lower temperatures and acidic pH, thus potentially creating energy and cost savings. Furthermore, they prevent the production of maltulose, which is an undesirable by-product often formed under alkaline conditions. Psychrophilic amylases from the polar Pseudogymnoascus sp. investigated in the present study could provide a valuable future contribution to biotechnological applications. Full article
(This article belongs to the Special Issue Extremophiles—Source for Novel Biomolecules with Applied Potential)
Show Figures

Figure 1

10 pages, 1624 KiB  
Article
Corn Stover Pretreatment with Na2CO3 Solution from Absorption of Recovered CO2
by Valerie García-Negrón and Matthew J. Toht
Fermentation 2022, 8(11), 600; https://doi.org/10.3390/fermentation8110600 - 3 Nov 2022
Cited by 7 | Viewed by 2994
Abstract
Renewable resources such as lignocellulosic biomass are effective at producing fermentable sugars during enzymatic hydrolysis when pretreated. Optimizing pretreatment methods for delignification while maintaining sustainability and low processing costs requires innovative strategies such as reusing greenhouse gas emissions for materials processing. Corn stover, [...] Read more.
Renewable resources such as lignocellulosic biomass are effective at producing fermentable sugars during enzymatic hydrolysis when pretreated. Optimizing pretreatment methods for delignification while maintaining sustainability and low processing costs requires innovative strategies such as reusing greenhouse gas emissions for materials processing. Corn stover, an agricultural waste residue, was pretreated with 2.2 M Na2CO3 produced from CO2 captured via absorption in a 5 M NaOH solution. Composition analysis of the pretreated corn stover exhibited higher cellulose content (40.96%) and less lignin (16.50%) than the untreated biomass. Changes in the chemical structures are visible in the FTIR-ATR spectra, particularly in the cellulose and lignin-related absorption bands. The sugar release from hydrolysis was evaluated at different time intervals and by varying two enzyme ratios of CTec2-to-HTec2 (2:1 and 3:1). Enzymatic hydrolysis produced higher and more stable glucose yields for the pretreated biomass, surpassing 90% after 24 h using the 3:1 enzyme ratio. Sugar concentrations notably increased after pretreatment and even more when using the cellulase-rich enzyme solution. The maximum glucose, xylose, and arabinose recovered were 44, 19, and 2.3 g L−1. These results demonstrate the viability of capturing CO2 and converting it into an efficient Na2CO3 pretreatment for corn stover biomass. Additional processing optimizations depend on the combination of physicochemical parameters selected. Full article
(This article belongs to the Special Issue Ethanol and Value-Added Co-products 3.0)
Show Figures

Figure 1

11 pages, 2727 KiB  
Article
Effect of Lactobacillus plantarum Fermentation on Metabolites in Lotus Leaf Based on Ultra-High-Performance Liquid Chromatography–High-Resolution Mass Spectrometry
by Yubao Wang, Bingjun Lin and Zhengxu Li
Fermentation 2022, 8(11), 599; https://doi.org/10.3390/fermentation8110599 - 2 Nov 2022
Cited by 2 | Viewed by 2844
Abstract
The lotus leaf is a raw material commonly used in slimming herbal products, but the deep processing technology is insufficient. Lactic acid bacteria (LAB) fermentation is an effective method to improve the efficacy of plant materials. In this study, ultra-high-performance liquid chromatography–high-resolution mass [...] Read more.
The lotus leaf is a raw material commonly used in slimming herbal products, but the deep processing technology is insufficient. Lactic acid bacteria (LAB) fermentation is an effective method to improve the efficacy of plant materials. In this study, ultra-high-performance liquid chromatography–high-resolution mass spectrometry (UHPLC–HR-MS) was used to explore the differential metabolites of a lotus leaf aqueous extract before and after fermentation. Information about the metabolites in the water extract of lotus leaves before and after fermentation was collected in positive- and negative-ion modes, and the metabolites identified before and after fermentation were screened by multivariate statistical analysis. A total of 91 different metabolites were obtained. They included flavonoids, alkaloids, phenylpropanoids, organic acids and derivatives, terpenoids, fatty acids and fatty acyls, phenols, amino acid derivatives and others. Compared with the metabolites’ levels before fermentation, the relative contents of 68 metabolites were upregulated after fermentation, and the relative contents of 23 metabolites were downregulated. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis identified 25 metabolic pathways, of which flavone and flavonol biosynthesis, citrate cycle and flavonoid biosynthesis were the main metabolic pathways. The results of this study can provide a basis for further research and the development of products containing lotus leaves fermented by LAB. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

16 pages, 1427 KiB  
Article
Grape Pomace in Ewes Diet Affects Metagenomic Profile, Volatile Compounds and Biogenic Amines Contents of Ripened Cheese
by Francesca Bennato, Marco Di Domenico, Andrea Ianni, Luigina Di Gialleonardo, Cesare Cammà and Giuseppe Martino
Fermentation 2022, 8(11), 598; https://doi.org/10.3390/fermentation8110598 - 2 Nov 2022
Cited by 5 | Viewed by 2219
Abstract
The main objective of this research was to evaluate the development of volatile organic compounds (VOCs) and the accumulation of biogenic amines (BAs) in relation to the dynamic of microbial population composition in fresh and ripened cheese produced from raw milk of ewes [...] Read more.
The main objective of this research was to evaluate the development of volatile organic compounds (VOCs) and the accumulation of biogenic amines (BAs) in relation to the dynamic of microbial population composition in fresh and ripened cheese produced from raw milk of ewes fed a diet containing grape pomace (GP+) and fed a standard diet (Ctrl). Genomic DNA was extracted from the cheeses at 2 (T2), 60 (T60), 90 (T90) and 120 (T120) days of ripening and prepared for 16S rRNA-gene sequencing to characterize the cheese microbiota; furthermore, VOCs were determined via solid-phase microextraction combined with gas chromatography-mass spectrometry and biogenic amines by HPLC analyses. Diet did not affect the relative abundance of the main phyla identified, Proteobacteria characterized T2 samples, but the scenario changed during the ripening. At genus level, Pseudomonas, Chryseobacterium and Acinetobacter were the dominant taxa, however, a lower percentage of Pseudomonas was detected in GP+ cheeses. Enterococcus became dominant in ripened cheeses followed in Ctrl cheeses by Lactobacillus and in GP+ cheeses by Lactococcus. The diet affected the development of carboxylic acids and ketones but not of aldehydes. Low levels of esters were identified in all the samples. In total, four biogenic amines were determined in cheeses samples and their levels differed between the two groups and during ripening time. In 60, T90 and T120 GP+ cheeses, a lower amount of 2-phenylethylamine was found compared to Ctrl. Putrescine was detected only in GP+ samples and reached the highest level at 120 days. Conversely, the amount of cadaverine in GP+ samples was invariable during the ripening. The concentration of tyramine in GP+ samples was compared to Ctrl during the ripening. Overall, significant positive correlations between some families of bacteria and the formation of VOCs and BAs were found. Full article
(This article belongs to the Special Issue Dairy Fermentation)
Show Figures

Figure 1

12 pages, 937 KiB  
Article
Comparison of the Chemical Properties of Pineapple Vinegar and Mixed Pineapple and Dragon Fruit Vinegar
by Antika Boondaeng, Sumaporn Kasemsumran, Kraireuk Ngowsuwan, Pilanee Vaithanomsat, Waraporn Apiwatanapiwat, Chanaporn Trakunjae, Phornphimon Janchai, Sunee Jungtheerapanich and Nanthavut Niyomvong
Fermentation 2022, 8(11), 597; https://doi.org/10.3390/fermentation8110597 - 1 Nov 2022
Cited by 9 | Viewed by 9123
Abstract
Pineapples are a tropical fruit with high nutritional value and high vitamin and sugar contents. In this study, low-grade pineapples were fermented to produce vinegar using surface culture fermentation (SCF), which involved the addition of dragon fruit juice, to compare the quality and [...] Read more.
Pineapples are a tropical fruit with high nutritional value and high vitamin and sugar contents. In this study, low-grade pineapples were fermented to produce vinegar using surface culture fermentation (SCF), which involved the addition of dragon fruit juice, to compare the quality and antioxidant activity of different preparations of vinegar. The highest acetic acid concentration (7.35%) was obtained from pineapple vinegar after 20 days of incubation. Vinegar made from mixed pineapple and dragon fruit juice without peel and vinegar with pineapple and dragon fruit juice with peel had acetic acid concentrations of up to 6.20% and 4.50%, respectively. The mixed-fruit vinegar of pineapple and dragon fruit juice with peel displayed the highest antioxidant activity at 210.74 µg/g TE, while no significant difference was found between the other two vinegars (189.52 vs. 187.91 µg/L TE). Notably, the volatile compounds detected in the vinegars were alcohols and esters, which may contribute to the distinct aroma. Overall, the addition of dragon fruit juice with peel to pineapple vinegar increased the phenolic content and antioxidant activity; however, fermentation was slightly slower than that of the other two test materials. Full article
(This article belongs to the Special Issue Flavor and Aroma in the Fermented Food)
Show Figures

Graphical abstract

18 pages, 1408 KiB  
Article
Thermophilic Water Gas Shift Reaction at High Carbon Monoxide and Hydrogen Partial Pressures in Parageobacillus thermoglucosidasius KP1013
by Daniel Barón Díaz, Anke Neumann and Habibu Aliyu
Fermentation 2022, 8(11), 596; https://doi.org/10.3390/fermentation8110596 - 1 Nov 2022
Cited by 7 | Viewed by 2318
Abstract
The facultatively anaerobic Parageobacillus thermoglucosidasius oxidizes carbon monoxide to produce hydrogen via the water gas shift (WGS) reaction. In the current work, we examined the influence of carbon monoxide (CO) and hydrogen (H2) on the WGS reaction in the thermophilic P. [...] Read more.
The facultatively anaerobic Parageobacillus thermoglucosidasius oxidizes carbon monoxide to produce hydrogen via the water gas shift (WGS) reaction. In the current work, we examined the influence of carbon monoxide (CO) and hydrogen (H2) on the WGS reaction in the thermophilic P. thermoglucosidasius by cultivating two hydrogenogenic strains under varying CO and H2 compositions. Microbial growth and dynamics of the WGS reaction were monitored by evaluating parameters such as pressure, headspace composition, metabolic intermediates, pH, and optical density. Our analyses revealed that compared to the previously studied P. thermoglucosidasius strains, the strain KP1013 demonstrated higher CO tolerance and improved WGS reaction kinetics. Under anaerobic conditions, the lag phase before the WGS reaction shortened to 8 h, with KP1013 showing no hydrogen-induced product inhibition at hydrogen partial pressures up to 1.25 bar. The observed lack of product inhibition and the reduced lag phase of the WGS reaction support the possibility of establishing an industrial process for biohydrogen production with P. thermoglucosidasius. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

11 pages, 2744 KiB  
Article
Effects of the Addition of Dendrobium officinale on Beer Yeast Fermentation
by Xiaolu Chen, Linqiu Li, Hailong Yang and Huabin Zhou
Fermentation 2022, 8(11), 595; https://doi.org/10.3390/fermentation8110595 - 1 Nov 2022
Cited by 11 | Viewed by 2496
Abstract
Dendrobium officinale is a precious Chinese medicinal plant that is rich in polysaccharides, flavonoids, polyphenols, and other bioactive ingredients, and has a variety of biological activities. To explore the effects of D. officinale on the growth and metabolism of Saccharomyces cerevisiae, different [...] Read more.
Dendrobium officinale is a precious Chinese medicinal plant that is rich in polysaccharides, flavonoids, polyphenols, and other bioactive ingredients, and has a variety of biological activities. To explore the effects of D. officinale on the growth and metabolism of Saccharomyces cerevisiae, different concentrations (0, 10, 30, 50, and 100 g/L) of fresh D. officinale were added to the wort during the fermentation. The amount of yeast, alcohol content, reducing sugars, total acidity, pH, CO2 loss, and foam height were analyzed. Meanwhile, the glucose uptake, cell viability, key enzyme activity of yeast, total phenolics, antioxidant activity, volatile compounds, and consumer acceptance of brewed samples were also analyzed. The results showed that the growth and metabolism of yeast could be promoted by a suitable dosage of D. officinale but were inhibited at high dosage (100 g/L). The addition of D. officinale increased the activities of glucose-6-phosphate dehydrogenase and alcohol dehydrogenase, while the highest concentration of D. officinale (100 g/L) decreased the glucose uptake and cell activity of the yeast. The contents of total phenolics and esters, along with the scavenging activity against ABTS radicals, were increased, indicating that the antioxidant activity and aromatic characteristics of beer would be improved by the addition of D. officinale. Full article
(This article belongs to the Special Issue Brewing Yeast and Fermentation)
Show Figures

Figure 1

10 pages, 2165 KiB  
Article
Modulatory Effect of Limosilactobacillus fermentum grx08 on the Anti-Oxidative Stress Capacity of Liver, Heart, and Kidney in High-Fat Diet Rats
by Hengxian Qu, Longfei Zhang, Xiaoxiao Liu, Yang Liu, Kaidong Mao, Guiqi Shen, Yunchao Wa, Dawei Chen, Yujun Huang, Xia Chen and Ruixia Gu
Fermentation 2022, 8(11), 594; https://doi.org/10.3390/fermentation8110594 - 1 Nov 2022
Cited by 5 | Viewed by 1810
Abstract
To explore the modulating effect of Limosilactobacillus fermentum (L. fermentum) grx08 on anti-oxidative stress in the liver, heart, and kidney of high-fat diet in rats, a low-fat diet as a control and a high-fat diet was used to induce oxidative stress injury in [...] Read more.
To explore the modulating effect of Limosilactobacillus fermentum (L. fermentum) grx08 on anti-oxidative stress in the liver, heart, and kidney of high-fat diet in rats, a low-fat diet as a control and a high-fat diet was used to induce oxidative stress injury in rats. L. fermentum grx08 and its heat-inactivated bacteria were used to intervene. The results showed that the high-fat diet had caused oxidative stress injury in the liver, heart, and kidney of rats. L. fermentum grx08 significantly reduced the serum levels of liver, heart, and kidney injury markers (ALT, AST, LDH, CK-MB, UA, and Crea), while restoring the balance of lipid metabolism in the liver. It also enhanced the activity of antioxidant enzymes such as GSH-Px in the liver, heart, and kidney, scavenging NO radicals and reducing the content of MDA, a product of lipid peroxidation, which can regulate the anti-oxidative stress capacity of the liver, heart, and kidney to varying degrees. Among them, L. fermentum grx08 showed better modulating effect on kidney anti-oxidative stress, followed by liver, and the weakest modulating effect on heart. At the same time, L. fermentum grx08 heat-inactivated bacteria also had a partial modulatory effect as well as a similar effect profile to that of live bacteria. Full article
Show Figures

Figure 1

22 pages, 6251 KiB  
Article
Comparative Proteomic Analysis of Bacillus subtilis and Aspergillus niger in Black Soldier Fly Co-Fermentation
by He Liu, Xia Yang, Liwen Mai, Jiacong Lin, Liang Zhang, Dingmei Wang and Qinfen Li
Fermentation 2022, 8(11), 593; https://doi.org/10.3390/fermentation8110593 - 1 Nov 2022
Cited by 5 | Viewed by 3487
Abstract
Black soldier fly larvae have gained popularity as an organic waste bio-conversional tool and fodder protein replacement in recent decades. It can consume all kinds of animal feces, kitchen waste and agricultural waste with great efficiency and transform them into high-value insect protein, [...] Read more.
Black soldier fly larvae have gained popularity as an organic waste bio-conversional tool and fodder protein replacement in recent decades. It can consume all kinds of animal feces, kitchen waste and agricultural waste with great efficiency and transform them into high-value insect protein, fatty acids, and amino acids, which makes the larva a good substitute for costly fish meal and bean pulp in animal diets. However, excess chitin in the larva skin limits its application as an animal feed additive, consequently, employing fermentation with zymocytes to remove the chitin is necessary. In this study, we raised black soldier fly larvae (BSFL) with different carbon sources, such as chicken feces, straws and glucose, and examined the growth condition; we applied Bacillus subtilis and Aspergillus niger to co-ferment BSFL paste to analyze its nutrition changes. Data revealed that among the four kinds of cultures, the body weight of the corn powder group increased most rapidly; the wood chip group was the most underweight; however, it increased faster than others before day 4, and contained the least fat. Label-free quantitative proteomic analysis revealed that the expression of multiple enzymes from B. subtilis and A. niger involved in polysaccharide hydrolysis, amino acid biosynthesis and fatty acid metabolism, such as peptidase of S8 family, maltogenic α-amylase, oligo-1,6-glucosidase and lysophospholipase like protein changed significantly compared to the control group. Production detection showed that free amino acids, acid-soluble proteins, and short-chain fatty acids increased after fermentation; 13 out of 17 amino acids were increased and total free amino acids were increased from 0.08 g/100 g to 0.3 g/100 g; organic acids increased by 4.81 to 17 fold through fermentation, respectively; the actual protein content declined from 3.03 g/100 g to 1.81 g/100 g, the peptide content increased from 1.3 g/100 g to 2.46 g/100 g, the chitin degradation rate was 40.3%, and fat decreased 30% (p < 0.05). These findings might provide important information for future applications of black soldier fly larvae in different carbon waste recycling measures and material for animal feed/organic fertilizer after fermentation. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

11 pages, 723 KiB  
Article
Effects of Different Aging Methods on the Phenolic Compounds and Antioxidant Activity of Red Wine
by Chao Wang, Chenhui Wang, Ke Tang, Zhiming Rao and Jian Chen
Fermentation 2022, 8(11), 592; https://doi.org/10.3390/fermentation8110592 - 31 Oct 2022
Cited by 14 | Viewed by 3235
Abstract
In this study, oak barrels, glazed pottery altars, unglazed pottery altars, and stainless-steel tanks were selected as aging containers for red wine, and phenolic compounds and antioxidant activity were analyzed and compared. The color of red wine in unglazed pottery altars and glazed [...] Read more.
In this study, oak barrels, glazed pottery altars, unglazed pottery altars, and stainless-steel tanks were selected as aging containers for red wine, and phenolic compounds and antioxidant activity were analyzed and compared. The color of red wine in unglazed pottery altars and glazed pottery altars changed to brick red and brownish yellow, respectively; the color of red wine in oak barrels did not change significantly; and color retention was best in stainless-steel tanks. The total content of anthocyanins and nonanthocyanin phenolic compounds was higher in the unglazed pottery altar group (227.68 mg/L and 288.88 mg/L, respectively) than in the oak barrel group (209.46 mg/L and 273.42 mg/L), the stainless-steel tank group (221.92 mg/L and 213.23 mg/L), or the glazed pottery altar group (74.71 mg/L and 204.43 mg/L). After aging, DPPH (1,1-diphenyl-2-picrylhydrazine free radical scavenging ability), I confirm. (ABTS+ free radical scavenging ability), and FRAP (a ferric ion-reducing antioxidant power reduction of Ion Ability) were decreased by 8.8%, 0.5%, and 17.1%, respectively, in the unglazed pottery altar group; by 15.2%, 1.7%, and 19.5%, respectively, in the oak barrel group; by 18.0%, 1.8%, and 20.0%, respectively, in the stainless-steel tank group; and by 18.7%, 4.2%, and 34.9%, respectively, in the glazed pottery altar group. In conclusion, antioxidative ability decreased less in the unglazed pottery altar group than in the other three groups, indicating that unglazed pottery altars retain antioxidant components in red wine well. Full article
(This article belongs to the Special Issue Wine Microbiology)
Show Figures

Figure 1

23 pages, 3666 KiB  
Article
Deep Eutectic Solvent Pretreatment of Water Hyacinth for Improved Holocellulosic Saccharification and Fermentative Co-Production of Xylitol and Lipids Using Rhodosporidium toruloides NCIM 3547
by Ramachandran Devasena Umai, Samuel Jacob and Vinod Kumar
Fermentation 2022, 8(11), 591; https://doi.org/10.3390/fermentation8110591 - 31 Oct 2022
Cited by 14 | Viewed by 3636
Abstract
In this study, delignification of water hyacinth (WH) using a mild ionic liquid-like chemical deep eutectic solvent (DES) synthesized using choline chloride and urea was conducted and the process parameters were optimized by Box–Behnken design (BBD)-based response surface methodology (RSM). From the results, [...] Read more.
In this study, delignification of water hyacinth (WH) using a mild ionic liquid-like chemical deep eutectic solvent (DES) synthesized using choline chloride and urea was conducted and the process parameters were optimized by Box–Behnken design (BBD)-based response surface methodology (RSM). From the results, a delignification of 64.32 ± 4.08% (w/w) was obtained under 1:12.5 (biomass:DES ratio), 4.63 h (time) and 87 °C (temperature). Further, a dilute sulphuric acid (2%, v/v) hydrolysis was carried out to destabilize the hemicellulose that resulted in 23.7 ± 0.50 g/L of xylose. Fermentation of the obtained xylose was carried out using a red oleaginous yeast, Rhodosporidium toruloides NCIM 3547, with free and Ca2+-alginate-immobilized cells for xylitol production under microaerophilic conditions and obtained yields of 4.73 ± 0.40 g/L (168 h) and 9.18 ± 0.10 g/L (packed bed reactor with a retention time of 18 h), respectively. Further, when the same fermentation was performed under aerobic conditions about 40.93 ± 0.73% lipid accumulation was observed with free cells. For saccharification, Aspergillus-niger-derived cellulase was used and this resulted in a yield of 27.45 ± 0.04 g/L of glucose. The glucose-enriched hydrolysate was supplemented for fermentation under nitrogen starved conditions from which 46.81 ± 2.60% (w/w) lipid content was obtained. Full article
(This article belongs to the Special Issue Bioprocess and Metabolic Engineering)
Show Figures

Graphical abstract

10 pages, 5050 KiB  
Review
Microbial Communities in Home-Made and Commercial Kefir and Their Hypoglycemic Properties
by Birsen Yilmaz, Emine Elibol, H. Nakibapher Jones Shangpliang, Fatih Ozogul and Jyoti Prakash Tamang
Fermentation 2022, 8(11), 590; https://doi.org/10.3390/fermentation8110590 - 31 Oct 2022
Cited by 9 | Viewed by 5917
Abstract
Kefir is a popular traditional fermented dairy product in many countries. It has a complex and symbiotic culture made up of species of the genera Leuconostoc, Lactococcus, and Acetobacter, as well as Lactobacilluskefiranofaciens and Lentilactobacillus kefiri. Though kefir [...] Read more.
Kefir is a popular traditional fermented dairy product in many countries. It has a complex and symbiotic culture made up of species of the genera Leuconostoc, Lactococcus, and Acetobacter, as well as Lactobacilluskefiranofaciens and Lentilactobacillus kefiri. Though kefir has been commercialized in some countries, people are still traditionally preparing kefir at the household level. Kefir is known to have many nutritious values, where its consistent microbiota has been identified as the main valuable components of the product. Type 2 diabetes mellitus (T2DM) is a common diet-related disease and has been one of the main concerns in the world’s growing population. Kefir has been shown to have promising activities in T2DM, mostly via hypoglycemic properties. This review aims to explain the microbial composition of commercial and home-made kefir and its possible effects on T2DM. Some studies on animal models and human clinical trials have been reviewed to validate the hypoglycemic properties of kefir. Based on animal and human studies, it has been shown that consumption of kefir reduces blood glucose, improves insulin signaling, controls oxidative stress, and decreases progression of diabetic nephropathy. Moreover, probiotic bacteria such as lactic-acid bacteria and Bifidobacterium spp. and their end-metabolites in turn directly or indirectly help in controlling many gut disorders, which are also the main biomarkers in the T2DM condition and its possible treatment. Full article
(This article belongs to the Special Issue Dairy Fermentation)
Show Figures

Figure 1

20 pages, 1476 KiB  
Article
Effect of Starters on Quality Characteristics of Hongsuantang, a Chinese Traditional Sour Soup
by Cuiqin Li, Qing Zhang, Chan Wang, Laping He, Han Tao, Xuefeng Zeng and Yifeng Dai
Fermentation 2022, 8(11), 589; https://doi.org/10.3390/fermentation8110589 - 31 Oct 2022
Cited by 6 | Viewed by 2371
Abstract
Hongsuantang (HST) is a traditional Chinese and famous sour soup. However, the quality of naturally fermented HST is not controllable. We investigated the effects of different lactic acid bacteria starters on HST acid production, color, antioxidant capacity, total phenols, total carotenoids, organic acids, [...] Read more.
Hongsuantang (HST) is a traditional Chinese and famous sour soup. However, the quality of naturally fermented HST is not controllable. We investigated the effects of different lactic acid bacteria starters on HST acid production, color, antioxidant capacity, total phenols, total carotenoids, organic acids, volatile substances, and sensory properties to determine the most suitable strain for HST production. The results showed that among the seven lactic acid bacteria strains used to inoculate fermented HST, Lactiplantibacillus plantarum SQ-4 exhibited the most excellent fermentation characteristics. SQ-4 rapidly reduced the HST’s pH by 0.77. It significantly increased the HST’s color, organic acids, total phenols, carotenoids, lycopene, and free radical scavenging ability. Lactiplantibacillus plantarum SQ-4 was an excellent starter for preparing HST with good acid production capacity, moderate sourness and spiciness, and good sensory and other characteristics. Each starter produces its distinct flavor components. α-Pinene, myrcene, α-copaene, and guaiol were vital aroma compounds in HST fermentation by the starter. This study laid a foundation for selecting HST starters and potential industrial production. Full article
(This article belongs to the Special Issue Assessment of the Quality and Safety of Fermented Foods)
Show Figures

Figure 1