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Abstract: Fermentation is one of the world’s oldest techniques for food preservation, nutrient
enhancement, and alcohol manufacturing. During fermentation, carbohydrates such as glucose and
starch are converted into other molecules, such as alcohol and acid, anaerobically through enzymatic
action while generating energy for the microorganism or cells involved. Black tea is among the
most popular fermented beverages; it is made from the dried tea leaves of the evergreen shrub
plant known as Camellia sinensis. The adequate consumption of black tea is beneficial to health as it
contains high levels of flavanols, also known as catechins, which act as effective antioxidants and
are responsible for protecting the body against the development of illnesses, such as inflammation,
diabetes, hypertension, cancer, and obesity. The prevalence of obesity is a severe public health
concern associated with the incidence of various serious diseases and is now increasing, including
in Malaysia. Advances in ‘omic’ research have allowed researchers to identify the pivotal role of
the gut microbiota in the development of obesity. This review explores fermented black tea and its
correlation with the regulation of the gut microbiota and obesity.
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1. Introduction

The obesity epidemic has become a severe health problem in Malaysia and many other
countries around the globe [1–5]. The prevalence of obesity is rising at an alarming rate
worldwide, raising mortality and reducing quality of life [6,7]. Obesity is projected to affect
around fifty percent of the world population by 2030, and Malaysia was reported to have
the highest obese population (15%) among Asian countries in 2019 [8–10]. Research has
focused on foods containing natural substances, as they cause fewer side effects; hence, they
are increasingly utilized due to their health benefits [11]. Studies on fermented products
have become the fastest-growing ventures, among other functional foods, due to increased
consumer awareness of their multitude of beneficial effects on health [12–14]. The consump-
tion of fermented-tea beverages is gaining popularity due to their probiotic nature and
purported health benefits in many countries, including Malaysia [15–19]. Previous studies
have reported several bioactivities of fermented black tea, including anti-oxidant, antimi-
crobial, anti-cancer, anti-diabetic, and anti-lipidemic properties [20–24]. The metabolites
produced by microorganisms during fermentation are responsible for their sour taste and
other bio-properties [25–28]. Recent progress in molecular biology, including the advent of
platforms for next-generation sequencings, such as metagenomics or amplicon sequencing,
has allowed the microbial consortium to be characterized, in turn allowing researchers to
elucidate the connection between microbial population and obesity [29,30]. In his review,
the relationship between fermented black tea and the regulation of the gut microbiota in
obesity is discussed.
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2. Fermentation

The fermentation process was found thousands of years ago and has been extensively
practiced for its benefits in food preservation, nutrient enhancement, and alcohol manufac-
turing [31,32]. Traces of mixed fermentation in the form of an alcoholic beverages prepared
from rice, fruits, and honey between 7000 and 6600 BC was found in pottery jars from the
early Neolithic town of Jiahu, China, and was declared the earliest archaeological evidence
of fermentation to have been discovered [33–35]. This makes fermented beverages, such as
vinegar and wine, among the oldest fermented foods consumed by people [36,37]. Kimchi,
for example, is a popular fermented food among Koreans and has become popular in
other countries worldwide [38–40]. On the other hand, pickled cucumber is used not only
when preparing burgers and sandwiches by Westerners, but also as a side dish in Asian
countries [41,42]. Due to their distinct flavor and aroma, fermented foods and beverages
become some of the first processed foods to be consumed by humans [31,43–45]. A brief
timeline of fermentation’s history, from the earliest archaeological evidence of beverage
fermentation until the introduction of pasteurization, is illustrated in Figure 1.
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During fermentation, carbohydrates, such as glucose and starch, are converted into
other molecules, such as alcohol and acid, anaerobically through enzymatic action, while
generating energy for the microorganism or cells involved [15,46]. Evidence was found in
ancient organics from the pottery jars used for fermentation and winemaking in Georgia in
6000 BC [34,47]. Due to the colonization of the Mediterranean by the Romans, winemaking
spread throughout other regions, such as Asia. In the late nineteenth century, Louis Pasteur,
a French microbiologist, discovered that living microbes were responsible for souring
alcohol during the fermentation process, leading to the establishment of the pasteurization
technique, which involves the heating and cooling of liquids to kill microbes and prevent
spoiling [48,49]. Pasteur was among the pioneering researchers in food preservation,
who believed that the bacteria formed from microscopic inoculums were not generated
spontaneously. His theory was later supported by Eduard Buchner, who discovered zymase,
a mixture of enzymes produced by yeast during fermentation [49]. This discovery led
Eduard Buchner to receive a Nobel Prize in chemistry in 1907 [50]. Table 1 summarizes
the changes in the nutritional values of fermented products over the last ten years across
the world.
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Table 1. Changes in nutritional values in fermented products.

Source Fermented
Product

Country of
Origin

Changes in Nutritional Values during
Fermentation Reference

Bamboo shoot

Bamboo shoot
biscuits India The cyanogen content in bamboo shoots decreased

up to 86.59% after 24 h [51]

Khorisa India
A significant decrease in fat, protein, carbohydrate,

and vitamin C contents was observed in the
fermented shoot

[52]

Cornelian
cherry Tarhana Turkey

The total-dietary-fiber content was increased
significantly after fermentation; however, total sugar,

vitamin C, and anthocyanin contents decreased
significantly after fermentation

[53]

Grain and milk Kefir North Caucasian

A significant increase in protein and
saturated-fatty-acid contents and a significant

decrease in monounsaturated-fatty-acid content were
recorded after fermentation

[54]

Maize

Akamu Nigeria

The concentrations of protein and total reducing
sugar were increased by 5.7% and 12.3%, respectively,

whereas starch concentration decreased by 30.7%
after 72 h

[55]

Doklu Côte d’Ivoire

Most nutritional values (protein, fatty matters
carbohydrate, and total sugars) of doklu decreased
after fermentation; however, it increased in acidity,

which is essential to ensure food safety

[56]

Mare milk Koumiss Mongolia
A significant increase in lactic-acid and amino-acid
contents and a gradual decrease in lactose content

were recorded along with fermentation time
[57]

Peanut Black oncom Indonesia

A significant decrease in carbohydrate, total fat, ash,
crude protein, and energy were observed on a wet
basis. Meanwhile, a substantial increase in total fat,
crude protein, protein digestibility, water content,

and crude fiber contents was observed on a dry basis.

[58]

Pearl millet Pearl millet flour Africa and India

The contents of carbohydrates, crude fiber, crude
protein, and energy increased significantly after

fermentation; however, ash, crude fat, and moisture
contents decreased significantly after fermentation

[59]

Quinoa seed Cereals Peru and Bolivia

The contents of protein, carbohydrate, ash, free
amino acid, vitamin B1, and vitamin B2 were

increased by 20.62%, 4%, 7.72%, 1034.54%, 56.76%,
and 50%, respectively, whereas fat and dietary-fiber

concentrations decreased by 52.05% and 45.87%,
respectively, after 24 h

[60]

Red pepper Gochujang Korea An increase in acidity but a decrease in salt and
reduced sugar contents after fermentation [61]

Rice

Bhaati jaanr India
A gradual increase in sodium, calcium, magnesium,
manganese, and ferrous contents was recorded up to

day 3 and day 4 of fermentation
[62]

Dosa (Rice and
black gram dal) India

A decrease in starch, total soluble, reducing, and
non-reducing sugars contents was recorded, whereas
soluble proteins and total free-amino-acid contents

were increased after fermentation

[63]
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Table 1. Cont.

Source Fermented
Product

Country of
Origin

Changes in Nutritional Values during
Fermentation Reference

Soybean

Soy yogurt United States
The contents of moisture, lactose, and fat were
decreased; however, protein content increased

significantly after fermentation
[64]

United States
The contents of protein, fat, ash, and carbohydrate

increased slightly after fermentation, while moisture
value decreased

[65]

Soybean meal China

An increase in crude protein, soluble protein,
arginine, serine, threonine, aspartic acid, alanine, and
glycine contents was observed, while a decrease in

trypsin inhibitor and proline contents was observed
after 72 h

[66]

Tempeh Indonesia

A considerable increase in crude protein, amino
nitrogen, and vitamin B9 concentrations was

observed, while a low content of vitamin B12 was
detected only after fermentation

[67]

Whole soybean
flour China

The contents of total protein, vitamin B1, vitamin B2,
β- carotene, and total essential amino acids were
increased by 14.45%, 26.5%, 192.3%, 92.37%, and

10.25%, respectively, after 72 h

[68]

Tea leaves
Cha-miang Thailand

A significant increase in energy, sodium, potassium,
iron, and zinc contents was recorded, while calcium

and vitamins (B1, B2, B3, and C) decreased after
fermentation

[69]

Kombucha China The contents of total titrable acid and total flavonoid
increased with fermentation time [70]

3. Black Tea

Tea is an excellent alternative to energy drinks and coffee. Even though tea and
coffee have multiple health benefits in common, such their caffeine and antioxidant con-
tents [71,72], excessive coffee drinking (daily intake ≥400 mg for adults (4–5 cups of
coffee) and ≥3 mg/kg for children [73]) may contribute to various adverse effects, such
as headache [74], insomnia [75–82] and arrhythmia [75,82–85] due to caffeinism [76,82,86].
Compared to tea, coffee contains a higher concentration of caffeine, an energy-boosting
psychostimulant. Studies showed that caffeine is widely used to promote alertness by
increasing dopamine signaling in the brain [82], primarily via blocking adenosine [87–90],
a known vasodilator and sleep-promoting receptor [91,92].

Tea is rich in natural bioactive compounds, such as flavonoids, methylxanthines,
carbohydrates, and amino acids, which possess various health benefits [93–95]. Among
these bioactive compounds, a high total content of flavonoids, a group of hydroxylated
phenolic compounds found in different plants, including vegetables and fruits, was de-
tected in tea [93]. In recent decades, flavonoids have become essential components in
nutraceuticals [96–99]. They have been associated with human daily diet and health due
to their therapeutic properties, such as antioxidants and anti-diabetic, anti-hypertensive,
anti-cancer, and anti-inflammatory actions [72,73,79,80]. Flavonoids can be classified into
subclasses based on their side-group position and substitutions, such as flavanols, flavonols,
and flavanones [97,100–103]. Flavanols, also known as catechins, are the most abundant
and vital constituents in black tea because the oxidation of catechins forms theaflavins
and thearubigins, which are excellent antioxidative agents [103,104]. These antioxidants
possess free-radical-scavenging properties; they can disrupt the oxidation reaction that
causes oxidative stress in cells by donating an electron to the free radicals to form more
stable phenoxyl radicals [72,73,86,87]. Oxidative stress is a hazardous process that oc-
curs when free radicals are produced beyond the cell’s ability to eliminate them [105,106].
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According to various studies, including clinical evidence, excessive oxidative stress can
damage DNA, proteins, lipid, and membranes, leading to various disorders, such as
diabetes, cardiovascular disease, and neurodegenerative diseases, such as Alzheimer’s
and Parkinson’s [105–108]. Antioxidants can scavenge and neutralize free radicals, thus
reducing oxidative stress and assisting in the recovery process [89,90,92]. A previous
study showed that theaflavins are the most effective antioxidants in black tea because
they have a unique benzotropolone moiety that provides antioxidant protection to the
favored oxidation site for electron donation [109–113], followed by catechins and thearu-
bigins [114]. This finding was supported by He [115], who found that the free-radical
scavenging activities in theaflavins are greater than in epigallocatechin gallate (EGCG), one
of the most potent antiradical compounds found in foods. This circumstance is due to the
presence of hydroxyl groups in theaflavins, which are essential for their radical-scavenging
activities [116]. Theaflavins also showed anti-inflammatory properties by modulating the
signal transducer and activating the NRF2 signaling pathway in vitro and in vivo, which is
crucial for increasing the antioxidant defense [93,114,115,117–121]. Based on a systematic
data-mining approach, Beresniak et al. [122] discovered that high black tea consumption
was significantly associated with low diabetes prevalence; a single dose of black tea reduced
peripheral vascular resistance, as well as the insulin response to the glucose load in both
the upper and the lower extremities, in the 50 participating countries involved in the study.
Hence, it can be concluded that flavonoids are the most vital compounds in black tea due
to their crucial role in the bioactivities of black tea. Nevertheless, flavonoids’ biological
activities might vary depending on their type, mode of action, and bioavailability [123].

Fermentation of Black Tea

Tea is made from the processed dried tea leaves of the evergreen shrub plant known as
Camellia sinensis, a member of the Theaceae family, and is the world’s second most-consumed
beverage after water [124–127]. C. sinensis is a native plant in Southeast Asia, specifically
China, Myanmar, Laos, and Vietnam. According to Wang [128], tea was fortuitously
discovered in 2737 BC by Shen Nung, an emperor of China, after he was poisoned. The
efficacious use of tea to treat poisoning made tea a precious medicine during that era.
However, the earliest physical evidence of tea consumption was found in tombs dating
back to 207 BC [128,129]. Even with its extraordinary benefits, tea only gained in popularity
and was recognized as a national beverage in China in 618 AD. Due to its benefits, tea
spread and grew commercially worldwide [124–126,130]. Different types of tea are available
commercially, such as black, green, and oolong tea. Although all kinds of tea are prepared
from the same plant, different processing procedures and fermentation degrees produce
various tea types [94,124]. Among these teas, only black tea is fully fermented and has
the most significant production levels globally, accounting for 70% of total global tea
production, followed by unfermented green tea, which accounts for 28%, and partially
fermented oolong tea, which accounts for 2% [79,107,108,110].

The fermentation of sugared black tea by a tea fungus, a symbiotic relationship be-
tween Acetobacteria and osmophilic yeasts, produces a healthy beverage called kombucha,
as illustrated in Figure 2 [131–133]. Kombucha originated in China and has been consumed
since 220 BC. The name “Kombucha” is derived from a Korean physician named Kombu,
who brought tea fungus to Japan in 414 AD to treat Emperor Inkyo, who was suffering
from digestive problems [131–134]. Currently, kombucha is produced traditionally in many
households worldwide, including Malaysia, and its consumption is widespread, principally
in Korea, China, Europe, and the United States, because of its refreshing taste and beneficial
effects on human health [131,133]. Tea and kombucha originated in China, as illustrated
in Figure 3.
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As the fermentation time increases, kombucha becomes mature, and the level of tart-
ness of kombucha also changes throughout the process [32,135–137]. Kombucha’s flavor
transforms from a refreshingly sour, mildly bubbling flavor to a mild vinegar-like taste
throughout its fermentation due to the bacterial production of organic acid during alcohol
conversion [26,138–141]. Even though kombucha is usually fermented for 7 to 21 days, it
is recommended to limit its incubation time to 14 days as extended incubation times will
increase the tartness and sourness of kombucha [142–145]. Kombucha contains a broad
spectrum of microbial populations, including yeast (Zygosaccharomyces, Brettanomyces, Sac-
charomyces, and Pichia), acetic-acid bacteria (Komagataeibacter, Gluconobacter, and Acetobacter),
and lactic-acid bacteria (Lactobacillus, Lactococcus, and Oenococcu). Table 2 summarizes the
microbial population of kombucha throughout the world.
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Table 2. Microbial population in kombucha.

Country of
Origin

Presence in
Kombucha

Fermentation
Period Yeast Bacteria Reference

Canada

Solution
3 days Zygosaccharomyces

Komagataeibacter
Lactobacillus
Lactococcus

[146]10 days Zygosaccharomyces Komagataeibacter
Lactobacillus

Pellicle 10 days
Zygosaccharomyces

Pichia
Leucosporidiella

Komagataeibacter
Lactobacillus
Lactococcus

France

Solution 14 days
Brettanomyces bruxellensis
Hanseniaspora valbyensis
Saccharomyces cerevisiae

Acetobacter indonesiensis
Acetobacter papayae

Komagataeibacter saccharivorans

[141]

Pellicle 14 days

Brettanomyces bruxellensis
Hanseniaspora valbyensis
Saccharomyces cerevisiae

Hanseniaspora opuntiae Pichia
fermentans

Galactomyces geotrichum

Acetobacter indonesiensis
Acetobacter papaya

Komagataeibacter saccharivorans

Ireland Solution 3 days Zygosaccharomyces
Komagataeibacter

Lactobacillus
Lactococcus

[146]

10 days Zygosaccharomyces
Komagataeibacter

Lactobacillus
Thermus

Pellicle 10 days Zygosaccharomyces

Komagataeibacter
Lactobacillus
Lactococcus
Acetobacter

Korea Solution 21 days -

Komagataeibacter hansenii
Gluconobacter oxydans

Oenococcus oeni
Lactobacillus

[147]

North
America Pellicle 7 days Brettanomyces

Zygosaccharomyces
Komagataeibacter

Lactobacillus [148]

United
Kingdom

Solution
3 days - Komagataeibacter

Lactobacillus

[146]
10 days -

Komagataeibacter
Thermus

Lactobacillus

Pellicle 10 days -
Komagataeibacter

Lactobacillus
Lactococcus

United States

Solution 3 and 10 days - Komagataeibacter
Lactobacillus

[149]

Pellicle 10 days - Komagataeibacter

Solution -

Brettanomyces
Cyberlindnera jadinii
Trigonopsis variabilis
Issatchenkia orientalis

Bacillus coagulans
Komagataeibacter liquefaciens

Lactobacillus nagelii
Lactobacillus mali

Gluconobacter

Unknown

Solution
0 day -

Kluyvera
Komagataeibacter

Enterobacter

[150]2, 4, and 8 days -
Komagataeibacter

Gluconobacter
Enterobacter

Pellicle
0 day - Enterobacter

Komagataeibacter
2, 4, and 8 days - Komagataeibacter
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It has been proven that the consumption of black tea offers numerous benefits in terms
of health; however, the excessive consumption of black tea may lead to indigestion due
to the high concentration of tannins in black tea [151]. Tannins are excellent microbial
inhibitors that could suppress lactic-acid bacteria and certain fungal activity; however, this
effect may soon wear off with prolonged fermentation [152,153]. This issue, however, can
be resolved by modifying its properties using the fermentation process, which can enhance
its nutritional values at the same time [154]. A study by Chupeerach et al. [69] showed that
fermentation considerably affects nutritional- and bioactive-component concentrations,
which affects the properties of tea. On the other hand, Jolvis [94] showed that, during
fermentation, tea leaves undergo an enzymatic oxidation process, in which the enzymes
and chemical constituents of the leaves react with oxygen to form oxidized polyphenolic
compounds. This process causes the total tannin content in the tea to gradually decrease
with time during fermentation due to the action of the polyphenol oxidase enzyme, which
oxidizes phenolics as they diffuse through cellular fluid [154,155].

In addition to tannin, black tea also contains abundant catechin, which acts as an
effective antioxidant and is responsible for protecting the body against the development
of illnesses [118]. Increases in these vitamins are favorable and beneficial for sustaining
and maintaining good health [156–160]. In addition, fermentation is also shown to increase
other nutrients, such as carbohydrates, fat, sodium, potassium, and minerals [69]. A similar
finding was reported by Unban et al. [161], who showed increases in carbohydrate and fat
contents in fermented tea compared to freshly made tea. According to Patel et al. [162],
lipase activity by microorganisms breaks down lipid compounds, such as triglycerides,
into fatty acids and glycerols through lipolysis, thus increasing the fat content in fermented
tea. Due to high carbohydrate and fat contents, significantly higher energy was detected in
fermented black tea than in fresh tea leaves [69].

On the other hand, the increase in sodium and potassium concentrations during fer-
mentation may be related to the breakdown of covalent bonds in mineral–food-matrix
complexes, which results in the improved bioavailability of the nutrients [69,163]. Further-
more, the fermentation of black tea was also shown to elevate mineral contents, such as
iron and zinc, as a result of the metabolic activity of the microorganism [118,164]. However,
their presence and nutritional value in different fermented black teas may vary, depending
on the symbiotic culture employed, time and temperature of fermentation, sugar level, type
of tea, and analysis methods used during the fermentation process [118].

4. Fermented Black Tea, Gut Microbiota, and Obesity

The prevalence of obesity, which is now an increasing trend, has become an epidemic
globally, including in Malaysia [3,165–168]. Its association with the incidence of various
serious diseases and health conditions, such as hypertension, heart disease, Type 2 diabetes,
non-alcoholic fatty liver disease, and non-alcoholic steatohepatitis has been a significant
issue for decades [20,169]. Obesity remains a serious public health concern that needs
innovative nutritional and medicinal treatments, although various treatments for managing
massive weight gain are currently practice. According to Ruiz Estrada et al. [167], obesity
in Malaysia is rapidly increasing due to factors such as the high consumption of fast food
and sugary soft drinks, long hours of sitting, poor national sports motivation, low water
consumption, the high consumption of vitamins, and the dietary imbalance between the
calories and carbohydrates consumed daily among Malaysians. Animal and human studies
have shown compelling shreds of evidence on the significant role of the gut microbiota
in the development of obesity [170]. This finding was supported by Aoun et al. [165] in a
review involving animals and obese adult subjects, which found that a high-fat diet might
trigger alterations in the gut microbiome’s structures and functions in the host gut. It is
well known that in addition to being responsible for absorbing, storing, and digesting
nutrients, the gut microbiota also helps maintain metabolic homeostasis, increasing the
host’s immunity and gut barriers in humans [166,171]. Furthermore, John and Mullin [170]
also suggested that preventing obesity and metabolic syndromes is possible with healthy
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gut-microbiota composition. Ironically, an unhealthy diet can result in gut dysbiosis,
which could encourage the proliferation of the pathogenic microorganisms associated with
chronic inflammation, contributing significantly to the pathogenesis of chronic metabolic
and intestinal disorders, including obesity [165,172].

As one of the well-known products of fermented black tea, kombucha consumption
has been proven to elevate the defense mechanism against pathogens. This is because,
in addition to polyphenol compounds, which can be naturally found in plant products,
the probiotics in kombucha produce a variety of organic acids, such as acetic acid and
lactic acid, which possess antimicrobial and antioxidant properties [32,118,131–133,173,174].
This finding was supported by Jung et al. [20], according to whom a significant drop in
Allobaculum and Turicibacter, two pathogens associated with non-alcoholic fatty liver disease
(NAFLD), was observed in kombucha treatment. Furthermore, the Clostridium genus is
associated with obesity, NAFLD, and non-alcoholic steatohepatitis (NASH) due to its ability
to increase sugar and fat absorption; the Mucispirillum genus, which is a pro-inflammatory
bacterium, was also revealed to decline after kombucha consumption [20,175]. By con-
trast, the kombucha-treatment group recorded a significant increase in beneficial probiotic
bacteria, such as Lactobacillus, which possess anti-inflammatory properties [176,177].

The gut microbiota is a diverse community of microorganisms composed of various
anaerobic bacteria, eukarya, and archaea, which inhabit the gastrointestinal tract through
diet [178,179]. Over millennia, the gut microbiota and the host have co-evolved, resulting
in a sophisticated and mutually beneficial interaction between them [20,180]. Previous
studies revealed that the gut microbiota from Bacteroidetes, Firmicutes, and Actinobacteria
phyla are crucial for sustaining immunological and metabolic homeostasis and defense
pathogens [181,182]. These findings were supported by Baümler and Sperandio [183] and
Gensollen et al. [184], who showed how the gut microbiota protects the gastrointestinal
tract by providing resistance to pathogenic bacteria and fungi and regulating host immunity.
Nevertheless, there is also a report on the pathogenesis of the gut microbiota. For example,
a study showed that the occurrence of dysbiosis, in which the balance of the gut microbiota
is disrupted and the number of pathobionts12 increases, resulting in infection and various
inflammatory diseases, such as obesity, diabetes type 2, and fatty-liver disease [20,148,153].
A recent study by Costa et al. [185] postulated that gut dysbiosis could be treated or
reduced by consuming fermented black tea. They also found that kombucha consumption
aids in controlling and treating obesity and its associated complications and modulating
the gut microbiota in vivo. The probiotic bacteria in kombucha, such as Lactobacillus and
Bifidobacterium, help promote the proliferation of good microbes in the gastrointestinal
tract to compete with the pathogenic microbes for nutrients and binding sites of the host
cell [186]. Probiotic bacteria, which possess antimicrobial properties and contain high
short-chain fatty acids (SCFAs) and other metabolites, strengthen the immune system and
aid in balancing the human microbiota [186].

5. Conclusions

This mini review examined the benefits of adequate kombucha consumption in pre-
venting and treating obesity. We highlighted the crucial role of the metabolites produced
by microorganisms during the fermentation process in promoting beneficial microbes’
growth and inhibiting pathogenic-gut-microbes’ growth in the digestive system. Indeed,
the bioactive compounds present in kombucha, such as catechins, can protect the body
against various illnesses. Based on the evidence, it can be concluded that the consumption
of kombucha can promote a healthy human gut due to its antimicrobial properties against
enteric pathogens. However, pre-clinical and clinical research supporting fermented black
tea’s effect on obesity and the gut is still lacking.
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