12 pages, 5061 KiB  
Article
In Vivo Efficacy of Voriconazole in a Galleria mellonella Model of Invasive Infection Due to Azole-Susceptible or Resistant Aspergillus fumigatus Isolates
by Sana Jemel, Jacques Guillot, Kalthoum Kallel, Grégory Jouvion, Elise Brisebard, Eliane Billaud, Vincent Jullien, Françoise Botterel and Eric Dannaoui
J. Fungi 2021, 7(12), 1012; https://doi.org/10.3390/jof7121012 - 26 Nov 2021
Cited by 8 | Viewed by 2460
Abstract
Aspergillus fumigatus is an environmental filamentous fungus responsible for life-threatening infections in humans and animals. Azoles are the first-line treatment for aspergillosis, but in recent years, the emergence of azole resistance in A. fumigatus has changed treatment recommendations. The objective of this study [...] Read more.
Aspergillus fumigatus is an environmental filamentous fungus responsible for life-threatening infections in humans and animals. Azoles are the first-line treatment for aspergillosis, but in recent years, the emergence of azole resistance in A. fumigatus has changed treatment recommendations. The objective of this study was to evaluate the efficacy of voriconazole (VRZ) in a Galleria mellonella model of invasive infection due to azole-susceptible or azole-resistant A. fumigatus isolates. We also sought to describe the pharmacokinetics of VRZ in the G. mellonella model. G. mellonella larvae were infected with conidial suspensions of azole-susceptible and azole-resistant isolates of A. fumigatus. Mortality curves were used to calculate the lethal dose. Assessment of the efficacy of VRZ or amphotericin B (AMB) treatment was based on mortality in the lethal model and histopathologic lesions. The pharmacokinetics of VRZ were determined in larval hemolymph. Invasive fungal infection was obtained after conidial inoculation. A dose-dependent reduction in mortality was observed after antifungal treatment with AMB and VRZ. VRZ was more effective at treating larvae inoculated with azole-susceptible A. fumigatus isolates than larvae inoculated with azole-resistant isolates. The concentration of VRZ was maximal at the beginning of treatment and gradually decreased in the hemolymph to reach a Cmin (24 h) between 0.11 and 11.30 mg/L, depending on the dose. In conclusion, G. mellonella is a suitable model for testing the efficacy of antifungal agents against A. fumigatus. Full article
(This article belongs to the Special Issue Clinical Resistance to Antifungal Mechanism)
Show Figures

Figure 1

1 pages, 564 KiB  
Correction
Correction: Monk, B.C.; Keniya, M.V. Roles for Structural Biology in the Discovery of Drugs and Agrochemicals Targeting Sterol 14α-Demethylases. J. Fungi 2021, 7, 67
by Brian C. Monk and Mikhail V. Keniya
J. Fungi 2021, 7(12), 1011; https://doi.org/10.3390/jof7121011 - 26 Nov 2021
Cited by 1 | Viewed by 1272
Abstract
In the original publication, there was a mistake [...] Full article
(This article belongs to the Special Issue The Application of Structural Biology in Antifungal Drug Discovery)
Show Figures

Figure 1

17 pages, 3297 KiB  
Article
The Toxic Effects of Ppz1 Overexpression Involve Nha1-Mediated Deregulation of K+ and H+ Homeostasis
by Marcel Albacar, Lenka Sacka, Carlos Calafí, Diego Velázquez, Antonio Casamayor, Joaquín Ariño and Olga Zimmermannova
J. Fungi 2021, 7(12), 1010; https://doi.org/10.3390/jof7121010 - 25 Nov 2021
Cited by 7 | Viewed by 2544
Abstract
The alteration of the fine-tuned balance of phospho/dephosphorylation reactions in the cell often results in functional disturbance. In the yeast Saccharomyces cerevisiae, the overexpression of Ser/Thr phosphatase Ppz1 drastically blocks cell proliferation, with a profound change in the transcriptomic and phosphoproteomic profiles. [...] Read more.
The alteration of the fine-tuned balance of phospho/dephosphorylation reactions in the cell often results in functional disturbance. In the yeast Saccharomyces cerevisiae, the overexpression of Ser/Thr phosphatase Ppz1 drastically blocks cell proliferation, with a profound change in the transcriptomic and phosphoproteomic profiles. While the deleterious effect on growth likely derives from the alteration of multiple targets, the precise mechanisms are still obscure. Ppz1 is a negative effector of potassium influx. However, we show that the toxic effect of Ppz1 overexpression is unrelated to the Trk1/2 high-affinity potassium importers. Cells overexpressing Ppz1 exhibit decreased K+ content, increased cytosolic acidification, and fail to properly acidify the medium. These effects, as well as the growth defect, are counteracted by the deletion of NHA1 gene, which encodes a plasma membrane Na+, K+/H+ antiporter. The beneficial effect of a lack of Nha1 on the growth vanishes as the pH of the medium approaches neutrality, is not eliminated by the expression of two non-functional Nha1 variants (D145N or D177N), and is exacerbated by a hyperactive Nha1 version (S481A). All our results show that high levels of Ppz1 overactivate Nha1, leading to an excessive entry of H+ and efflux of K+, which is detrimental for growth. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Graphical abstract

16 pages, 2464 KiB  
Article
Chitin Deacetylase, a Novel Target for the Design of Agricultural Fungicides
by Jesús M. Martínez-Cruz, Álvaro Polonio, Riccardo Zanni, Diego Romero, Jorge Gálvez, Dolores Fernández-Ortuño and Alejandro Pérez-García
J. Fungi 2021, 7(12), 1009; https://doi.org/10.3390/jof7121009 - 25 Nov 2021
Cited by 14 | Viewed by 3411
Abstract
Fungicide resistance is a serious problem for agriculture. This is particularly apparent in the case of powdery mildew fungi. Therefore, there is an urgent need to develop new agrochemicals. Chitin is a well-known elicitor of plant immunity, and fungal pathogens have evolved strategies [...] Read more.
Fungicide resistance is a serious problem for agriculture. This is particularly apparent in the case of powdery mildew fungi. Therefore, there is an urgent need to develop new agrochemicals. Chitin is a well-known elicitor of plant immunity, and fungal pathogens have evolved strategies to overcome its detection. Among these strategies, chitin deacetylase (CDA) is responsible for modifying immunogenic chitooligomers and hydrolysing the acetamido group in the N-acetylglucosamine units to avoid recognition. In this work, we tested the hypothesis that CDA can be an appropriate target for antifungals using the cucurbit powdery mildew pathogen Podosphaera xanthii. According to our hypothesis, RNAi silencing of PxCDA resulted in a dramatic reduction in fungal growth that was linked to a rapid elicitation of chitin-triggered immunity. Similar results were obtained with treatments with carboxylic acids such as EDTA, a well-known CDA inhibitor. The disease-suppression activity of EDTA was not associated with its chelating activity since other chelating agents did not suppress disease. The binding of EDTA to CDA was confirmed by molecular docking studies. Furthermore, EDTA also suppressed green and grey mould-causing pathogens applied to oranges and strawberries, respectively. Our results conclusively show that CDA is a promising target for control of phytopathogenic fungi and that EDTA could be a starting point for fungicide design. Full article
(This article belongs to the Special Issue Control of Fungal Diseases in Crops)
Show Figures

Figure 1

21 pages, 9747 KiB  
Article
Collection and Characterization of Wood Decay Fungal Strains for Developing Pure Mycelium Mats
by Marco Cartabia, Carolina Elena Girometta, Chiara Milanese, Rebecca Michela Baiguera, Simone Buratti, Diego Savio Branciforti, Dhanalakshmi Vadivel, Alessandro Girella, Stefano Babbini, Elena Savino and Daniele Dondi
J. Fungi 2021, 7(12), 1008; https://doi.org/10.3390/jof7121008 - 25 Nov 2021
Cited by 31 | Viewed by 6178
Abstract
Wood decay fungi (WDF) seem to be particularly suitable for developing myco-materials due to their mycelial texture, ease of cultivation, and lack of sporification. This study focused on a collection of WDF strains that were later used to develop mycelium mats of leather-like [...] Read more.
Wood decay fungi (WDF) seem to be particularly suitable for developing myco-materials due to their mycelial texture, ease of cultivation, and lack of sporification. This study focused on a collection of WDF strains that were later used to develop mycelium mats of leather-like materials. Twenty-one WDF strains were chosen based on the color, homogeneity, and consistency of the mycelia. The growth rate of each strain was measured. To improve the consistency and thickness of the mats, an exclusive method (newly patented) was developed. The obtained materials and the corresponding pure mycelia grown in liquid culture were analyzed by both thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) to evaluate the principal components and texture. TGA provided a semi-quantitative indication on the mycelia and mat composition, but it was hardly able to discriminate differences in the production process (liquid culture versus patented method). SEM provided keen insight on the mycelial microstructure as well as that of the mat without considering the composition; however, it was able to determine the hyphae and porosity dimensions. Although not exhaustive, TGA and SEM are complementary methods that can be used to characterize fungal strains based on their desirable features for various applications in bio-based materials. Taking all of the results into account, the Fomitopsis iberica strain seems to be the most suitable for the development of leather-like materials. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

13 pages, 35380 KiB  
Article
Interactions among Escovopsis, Antagonistic Microfungi Associated with the Fungus-Growing Ant Symbiosis
by Yuliana Christopher, Celestino Aguilar, Dumas Gálvez, William T. Wcislo, Nicole M. Gerardo and Hermógenes Fernández-Marín
J. Fungi 2021, 7(12), 1007; https://doi.org/10.3390/jof7121007 - 25 Nov 2021
Cited by 6 | Viewed by 3920
Abstract
Fungi in the genus Escovopsis (Ascomycota: Hypocreales) are prevalent associates of the complex symbiosis between fungus-growing ants (Tribe Attini), the ants’ cultivated basidiomycete fungi and a consortium of both beneficial and harmful microbes found within the ants’ garden communities. Some Escovopsis spp. have [...] Read more.
Fungi in the genus Escovopsis (Ascomycota: Hypocreales) are prevalent associates of the complex symbiosis between fungus-growing ants (Tribe Attini), the ants’ cultivated basidiomycete fungi and a consortium of both beneficial and harmful microbes found within the ants’ garden communities. Some Escovopsis spp. have been shown to attack the ants’ cultivated fungi, and co-infections by multiple Escovopsis spp. are common in gardens in nature. Yet, little is known about how Escovopsis strains impact each other. Since microbe–microbe interactions play a central role in microbial ecology and evolution, we conducted experiments to assay the types of interactions that govern EscovopsisEscovopsis relationships. We isolated Escovopsis strains from the gardens of 10 attine ant genera representing basal (lower) and derived groups in the attine ant phylogeny. We conducted in vitro experiments to determine the outcome of both intraclonal and interclonal Escovopsis confrontations. When paired with self (intraclonal interactions), Escovopsis isolated from lower attine colonies exhibited antagonistic (inhibitory) responses, while strains isolated from derived attine colonies exhibited neutral or mutualistic interactions, leading to a clear phylogenetic pattern of interaction outcome. Interclonal interactions were more varied, exhibiting less phylogenetic signal. These results can serve as the basis for future studies on the costs and benefits of Escovopsis coinfection, and on the genetic and chemical mechanisms that regulate the compatibility and incompatibility observed here. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

25 pages, 1381 KiB  
Review
Marine Macroalgae, a Source of Natural Inhibitors of Fungal Phytopathogens
by Tânia F. L. Vicente, Marco F. L. Lemos, Rafael Félix, Patrícia Valentão and Carina Félix
J. Fungi 2021, 7(12), 1006; https://doi.org/10.3390/jof7121006 - 25 Nov 2021
Cited by 22 | Viewed by 4176
Abstract
Fungal phytopathogens are a growing problem all over the world; their propagation causes significant crop losses, affecting the quality of fruits and vegetables, diminishing the availability of food, leading to the loss of billions of euros every year. To control fungal diseases, the [...] Read more.
Fungal phytopathogens are a growing problem all over the world; their propagation causes significant crop losses, affecting the quality of fruits and vegetables, diminishing the availability of food, leading to the loss of billions of euros every year. To control fungal diseases, the use of synthetic chemical fungicides is widely applied; these substances are, however, environmentally damaging. Marine algae, one of the richest marine sources of compounds possessing a wide range of bioactivities, present an eco-friendly alternative in the search for diverse compounds with industrial applications. The synthesis of such bioactive compounds has been recognized as part of microalgal responsiveness to stress conditions, resulting in the production of polyphenols, polysaccharides, lipophilic compounds, and terpenoids, including halogenated compounds, already described as antimicrobial agents. Furthermore, many studies, in vitro or in planta, have demonstrated the inhibitory activity of these compounds with respect to fungal phytopathogens. This review aims to gather the maximum of information addressing macroalgae extracts with potential inhibition against fungal phytopathogens, including the best inhibitory results, while presenting some already reported mechanisms of action. Full article
(This article belongs to the Section Environmental and Ecological Interactions of Fungi)
Show Figures

Figure 1

17 pages, 2841 KiB  
Article
Abf1 Is an Essential Protein That Participates in Cell Cycle Progression and Subtelomeric Silencing in Candida glabrata
by Grecia Hernández-Hernández, Laura A. Vera-Salazar, Leonardo Castanedo, Eunice López-Fuentes, Guadalupe Gutiérrez-Escobedo, Alejandro De Las Peñas and Irene Castaño
J. Fungi 2021, 7(12), 1005; https://doi.org/10.3390/jof7121005 - 25 Nov 2021
Cited by 1 | Viewed by 2797
Abstract
Accurate DNA replication and segregation is key to reproduction and cell viability in all organisms. Autonomously replicating sequence-binding factor 1 (Abf1) is a multifunctional protein that has essential roles in replication, transcription, and regional silencing in the model yeast Saccharomyces cerevisiae. In [...] Read more.
Accurate DNA replication and segregation is key to reproduction and cell viability in all organisms. Autonomously replicating sequence-binding factor 1 (Abf1) is a multifunctional protein that has essential roles in replication, transcription, and regional silencing in the model yeast Saccharomyces cerevisiae. In the opportunistic pathogenic fungus Candida glabrata, which is closely related to S. cerevisiae, these processes are important for survival within the host, for example, the regulation of transcription of virulence-related genes like those involved in adherence. Here, we describe that CgABF1 is an essential gene required for cell viability and silencing near the telomeres, where many adhesin-encoding genes reside. CgAbf1 mediated subtelomeric silencing depends on the 43 C-terminal amino acids. We also found that abnormal expression, depletion, or overexpression of Abf1, results in defects in nuclear morphology, nuclear segregation, and transit through the cell cycle. In the absence of ABF1, cells are arrested in G2 but start cycling again after 9 h, coinciding with the loss of cell viability and the appearance of cells with higher DNA content. Overexpression of CgABF1 causes defects in nuclear segregation and cell cycle progression. We suggest that these effects could be due to the deregulation of DNA replication. Full article
Show Figures

Figure 1

11 pages, 2718 KiB  
Article
Effects of Secondary Metabolites from Pea on Fusarium Growth and Mycotoxin Biosynthesis
by Lakshmipriya Perincherry, Natalia Witaszak, Monika Urbaniak, Agnieszka Waśkiewicz and Łukasz Stępień
J. Fungi 2021, 7(12), 1004; https://doi.org/10.3390/jof7121004 - 24 Nov 2021
Cited by 15 | Viewed by 3012
Abstract
Fusarium species present ubiquitously in the environment are capable of infecting a wide range of plant species. They produce several mycotoxins targeted to weaken the host plant. While infecting some resistant plants, the host can alter the expression of toxin-related genes and accumulate [...] Read more.
Fusarium species present ubiquitously in the environment are capable of infecting a wide range of plant species. They produce several mycotoxins targeted to weaken the host plant. While infecting some resistant plants, the host can alter the expression of toxin-related genes and accumulate no/very low amounts of mycotoxins. The ability of the host plant to modulate the biosynthesis of these toxins is entirely depending on the secondary metabolites produced by the plant, often as a part of systemic acquired resistance (SAR). A major role plays in the family of metabolites called phenyl propanoids, consisting of thousands of natural products, synthesized from the phenylalanine or tyrosine amino acids through a cascade of enzymatic reactions. They are also famous for inhibiting or limiting infection through their antioxidant characteristics. The current study was aimed at identifying the differentially expressed secondary metabolites in resistant (Sokolik) and susceptible (Santana) cultivars of pea (Pisum sativum L.) and understanding their roles in the growth and mycotoxin biosynthesis of two different Fusarium species. Although metabolites such as coumarin, spermidine, p-coumaric acid, isoorientin, and quercetin reduced the growth of the pathogen, a higher level of p-coumaric acid was found to enhance the growth of F. proliferatum strain PEA1. It was also noticeable that the growth of the pathogen did not depend on their ability to produce mycotoxins, as all the metabolites were able to highly inhibit the biosynthesis of fumonisin B1 and beauvericin. Full article
(This article belongs to the Special Issue Plant-Pathogenic Fusarium Species)
Show Figures

Figure 1

7 pages, 47490 KiB  
Case Report
Disseminated Fungal Infection and Fungemia Caused by Trichosporon asahii in a Captive Plumed Basilisk (Basiliscus plumifrons)
by Chieh Lo, Chu-Lin Kang, Pei-Lun Sun, Pin-Huan Yu and Wen-Ta Li
J. Fungi 2021, 7(12), 1003; https://doi.org/10.3390/jof7121003 - 24 Nov 2021
Cited by 3 | Viewed by 2586
Abstract
Trichosporon spp. are heavily arthroconidiating fungi and widely distributed in nature. Due to the similar fungal morphology, confusion among Trichosporon spp., Geotrichum spp., and Nannizziopsis spp. in reptiles is apparent and cannot be overlooked. Although few reptile Trichosporon isolates have been examined using [...] Read more.
Trichosporon spp. are heavily arthroconidiating fungi and widely distributed in nature. Due to the similar fungal morphology, confusion among Trichosporon spp., Geotrichum spp., and Nannizziopsis spp. in reptiles is apparent and cannot be overlooked. Although few reptile Trichosporon isolates have been examined using the newer speciation criteria, the information on Trichosporon asahii in reptiles is still scarce. In the present study, we report the case of disseminated fungal infection and fungemia caused by T. asahii in a captive plumed basilisk (Basiliscus plumifrons). Multiple 0.2–0.5 cm, irregularly shaped, ulcerative nodules on the left hind foot were observed. The animal died due to the non-responsiveness to treatment. A microscopic evaluation revealed the fungal infection that primarily affected the left hind foot and right lung lobe with fungal embolisms in the lung and liver. The molecular identification of the fungal species by the DNA sequences of the ITS regions and D1/D2 gene from the fungal culture and ITS regions, from formalin-fixed paraffin-embedded (FFPE) lung tissues, were completely matched to those of T. asahii. The current report describes the first confirmed case of disseminated fungal infection and fungemia caused by T. asahii in a captive plumed basilisk. Full article
(This article belongs to the Special Issue Molecular Tissue Diagnosis of Fungal Infections)
Show Figures

Figure 1

20 pages, 3069 KiB  
Article
Proteomics of Two Thermotolerant Isolates of Trichoderma under High-Temperature Stress
by Sowmya Poosapati, Prasad Durga Ravulapalli, Dinesh Kumar Viswanathaswamy and Monica Kannan
J. Fungi 2021, 7(12), 1002; https://doi.org/10.3390/jof7121002 - 24 Nov 2021
Cited by 7 | Viewed by 3385
Abstract
Several species of the soil borne fungus of the genus Trichoderma are known to be versatile, opportunistic plant symbionts and are the most successful biocontrol agents used in today’s agriculture. To be successful in field conditions, the fungus must endure varying climatic conditions. [...] Read more.
Several species of the soil borne fungus of the genus Trichoderma are known to be versatile, opportunistic plant symbionts and are the most successful biocontrol agents used in today’s agriculture. To be successful in field conditions, the fungus must endure varying climatic conditions. Studies have indicated that a high atmospheric temperature coupled with low humidity is a major factor in the inconsistent performance of Trichoderma under field conditions. Understanding the molecular modulations associated with Trichoderma that persist and deliver under abiotic stress conditions will aid in exploiting the value of these organisms for such uses. In this study, a comparative proteomic analysis, using two-dimensional gel electrophoresis (2DE) and matrix-assisted laser desorption/time-of-flight (MALDI-TOF-TOF) mass spectrometry, was used to identify proteins associated with thermotolerance in two thermotolerant isolates of Trichoderma: T. longibrachiatum 673, TaDOR673 and T. asperellum 7316, TaDOR7316; with 32 differentially expressed proteins being identified. Sequence homology and conserved domains were used to identify these proteins and to assign a probable function to them. The thermotolerant isolate, TaDOR673, seemed to employ the stress signaling MAPK pathways and heat shock response pathways to combat the stress condition, whereas the moderately tolerant isolate, TaDOR7316, seemed to adapt to high-temperature conditions by reducing the accumulation of misfolded proteins through an unfolded protein response pathway and autophagy. In addition, there were unique, as well as common, proteins that were differentially expressed in the two isolates studied. Full article
(This article belongs to the Special Issue Molecular Processes of Fungi)
Show Figures

Figure 1

27 pages, 8194 KiB  
Article
Comparative Transcriptomics and Gene Knockout Reveal Virulence Factors of Arthrinium phaeospermum in Bambusa pervariabilis × Dendrocalamopsis grandis
by Xinmei Fang, Peng Yan, Mingmin Guan, Shan Han, Tianmin Qiao, Tiantian Lin, Tianhui Zhu and Shujiang Li
J. Fungi 2021, 7(12), 1001; https://doi.org/10.3390/jof7121001 - 24 Nov 2021
Cited by 15 | Viewed by 2796
Abstract
Arthrinium phaeospermum can cause branch wilting of Bambusa pervariabilis × Dendrocalamopsis grandis, causing great economic losses and ecological damage. A. phaeospermum was sequenced in sterile deionized water (CK), rice tissue (T1) and B. pervariabilis × D. grandis (T2) fluid by RNA-Seq, and [...] Read more.
Arthrinium phaeospermum can cause branch wilting of Bambusa pervariabilis × Dendrocalamopsis grandis, causing great economic losses and ecological damage. A. phaeospermum was sequenced in sterile deionized water (CK), rice tissue (T1) and B. pervariabilis × D. grandis (T2) fluid by RNA-Seq, and the function of Ctf1β 1 and Ctf1β 2 was verified by gene knockout. There were 424, 471 and 396 differentially expressed genes between the T2 and CK, T2 and T1, and CK and T1 groups, respectively. Thirty DEGs had verified the change in expression by fluorescent quantitative PCR. Twenty-nine DEGs were the same as the expression level in RNA-Seq. In addition, ΔApCtf1β 1 and ΔApCtf1β 2 showed weaker virulence by gene knockout, and the complementary strains Ctf1β 1 and Ctf1β 2 showed the same virulence as the wild-type strains. Relative growth inhibition of ΔApCtf1β 1 and ΔApCtf1β was significantly decreased by 21.4% and 19.2%, respectively, by adding H2O2 compared to the estimates from the wild-type strain and decreased by 25% and 19.4%, respectively, by adding Congo red. The disease index of B. pervariabilis × D. grandis infected by two mutants was significantly lower than that of wild type. This suggested that Ctf1β genes are required for the stress response and virulence of A. phaeospermum. Full article
Show Figures

Figure 1

20 pages, 3522 KiB  
Article
Expression and Purification along with Evaluation of Serological Response and Diagnostic Potential of Recombinant Sap2 Protein from C. parapsilosis for Use in Systemic Candidiasis
by Manisha Shukla, Pankaj Chandley, Harsimran Kaur, Anup K. Ghosh, Shivaprakash M. Rudramurthy and Soma Rohatgi
J. Fungi 2021, 7(12), 999; https://doi.org/10.3390/jof7120999 - 23 Nov 2021
Cited by 5 | Viewed by 2862
Abstract
Systemic candidiasis is the fourth most common bloodstream infection in ICU patients worldwide. Although C. albicans is a predominant species causing systemic candidiasis, infections caused by non-albicans Candida (NAC) species are increasingly becoming more prevalent globally along with the emergence of drug resistance. [...] Read more.
Systemic candidiasis is the fourth most common bloodstream infection in ICU patients worldwide. Although C. albicans is a predominant species causing systemic candidiasis, infections caused by non-albicans Candida (NAC) species are increasingly becoming more prevalent globally along with the emergence of drug resistance. The diagnosis of systemic candidiasis is difficult due to the absence of significant clinical symptoms in patients. We investigated the diagnostic potential of recombinant secreted aspartyl proteinase 2 (rSap2) from C. parapsilosis for the detection of Candida infection. The rSap2 protein was successfully cloned, expressed and purified using Ni-NTA chromatography under denaturing conditions using an E. coli-based prokaryotic expression system, and refolded using a multi-step dialysis procedure. Structural analysis by CD and FTIR spectroscopy revealed the refolded protein to be in its near native conformation. Immunogenicity analysis demonstrated the rSap2 protein to be highly immunogenic as evident from significantly high titers of Sap2-specific antibodies in antigen immunized Balb/c mice, compared to sham-immunized controls. The diagnostic potential of rSap2 protein was evaluated using immunoblotting and ELISA assays using proven candidiasis patient serum and controls. Immunoblotting results indicate that reactivity to rSap2 was specific to candidiasis patient sera with no cross reactivity observed in healthy controls. Increased levels of anti-Sap2-specific Ig, IgG and IgM antibodies were observed in candidiasis patients compared to controls and was similar in sensitivity obtained when whole Candida was used as coating antigen. In summary, the rSap2 protein from C. parapsilosis has the potential to be used in the diagnosis of systemic candidiasis, providing a rapid, convenient, accurate and cost-effective strategy. Full article
(This article belongs to the Special Issue Invasive Fungal Infections 2021)
Show Figures

Figure 1

15 pages, 1805 KiB  
Article
Candidiasis by Candida glabrata, Candida nivariensis and Candida bracarensis in Galleria mellonella: Virulence and Therapeutic Responses to Echinocandins
by Ainara Hernando-Ortiz, Elena Eraso, Guillermo Quindós and Estibaliz Mateo
J. Fungi 2021, 7(12), 998; https://doi.org/10.3390/jof7120998 - 23 Nov 2021
Cited by 6 | Viewed by 2546
Abstract
Candida albicans is the major etiological agent of invasive candidiasis but the increasing prevalence of emerging species of Candida, such as Candida glabrata and phylogenetically closely related species, Candida nivariensis and Candida bracarensis, requires special attention. Differences in virulence among these [...] Read more.
Candida albicans is the major etiological agent of invasive candidiasis but the increasing prevalence of emerging species of Candida, such as Candida glabrata and phylogenetically closely related species, Candida nivariensis and Candida bracarensis, requires special attention. Differences in virulence among these species and their therapeutic responses using in vivo non-mammalian models are scarcely analysed. The aim of this study was analyse the survival of G. mellonella and host-pathogen interactions during infection by C. glabrata, C. nivariensis and C. bracarensis. Moreover, therapeutic responses to echinocandins were also assessed in the G. mellonella model of candidiasis. These three species produced lethal infection in G. mellonella; C. glabrata was the most virulent species and C. bracarensis the less. Haemocytes of G. mellonella phagocytised C. bracarensis cells more effectively than those of the other two species. Treatment with caspofungin and micafungin was most effective to protect larvae during C. glabrata and C. nivariensis infections while anidulafungin was during C. bracarensis infection. The model of candidiasis in G. mellonella is simple and appropriate to assess the virulence and therapeutic response of these emerging Candida species. Moreover, it successfully allows for detecting differences in the immune system of the host depending on the virulence of pathogens. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

16 pages, 1740 KiB  
Article
Tr-milRNA1 Contributes to Lignocellulase Secretion under Heat Stress by Regulating the Lectin-Type Cargo Receptor Gene Trvip36 in Trichoderma guizhouence NJAU 4742
by Tuo Li, Jinding Liu, Qin Wang, Yang Liu, Ting Li, Dongyang Liu and Qirong Shen
J. Fungi 2021, 7(12), 997; https://doi.org/10.3390/jof7120997 - 23 Nov 2021
Cited by 4 | Viewed by 2690
Abstract
Background: MicroRNA plays an important role in multifarious biological processes by regulating their corresponding target genes. However, the biological function and regulatory mechanism of fungal microRNA-like RNAs (milRNAs) remain poorly understood. Methods: In this study, combined with deep sequencing and bioinformatics analysis, milRNAs [...] Read more.
Background: MicroRNA plays an important role in multifarious biological processes by regulating their corresponding target genes. However, the biological function and regulatory mechanism of fungal microRNA-like RNAs (milRNAs) remain poorly understood. Methods: In this study, combined with deep sequencing and bioinformatics analysis, milRNAs and their targets from Trichoderma guizhouence NJAU 4742 were isolated and identified under solid-state fermentation (SSF) by using rice straw as the sole carbon source at 28 °C and 37 °C, respectively. Results: A critical milRNA, TGA1_S04_31828 (Tr-milRNA1), was highly expressed under heat stress (37 °C) and adaptively regulated lignocellulase secretion. Overexpression of Tr-milRNA1 (OE-Tr-milRNA1) did not affect vegetative growth, but significantly increased lignocellulose utilization under heat stress. Based on the bioinformatics analysis and qPCR validation, a target of Tr-milRNA1 was identified as Trvip36, a lectin-type cargo receptor. The expression of Tr-milRNA1 and Trvip36 showed a divergent trend under SSF when the temperature was increased from 28 °C to 37 °C. In addition, the expression of Trvip36 was suppressed significantly in Tr-milRNA1 overexpression strain (OE-Tr-milRNA1). Compared with the wild type, deletion of Trvip36 (ΔTrvip36) significantly improved the secretion of lignocellulases by reducing the retention of lignocellulases in the ER under heat stress. Conclusions: Tr-milRNA1 from NJAU 4742 improved lignocellulose utilization under heat stress by regulating the expression of the corresponding target gene Trvip36. These findings might open avenues for exploring the mechanism of lignocellulase secretion in filamentous fungi. Full article
(This article belongs to the Special Issue Fungal Biotechnology and Application)
Show Figures

Figure 1