23 pages, 2822 KiB  
Article
Estimation of the Hourly Global Solar Irradiation on the Tilted and Oriented Plane of Photovoltaic Solar Panels Applied to Greenhouse Production
by Francisco J. Diez, Andrés Martínez-Rodríguez, Luis M. Navas-Gracia, Leticia Chico-Santamarta, Adriana Correa-Guimaraes and Renato Andara
Agronomy 2021, 11(3), 495; https://doi.org/10.3390/agronomy11030495 - 6 Mar 2021
Cited by 18 | Viewed by 5320
Abstract
Agrometeorological stations have horizontal solar irradiation data available, but the design and simulation of photovoltaic (PV) systems require data about the solar panel (inclined and/or oriented). Greenhouses for agricultural production, outside the large protected production areas, are usually off-grid; thus, the solar irradiation [...] Read more.
Agrometeorological stations have horizontal solar irradiation data available, but the design and simulation of photovoltaic (PV) systems require data about the solar panel (inclined and/or oriented). Greenhouses for agricultural production, outside the large protected production areas, are usually off-grid; thus, the solar irradiation variable on the panel plane is critical for an optimal PV design. Modeling of solar radiation components (beam, diffuse, and ground-reflected) is carried out by calculating the extraterrestrial solar radiation, solar height, angle of incidence, and diffuse solar radiation. In this study, the modeling was done using Simulink-MATLAB blocks to facilitate its application, using the day of the year, the time of day, and the hourly horizontal global solar irradiation as input variables. The rest of the parameters (i.e., inclination, orientation, solar constant, albedo, latitude, and longitude) were fixed in each block. The results obtained using anisotropic models of diffuse solar irradiation of the sky in the region of Castile and León (Spain) showed improvements over the results obtained with isotropic models. This work enables the precise estimation of solar irradiation on a solar panel flexibly, for particular places, and with the best models for each of the components of solar radiation. Full article
(This article belongs to the Special Issue Photovoltaics and Electrification in Agriculture)
Show Figures

Figure 1

20 pages, 1977 KiB  
Article
Hydrological Properties of a Clay Loam Soil as Affected by Biochar Application in a Pot Experiment
by Angela Libutti, Matteo Francavilla and Massimo Monteleone
Agronomy 2021, 11(3), 489; https://doi.org/10.3390/agronomy11030489 - 5 Mar 2021
Cited by 18 | Viewed by 4357
Abstract
Improving soil-water relations by amending soil with biochar might play a significant role in increasing water availability for agricultural crops as well as decreasing water loss through drainage or runoff. While the effects of biochar on the hydrological properties on coarse-textured soils are [...] Read more.
Improving soil-water relations by amending soil with biochar might play a significant role in increasing water availability for agricultural crops as well as decreasing water loss through drainage or runoff. While the effects of biochar on the hydrological properties on coarse-textured soils are generally positive and well-documented in the literature, studies on biochar effects on fine-textured soils are rather scarce and even contradictory. Therefore, the aim of this paper was to investigate the impact of biochar on the bulk density, water retention curve (together with several water capacitive indicators) and water infiltration rate in a clay loam soil. A pot experiment was carried out under lab conditions in which biochar was mixed with soil at rates of 0 (B0 or control), 2, 4, 6, 8 and 10% dw (B2, B4, B6, B8 and B10, respectively). Water retention of soil–biochar mixtures at different matrix potentials was determined using a pressure plate apparatus. From these measurements, a series of capacitive indicators was derived and the fitting of the van Genuchten model was also performed. Water infiltration into soil–biochar mixtures was measured by means of a mini-disk infiltrometer and the obtained data were analyzed both directly and by fitting the Philip’s model. Biochar significantly affected the considered soil properties. As the biochar rate increased, the bulk density decreased and water retention increased (B6, B8 and B10 > B2, B4 and B0), while the infiltration rate decreased (B0 > B2, B4, B6, B8 and B10). Although the experiment was performed on sieved and repacked soil samples under lab conditions, the results confirmed that biochar has the potential to increase plant-available water, while possibly reducing drainage water in a clay loam soil by lowering the infiltration rate. Full article
Show Figures

Figure 1

9 pages, 1994 KiB  
Article
Could Entomophagy Be an Effective Mitigation Measure in Desert Locust Management?
by Ahmed Ali Samejo, Riffat Sultana, Santosh Kumar and Samiullah Soomro
Agronomy 2021, 11(3), 455; https://doi.org/10.3390/agronomy11030455 - 28 Feb 2021
Cited by 18 | Viewed by 3900
Abstract
The desert locust has been a notorious pest since ancient times. A population upsurge hit Pakistan in 2019 and caused tremendous damage to agriculture and livelihoods. To take advantage of this ongoing upsurge, we conducted a field study to verify whether locust collection [...] Read more.
The desert locust has been a notorious pest since ancient times. A population upsurge hit Pakistan in 2019 and caused tremendous damage to agriculture and livelihoods. To take advantage of this ongoing upsurge, we conducted a field study to verify whether locust collection could be an interesting control method to protect crops in the event of an invasion, as well as an accepted food resource for poor rural communities. A village in the Thar desertic region was selected as a type-locality. An awareness campaign was launched to promote the collection and consumption of locusts as well as to alert people of their nutritional value. Two large swarms arrived near the village and several other swarms affected places nearby. Around 3033 kg of locusts were collected through handpicking at night. Most of the locusts were eaten and, as a result, hoppers of the next generation did not emerge in the type-locality; however, hopper bands appeared in areas where entomophagy was not practiced. The study area had less locust activity because swarms could not lay eggs due to entomophagy by the villagers. The consumption of desert locusts could be an effective practice to prevent malnutrition and protein deficiency and, to a certain extent, an efficient mitigation measure to help local populations to better protect themselves and their crops against locust outbreaks. Collection and consumption of locusts should be encouraged while remaining realistic about its real impact on locust control. This should also be done in concert with local authorities to take into account the risks to human health and to avoid the consumption of insects treated with pesticides. Full article
Show Figures

Figure 1

14 pages, 1686 KiB  
Article
Influence of the Presence of Grape Skins during White Wine Alcoholic Fermentation
by Pau Sancho-Galán, Antonio Amores-Arrocha, Ana Jiménez-Cantizano and Víctor Palacios
Agronomy 2021, 11(3), 452; https://doi.org/10.3390/agronomy11030452 - 28 Feb 2021
Cited by 18 | Viewed by 4390
Abstract
The production of white wines with the presence of grape skins is a historical technique used in different regions with winemaking tradition. However, the current trend is to maintain the presence of grape skins during white wine making only during the pre-fermentation phase [...] Read more.
The production of white wines with the presence of grape skins is a historical technique used in different regions with winemaking tradition. However, the current trend is to maintain the presence of grape skins during white wine making only during the pre-fermentation phase in order to enrich and give greater complexity to the sensory profile of the wines. Given these precedents, this study is the first to consider the effect of the presence of different grape skins doses throughout the alcoholic fermentation process. To this end, the effect of 5 different doses of grape skins (20, 40, 60, 80 and 100%) has been studied with respect to a control (0%) during alcoholic fermentation, the physicochemical composition of the final wines and a preliminary sensory analysis. The presence of grape skins has led to an increase in viable biomass and speed of fermentation with respect to the control. However, no differences have been observed in terms of the consumption of nitrogenous sources by yeasts. The wines produced have not shown great differences in their physicochemical composition, except for the volatile acidity. In addition, the preliminary sensory analysis showed differences between the different grape skins doses studied, where the wine produced with 20% grape skins has been the best evaluated by the tasting panel. In this sense, the production of wines with a 20% grape skins presence during the entire alcoholic fermentation is presented as a viable technique that would allow the diversification of the production of white wines and meet the trends and expectations of current wine consumers. Full article
Show Figures

Figure 1

15 pages, 2238 KiB  
Article
Optimum Water and Nitrogen Management Increases Grain Yield and Resource Use Efficiency by Optimizing Canopy Structure in Wheat
by Yang Liu, Mao Yang, Chunsheng Yao, Xiaonan Zhou, Wei Li, Zhen Zhang, Yanmei Gao, Zhencai Sun, Zhimin Wang and Yinghua Zhang
Agronomy 2021, 11(3), 441; https://doi.org/10.3390/agronomy11030441 - 27 Feb 2021
Cited by 18 | Viewed by 2856
Abstract
Excessive nitrogen (N) application rates and serious over-exploitation of groundwater under farmer practice threatens the sustainable use of resources in the North China Plain (NCP). Crop canopy structure affects light distribution between leaves, which is important to determine crop growth. A field experiment [...] Read more.
Excessive nitrogen (N) application rates and serious over-exploitation of groundwater under farmer practice threatens the sustainable use of resources in the North China Plain (NCP). Crop canopy structure affects light distribution between leaves, which is important to determine crop growth. A field experiment conducted from October 2016 to June 2019 in the NCP was designed to examine whether optimum water and nitrogen management could optimize canopy characteristics to improve yield and resource use efficiency. Field treatments included: (1) an example of local farming practices, which include the addition of 330 kg N ha−1 and irrigated twice (FP), (2) a reduced N rate of 270 kg N ha−1 and irrigated twice (T1), (3) a reduced rate of N rate of 210 kg N ha−1 and irrigated once (T2), and (4) no N applied (0 kg N ha−1) and irrigated once (T3). Results showed that the highest yield was in T1 treatment during 3 years’ winter wheat growing seasons. Water use efficiency (WUE), N use efficiency (NUtE), and N partial factor productivity (PFPN) were significantly higher in T2 treatment than in FP, and the three-year average yield was 9.4% higher than that at FP. Optimum crop management practice (T1 and T2) improved canopy structure characteristics, with less relative photosynthetically active photon flux density (PPFD) penetrated of canopy and higher population uniformity as well as leaf area index, to coordinate the distribution of light within the canopy and maximize canopy light interception, resulting in higher yield and resource use efficiency. Leaf area index (LAI) and specific leaf area (SLA) were closely correlated with grain yield and WUE, while PPFD penetrated of canopy was negatively and significantly correlated with grain yield and WUE. The results indicate that canopy structure characteristics, especially PPFD and population uniformity are good indicators of yield and resource use efficiency. Full article
Show Figures

Figure 1

16 pages, 1202 KiB  
Article
Analysis of Four Delineation Methods to Identify Potential Management Zones in a Commercial Potato Field in Eastern Canada
by Abdelkarim Lajili, Athyna N. Cambouris, Karem Chokmani, Marc Duchemin, Isabelle Perron, Bernie J. Zebarth, Asim Biswas and Viacheslav I. Adamchuk
Agronomy 2021, 11(3), 432; https://doi.org/10.3390/agronomy11030432 - 26 Feb 2021
Cited by 18 | Viewed by 4425
Abstract
Management zones (MZs) are delineated areas within an agricultural field with relatively homogenous soil properties, and therefore similar crop fertility requirements. Consequently, such MZs can often be used for site-specific management of crop production inputs. This study evaluated the effectiveness of four classification [...] Read more.
Management zones (MZs) are delineated areas within an agricultural field with relatively homogenous soil properties, and therefore similar crop fertility requirements. Consequently, such MZs can often be used for site-specific management of crop production inputs. This study evaluated the effectiveness of four classification methods for delineating MZs in an 8-ha commercial potato field located in Prince Edward Island, Canada. The apparent electrical conductivity (ECa) at two depths from a commercial Veris sensor were used to delineate MZs using three classification methods without spatial constraints (i.e., fuzzy k-means, ISODATA and hierarchical) and one with spatial constraints (i.e., spatial segmentation method). Soil samples (0.0–0.15 m depth) from 104 sampling points was used to measure soil physical and chemical properties and their spatial variation in the field were used as reference data to evaluate four delineation methods. Significant Pearson correlations between ECa and soil properties were obtained (0.22 < r < 0.85). The variance reduction indicated that two to three MZs were optimal for representing the field’s spatial variability of soil properties. For two MZs, most soil physical and chemical properties differed significantly between MZs for all four delineation methods. For three MZs, there was greater discrimination among MZs for several soil properties for the spatial segmentation-based method compared with other delineation methods. Moreover, consideration of the spatial coordinates of the data improved the delineation of MZs and thereby increased the number of significant differences among MZs for individual soil properties. Therefore, the spatial segmentation method had the greatest efficiency in delineation of MZs from statistical and agronomic perspectives. Full article
(This article belongs to the Special Issue Machine Learning Applications in Digital Agriculture)
Show Figures

Figure 1

16 pages, 1625 KiB  
Article
Differing Phosphorus Crop Availability of Aluminium and Calcium Precipitated Dairy Processing Sludge Potential Recycled Alternatives to Mineral Phosphorus Fertiliser
by S.M. Ashekuzzaman, Owen Fenton, Erik Meers and Patrick J. Forrestal
Agronomy 2021, 11(3), 427; https://doi.org/10.3390/agronomy11030427 - 26 Feb 2021
Cited by 18 | Viewed by 3818
Abstract
The European dairy industry generates large volumes of wastewater from milk and dairy food processing. Removal of phosphorus (P) by complexing with metal (e.g., aluminium, calcium) cations in P rich sludge is a potential P source for agricultural reuse and P recycling. However, [...] Read more.
The European dairy industry generates large volumes of wastewater from milk and dairy food processing. Removal of phosphorus (P) by complexing with metal (e.g., aluminium, calcium) cations in P rich sludge is a potential P source for agricultural reuse and P recycling. However, there is a significant knowledge gap concerning the plant availability of this complexed P in comparison to conventional mineral P fertiliser. The current absence of information on plant P bioavailability of dairy processing sludge (DPS) limits the ability of farmers and nutrient management advisors to incorporate it correctly into fertiliser programmes. The present study examined the most common types of dairy sludge—(1) aluminium-precipitated sludge (“Al-DPS”) and (2) calcium-precipitated lime-stabilised sludge (“Ca-DPS”) at field scale to assess P availability in grassland versus mineral P fertiliser over a growing season. The experimental design was a randomised complete block with five replications. Crop yield and P uptake were assessed for 4 harvests. The initial soil test P was at a low level and the experimental treatments were super phosphate at 15, 30, 40, 50 and 60 kg P ha−1, two dairy sludge applied at 40 kg P ha−1 (comparison was made with mineral P at same application rate) and a zero P control applied in a single application at the beginning of the growing season. Results showed a significant positive slope in the relationship between P uptake response and mineral P application rate indicating the suitability of the experimental site for P availability assessment. The P bioavailability of Al- and Ca-DPS varied greatly between treatments. The P fertiliser replacement value based on the 1st harvest was 50 and 16% increased to 109 and 31% cumulatively over the four harvests for Al- and Ca-DPS, respectively. The Al concentration in Al-DPS did not limit P bioavailability, but low P bioavailability from Ca-DPS can be associated with its high Ca content that can lead to formation of low soluble Ca-P compounds at alkaline pH conditions with a high Ca/P ratio. These findings show that P availability from dairy sludge can be quite different depending on treatment process. Consequently, it is critical to have P availability information as well as total P content available to ensure the application rate meets crop requirements without creating environmental risk by over application. Full article
Show Figures

Figure 1

11 pages, 2270 KiB  
Article
In Vitro Polyploidization of Thymus vulgaris L. and Its Effect on Composition of Essential Oils
by Božena Navrátilová, Michaela Švécarová, Jan Bednář and Vladan Ondřej
Agronomy 2021, 11(3), 596; https://doi.org/10.3390/agronomy11030596 - 21 Mar 2021
Cited by 17 | Viewed by 3376
Abstract
The aim of this work was to find an effective protocol for in vitro propagation and to perform the in vitro polyploidization of diploid Thymus vulgaris (2n = 30) using two experimental methods based on the use of oryzalin, an antimitotic agent. The [...] Read more.
The aim of this work was to find an effective protocol for in vitro propagation and to perform the in vitro polyploidization of diploid Thymus vulgaris (2n = 30) using two experimental methods based on the use of oryzalin, an antimitotic agent. The ploidy level of the obtained shoots was checked by flow cytometric analysis. The most efficient conditions for inducing polyploidy were oryzalin concentrations of 0.346 and 1.73 mg L−1 present in the medium for two weeks. The vital polyploid shoots were multiplied for further evaluation, rooting and final transfer to nonsterile glasshouse and field conditions. The chemical compositions of the essential oils (EOs)—which were obtained from dried field grown plants by steam distillation—were analyzed by gas chromatography/mass spectrometry (GC/MS). The identified substances contributed approximately 95% to the total peak area. Statistical analysis revealed that the tetraploid subclone and the diploid reference plant do not differ in total terpene content, but they do differ in the relative proportions of all the individual terpenes with the exception of α-pinene and UN5, indicating that both clones produce EOs of different quality. The obtained results showed the possibility of developing more efficient botanical insecticides based on EOs obtained from the tetraploid plants. Full article
Show Figures

Figure 1

20 pages, 6412 KiB  
Article
Early Detection of Excess Nitrogen Consumption in Cucumber Plants Using Hyperspectral Imaging Based on Hybrid Neural Networks and the Imperialist Competitive Algorithm
by Sajad Sabzi, Razieh Pourdarbani, Mohammad Hossein Rohban, Ginés García-Mateos, Jitendra Paliwal and José Miguel Molina-Martínez
Agronomy 2021, 11(3), 575; https://doi.org/10.3390/agronomy11030575 - 18 Mar 2021
Cited by 17 | Viewed by 3969
Abstract
To achieve healthy and optimal yields of agricultural products, the principles of nutrition must be observed and appropriate fertilizers must be applied. Nutritional deficiencies or overabundance reduce the quality and yield of the products. Thus, their early detection prevents physiological disorders and associated [...] Read more.
To achieve healthy and optimal yields of agricultural products, the principles of nutrition must be observed and appropriate fertilizers must be applied. Nutritional deficiencies or overabundance reduce the quality and yield of the products. Thus, their early detection prevents physiological disorders and associated diseases. Most research efforts have focused on spectroscopy, which extracts only spectral data from a single point of the product. The present study aims to detect early excess nitrogen in cucumber plants by using a new hyperspectral imaging technique based on a hybrid of artificial neural networks and the imperialist competitive algorithm (ANN-ICA), which can provide spectral and spatial information on the leaves at the same time. First, cucumber seeds were planted in 18 pots. The same inputs were applied to all the pots until the plants grew; after that, 30% excess nitrogen was applied to nine pots with irrigation water, while it remained constant in the other nine pots. Each day, six leaves were collected from each pot, and their images were captured using a hyperspectral camera (in the range of 400–1100 nm). The wavelengths of 715, 783 and 821 nm were determined as the most effective for early detection of excess nitrogen using a hybrid of artificial neural networks and the artificial bee colony algorithm (ANN-ABC). The parameter of days of treatment was classified using ANN-ICA. The performance of the classifier was evaluated using different criteria, namely recall, accuracy, specificity, precision and the F-measure. The results indicate that the differences between different days were statistically significant. This means that the hyperspectral imaging technique was able to detect plants with excess nitrogen in the near-infrared range (NIR), with a correct classification rate of 96.11%. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

12 pages, 870 KiB  
Article
The Genetic Diversity and Structure of Tomato Landraces from the Campania Region (Southern Italy) Uncovers a Distinct Population Identity
by Martina Caramante, Youssef Rouphael and Giandomenico Corrado
Agronomy 2021, 11(3), 564; https://doi.org/10.3390/agronomy11030564 - 17 Mar 2021
Cited by 17 | Viewed by 3018
Abstract
Italy is one of the main producers and processors of tomato and it is considered a secondary center of diversity. In some areas, such as the Campania region (Southern Italy), a range of traditional tomato landraces is still cultivated. The distinction of this [...] Read more.
Italy is one of the main producers and processors of tomato and it is considered a secondary center of diversity. In some areas, such as the Campania region (Southern Italy), a range of traditional tomato landraces is still cultivated. The distinction of this heritage germplasm is often based only on folk taxonomy and a more comprehensive definition and understanding of its genetic identity is needed. In this work, we compared a set of 15 local landraces (representative of traditional fruit types) to 15 widely used contemporary varieties, using 14 fluorescent Simple Sequence Repeat (SSR) markers. Each of the accessions possessed a unique molecular profile and overall landraces had a genetic diversity comparable to that of the contemporary varieties. The genetic diversity, multivariate, and population structure analysis separated all the genotypes according to the pre-defined groups, indicating a very reduced admixture and the presence of a differentiated (regional) population of landraces. Our work provides solid evidence for implementing conservation actions and paves the way for the creation of a premium regional brand that goes beyond the individual landrace names of the Campania region known throughout the world. Full article
(This article belongs to the Special Issue Old Germplasm for New Needs: Managing Crop Genetic Resources)
Show Figures

Figure 1

16 pages, 1044 KiB  
Article
Irrigation Timing as a Practice of Effective Weed Management in Established Alfalfa (Medicago sativa L.) Crop
by Panagiotis Kanatas, Ioannis Gazoulis and Ilias Travlos
Agronomy 2021, 11(3), 550; https://doi.org/10.3390/agronomy11030550 - 14 Mar 2021
Cited by 17 | Viewed by 3414
Abstract
Irrigation is an agronomic practice of major importance in alfalfa (Medicago sativa L), especially in the semiarid environments of Southern Europe. Field experimentation was conducted in Western Greece (2016–2018) to evaluate the effects of irrigation timing on weed presence, alfalfa yield performance, [...] Read more.
Irrigation is an agronomic practice of major importance in alfalfa (Medicago sativa L), especially in the semiarid environments of Southern Europe. Field experimentation was conducted in Western Greece (2016–2018) to evaluate the effects of irrigation timing on weed presence, alfalfa yield performance, and forage quality. In a randomized complete block design (four replications), two cultivars (“Ypati 84” and “Hyliki”) were the main plots, while three irrigation timings were the subplots (split-plot). The irrigation timings were IT-1, IT-2, and IT-3, denoting irrigation 1 week before harvest, 1 week after harvest, and 2 weeks after harvest, respectively. IT-1 reduced Solanum nigrum L. density by 54% and 79% as compared to IT-3 and IT-2, respectively. Chenopodium album L. density was the highest under IT-2. IT-3 resulted in 41% lower Amaranthus retroflexus L. density in comparison to IT-2, while the lowest values were observed under IT-1. Stand density and stems·plant−1 varied between years (p ≤ 0.05). Mass·stem−1 and alfalfa forage yield were affected by the irrigation timings (p ≤ 0.001). Total weed density and forage yield were negatively correlated in both the second (R2 = 87.013%) and the fourth (R2 = 82.691%) harvests. IT-1 and IT-3 increased forage yield, leaf per stem ratio, and crude protein as compared to IT-2. Further research is required to utilize the use of cultural practices for weed management in perennial forages under different soil and climatic conditions. Full article
(This article belongs to the Special Issue Integrated Weed Management Approaches and Decision Support Systems)
Show Figures

Figure 1

12 pages, 1465 KiB  
Article
L-3,4-dihydroxyphenylalanine Accumulation in Faba Bean (Vicia faba L.) Tissues during Different Growth Stages
by Shucheng Duan, Soon Jae Kwon, You Jin Lim, Chan Saem Gil, Chengwu Jin and Seok Hyun Eom
Agronomy 2021, 11(3), 502; https://doi.org/10.3390/agronomy11030502 - 8 Mar 2021
Cited by 17 | Viewed by 5133
Abstract
L-3,4-dihydroxyphenylalanine (L-dopa)-rich faba (Vicia faba L.) tissues are a potentially useful source for its pharmaceutical purpose, although the species contains health curious vicine and convicine in the seeds. We determined the contents of L-dopa, vicine, and convicine in different tissues of faba [...] Read more.
L-3,4-dihydroxyphenylalanine (L-dopa)-rich faba (Vicia faba L.) tissues are a potentially useful source for its pharmaceutical purpose, although the species contains health curious vicine and convicine in the seeds. We determined the contents of L-dopa, vicine, and convicine in different tissues of faba plants throughout the entire growth period. The three compounds accumulated in germinating sprouts and showed high contents at 8 days of germination, especially in the epicotyl containing 132.33 mg∙g−1 DW of L-dopa, 19.81 mg∙g−1 DW of vicine, and 10.38 mg∙g−1 DW of convicine, respectively. We compared the contents of the three compounds among leaves of different ages in plants at different growth stages. The samples could be ranked, from highest to lowest content, ranging from 11.11 to 81.82 mg∙g−1 DW, as follows: new leaves > young leaves > old leaves; and vegetative > flowering > ripening. Vicine and convicine were not detected in leaves or flowers. The L-dopa content was high in flowers, especially young flower buds, ranging from 36.51 to 100.70 mg∙g−1 DW. In older flowers, the L-dopa content tended to decrease as the calyx and petal parts developed. In addition, the three compounds showed decreasing contents in pods, stems, and roots with increasing plant age. The results of this study provide information on the timing and extent of L-dopa, vicine, and convicine accumulation in different faba tissues, and indicate that various by-products, especially new/young leaves and flowers, are potential sources of natural L-dopa. Full article
Show Figures

Figure 1

14 pages, 1922 KiB  
Article
Deciphering Substrate-Specific Methane Yields of Perennial Herbaceous Wild Plant Species
by Moritz von Cossel, Lorena Agra Pereira and Iris Lewandowski
Agronomy 2021, 11(3), 451; https://doi.org/10.3390/agronomy11030451 - 28 Feb 2021
Cited by 17 | Viewed by 2830
Abstract
The global demand for plant biomass to provide bioenergy and heat is continuously increasing because of a growing interest among many industrialized and developing countries towards climate sound and renewable energy supply. The exacerbation of land-use conflicts proliferates social-ecological demands on future bioenergy [...] Read more.
The global demand for plant biomass to provide bioenergy and heat is continuously increasing because of a growing interest among many industrialized and developing countries towards climate sound and renewable energy supply. The exacerbation of land-use conflicts proliferates social-ecological demands on future bioenergy cropping systems. Perennial herbaceous wild plant mixtures (WPMs) represent an approach to providing social-ecologically more sustainably produced biogas substrate that has gained increasing public and political interest only in recent years. The focus of this study lies on three perennial wild plant species (WPS) that usually dominate the biomass yield performance of WPM cultivation. These WPS were compared with established biogas crops in terms of their substrate-specific methane yield (SMY) and lignocellulosic composition. The plant samples were investigated in a small-scale mesophilic discontinuous biogas batch test for determining the SMY. All WPS were found to have significantly lower SMY (241.5–248.5 lN kgVS−1) than maize (337.5 lN kgVS−1). This was attributed to higher contents of lignin (9.7–12.8% of dry matter) as well as lower contents of hemicellulose (9.9–11.5% of dry matter) in the WPS. Only minor, non-significant differences to cup plant and Virginia mallow were observed. Thus, when planning WPS as a diversification measure in biogas cropping systems, their lower SMY should be considered. Full article
(This article belongs to the Special Issue Social-Ecologically More Sustainable Agricultural Production)
Show Figures

Figure 1

21 pages, 1671 KiB  
Article
High Levels of Shading as A Sustainable Application for Mitigating Drought, in Modern Apple Production
by Alexandra Boini, Luigi Manfrini, Brunella Morandi, Luca Corelli Grappadelli, Stefano Predieri, Giulia Maria Daniele and Gerardo López
Agronomy 2021, 11(3), 422; https://doi.org/10.3390/agronomy11030422 - 25 Feb 2021
Cited by 17 | Viewed by 3227
Abstract
The sustainability of reducing light in apple orchards under well-watered (ww) and water stress (ws) conditions was evaluated for water relations, plant gas exchanges, fruit growth, yield determinants, and fruit quality over three years. A black (B) 28% shading [...] Read more.
The sustainability of reducing light in apple orchards under well-watered (ww) and water stress (ws) conditions was evaluated for water relations, plant gas exchanges, fruit growth, yield determinants, and fruit quality over three years. A black (B) 28% shading net was compared with two different 50% shading nets: red (R) and white (W). Each net was combined with two irrigation regimes (ww and ws) based on plant water status. Under ww and ws conditions, increasing shade from 28% to 50% was not detrimental for plant gas exchanges, yield, or quality over three years. Higher shade improved plant water status regardless of irrigation regime. Higher shading could be considered sustainable in apple orchards over several seasons. Fruit quality was more sensitive to plant water status than to light reduction. ws increased fruit soluble solid content and relative dry matter, regardless of shading, and this was positively reflected in consumer’s preference. When water availability is limited, increasing shading to 50% can help save water and maintain high-quality yields associated with water stress. Given the likely reductions of water availability in agriculture, growers and consultants may consider shading apple orchards as a sustainable and safe horticultural technique to save water. Full article
(This article belongs to the Special Issue Eco-Physiology of Fruit Tree and Innovative Agricultural Practices)
Show Figures

Figure 1

16 pages, 3721 KiB  
Article
Impact of Pests on Cereal Grain and Nutrient Yield in Boreal Growing Conditions
by Katja Kauppi, Ari Rajala, Erja Huusela, Janne Kaseva, Pentti Ruuttunen, Heikki Jalli, Laura Alakukku and Marja Jalli
Agronomy 2021, 11(3), 592; https://doi.org/10.3390/agronomy11030592 - 20 Mar 2021
Cited by 16 | Viewed by 7279
Abstract
The effect of weeds, plant diseases and insect pests on spring barley (Hordeum vulgare) and spring wheat (Triticum aestivum) grain and nutrient yield was examined. Long-term field trial data was used to assess the impact of different pests on [...] Read more.
The effect of weeds, plant diseases and insect pests on spring barley (Hordeum vulgare) and spring wheat (Triticum aestivum) grain and nutrient yield was examined. Long-term field trial data was used to assess the impact of different pests on grain yield. In the absence of pesticides, fungal diseases caused the largest annual yield-reduction in spring wheat and spring barley, 500 kg ha−1 on average. Converting yield loss to nutrient yield loss this represented reductions of 8.1 and 9.2 kg ha−1 in nitrogen and 1.5 and 1.6 kg ha−1 in phosphorus, respectively. Likewise, it was estimated that weeds decrease the yield of spring barley and spring wheat for 200 kg ha−1, which means reductions of 3.7 and 3.2 kg ha−1 in nitrogen and 0.6 kg ha−1 in phosphorus, respectively. For insect pests yield-reduction in spring barley and spring wheat varied between 418 and 745 kg ha−1 respectively. However, because bird cherry-oat aphid (Rhopalosiphum padi L.) incidence data was limited, and aphids are highly variable annually, nutrient yield losses caused by insect pests were not included. Based on the current study, the management of weeds, plant diseases and insects maintain cereal crop yield and may thus decrease the environmental risks caused by unutilized nutrients. Full article
Show Figures

Figure 1