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Abstract: Excessive nitrogen (N) application rates and serious over-exploitation of groundwater
under farmer practice threatens the sustainable use of resources in the North China Plain (NCP).
Crop canopy structure affects light distribution between leaves, which is important to determine crop
growth. A field experiment conducted from October 2016 to June 2019 in the NCP was designed to
examine whether optimum water and nitrogen management could optimize canopy characteristics to
improve yield and resource use efficiency. Field treatments included: (1) an example of local farming
practices, which include the addition of 330 kg N ha−1 and irrigated twice (FP), (2) a reduced N rate
of 270 kg N ha−1 and irrigated twice (T1), (3) a reduced rate of N rate of 210 kg N ha−1 and irrigated
once (T2), and (4) no N applied (0 kg N ha−1) and irrigated once (T3). Results showed that the highest
yield was in T1 treatment during 3 years’ winter wheat growing seasons. Water use efficiency (WUE),
N use efficiency (NUtE), and N partial factor productivity (PFPN) were significantly higher in T2
treatment than in FP, and the three-year average yield was 9.4% higher than that at FP. Optimum
crop management practice (T1 and T2) improved canopy structure characteristics, with less relative
photosynthetically active photon flux density (PPFD) penetrated of canopy and higher population
uniformity as well as leaf area index, to coordinate the distribution of light within the canopy and
maximize canopy light interception, resulting in higher yield and resource use efficiency. Leaf area
index (LAI) and specific leaf area (SLA) were closely correlated with grain yield and WUE, while
PPFD penetrated of canopy was negatively and significantly correlated with grain yield and WUE.
The results indicate that canopy structure characteristics, especially PPFD and population uniformity
are good indicators of yield and resource use efficiency.

Keywords: wheat yield; canopy structure; nitrogen use efficiency; water use efficiency

1. Introduction

The North China Plain (NCP) is a major winter wheat production area in China,
producing approximately 60% of the total national wheat production with less than 8%
of the total water resource in China [1]. Smallholder farming dominates the agricultural
landscape in the NCP. In order to increase the wheat yield, excessive fertilizer application
and over-exploitation of groundwater irrigation occurred in the last two decades [2–5].
However, Ray et al. [6] found that about 56% of wheat planting areas in China, including
NCP, in which wheat yields were stagnating. At the same time, excessive nitrogen (N) ap-
plication rates and the overuse of aquifers under farmers’ practice reduced the groundwater
table, polluted the environment, and threatened sustainable agriculture in the NCP [7,8].
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Thus, the major challenge of winter wheat farming in the NCP is to overcome the overuse
and low use efficiency of nitrogen (N) fertilizer and water by farmers [9,10].

Agronomists tested many crop management techniques to improve nitrogen use
efficiency [11,12]. Many studies have shown that the optimal N fertilizer input (around
185 kg N ha−1) could improve NUE without yield losses [8,13,14]. In addition, topdressing
N fertilizer and a combination of organic fertilizers were effective in increasing nitrogen
use efficiency of wheat [15–18].

In addition to N management, water management is also very important to improve
crop yield, as well as water use efficiency (WUE) and nitrogen use efficiency (NUE). Many
studies have found that water deficits after anthesis result in early senescence and more
remobilization of pre-anthesis stored assimilates to grains in cereals: thus, yield was prone
to reduced [19–21]. Although Xu et al. [5] reported that optimal limited irrigation practice
could ensure grain yield and substantially increase WUE in the NCP, farmers still are prone
to overusing water and N fertilizer to increase yield. However, it is widespread that crop
yield and resource use efficiency fail to be further improved under more water and N
fertilizer supply. Previous studies had identified the factors that contributed to the farmers’
low yield, including management deficiencies, low plant density, unsuitable sowing time,
and backward irrigation infrastructure [22,23]. However, the reason of farmers’ low yield
was not analyzed from the perspective of crop canopy structure.

Canopy structure is potentially an important determinant of the observed functional
response. Crop management practices are those improved canopy light and nitrogen distri-
butions to maximize canopy photosynthesis, often resulted in higher yield and NUE [24].
Hence, a better understanding of canopy structure is necessary to accurately quantify the
distribution of light and its relationship with grain yield and resource use efficiency.

Plant architecture including the leaf area index (LAI) and plant height indicate light
intercepted by plant canopy [25]. Niinemets [26] reported light interception in plant stands
from leaf to canopy. At the leaf level, the alterations in leaf chlorophyll content and leaf
dry mass per unit area (MA) affects the amount of leaf area and, then, influences the light
interception. However, at the canopy level, branching frequency and the allocation of
photosynthates to plant leaf determine the rate of light harvesting. N fertilization can also
affect light absorption and extinction in the crop plant by affecting crop plant growth [26].
Previous study used the photosynthetic photon flux density (PPFD) attenuation in the
canopy to describe the vertical light distribution within a canopy [24]. With the light
intensity decreasing from top to bottom in the canopy, the dry mass per unit of leaf area
decreased. In other words, the leaf area per unit of leaf weight increased and the leaf
becomes thinner in order to receive more light. The tillers rate per stem decreased and the
canopy structure became flatter under the less light interception. All these changes affect
crop response in low light and, hence, result in a more efficient crop canopy structures to
enhance light harvesting [27].

The specific objectives of this study were to (1) compare the yield and resource use
efficiency between different nitrogen rates combined with irrigation practices and farmers’
practice; (2) investigate the relationships between canopy characteristics and crop yield
under different management practices; (3) explore whether the canopy structure can be
improved by optimizing cultivation management as a result to improve productivity, WUE
and NUE. We believe that the knowledge obtained through this study will gain insight for
developing high yield and NUE crop management practice through regulating the canopy
structure.

2. Materials and Methods
2.1. Field Descriptions

A 3 y field experiment was conducted at Wuqiao Experimental Station of China
Agricultural University in Hebei Province (37◦41′N, 116◦36′ E) during the 2016/2017,
2017/2018, and 2018/2019 winter wheat growing seasons. The experimental site is located
in the Wuqiao County, as is typical of the North China Plain, which has a warm-temperate
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sub-humid continental monsoon climate. Rainfall and daily mean air temperature in the
2016–2017, 2017–2018, and 2018–2019 growing seasons are shown in Figure 1. The soil
texture of 100 cm depth of the experimental plot is light loam. The soil bulk density and
field capacity in 0–200 cm soil layers are presented in Table 1.
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Table 1. The soil bulk density and field capacity in 0–200 cm soil layers in the experimental plots.

Soil layer(cm) 0–20 20–40 40–60 60–80 80–100 100–120 120–140 140–160 160–180 180–200

Bulk density (g cm−3) 1.52 1.55 1.58 1.63 1.64 1.63 1.65 1.62 1.57 1.61
Field capacity (%) 24.48 31.78 31.42 27.71 25.39 28.52 26.27 27.30 26.17 25.93

2.2. Experimental Design

In this experiment, farmers’ practice (FP) was included among the treatments. In FP,
330 kg N ha−1 was applied with ratio of 6:4 at the pre-sowing and jointing stages. One
hundred and twenty kilograms of P2O5 and 120 kg K2O ha−1 were supplied just before
sowing. The plots were irrigated at jointing and anthesis, and each irrigation amount
was 75 mm. On the basis of FP, treatment T1 was established, in which N rate was
reduced to 270 kg N ha−1, and the ratio of N application was adjusted to 5:5 at the pre-
sowing and jointing stages. The irrigation mode was similar to FP. Besides, organic
manure (15,000 kg ha−1) was applied just before sowing to improve the soil quality,
150 kg P2O5 ha−1, 150 kg K2O ha−1 and micro-nutrients of Zn (30 kg ha−1) were also
added just before sowing. In treatment T2, N rate was reduced to 210 kg N ha−1 with
ratio of 6:4 at the pre-sowing and jointing stages, 120 kg P2O5 ha−1 and 120 kg K2O ha−1

were supplied just before sowing. Only once irrigation 75 mm was applied at jointing to
increase resource use efficiency. There was a blank control with no fertilizer application
(T3) and once irrigation 75 mm at jointing. There was no P and K fertilizer and other
fertilizer application during wheat growing under the four treatments. Compared with FP,
T1 treatment was designed to increase yield. T2 treatment with optimized crop manage-
ment was developed to test the resource use efficiency potential in the North China Plain.
Winter wheat were sown in October using a sowing machine set to a row spacing of 15 cm.
Four treatments were designed in a block design with four replicates, each replicate was
4 × 10 m. Dates of sowing, jointing stage, anthesis stage, and harvest are listed in detail in
Table 2 for the three seasons.
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Table 2. Dates of sowing, jointing stage, anthesis, and harvest under different treatments in the 2016–2019 growing seasons
of winter wheat.

Year Treatment Dates of Sowing Dates of Jointing Stage Dates of Anthesis Stage Dates of Harvest

2016–2017

FP 14 October 2016 7 April 2017 5 May 2017 8 June 2017
T1 14 October 2016 7 April 2017 5 May 2017 8 June 2017
T2 14 October 2016 6 April 2017 4 May 2017 7 June 2017
T3 14 October 2016 6 April 2017 4 May 2017 7 June 2017

2017–2018

FP 22 October 2017 11 April 2018 5 May 2018 8 June 2018
T1 22 October 2017 12 April 2018 5 May 2018 8 June 2018
T2 22 October 2017 10 April 2018 4 May 2018 7 June 2018
T3 22 October 2017 9 April 2018 3 May 2018 5 June 2018

2018–2019

FP 15 October 2018 6 April 2019 5 May 2019 9 June 2019
T1 15 October 2018 6 April 2019 5 May 2019 9 June 2019
T2 15 October 2018 5 April 2019 4 May 2019 8 June 2019
T3 15 October 2018 4 April 2019 3 May 2019 6 June 2019

2.3. Sampling and Measurements
2.3.1. Dry Matter, Grain Yield, and Harvest Index

Two 0.5 m inner rows of plants from each plot were cut at ground level at anthesis
(Z61) and maturity (Z91) to measure the plant aboveground dry matter. For the samples at
maturity, spikes were threshed to determine grain weight, and HI was calculated as the
ratio of grain weight to total aboveground dry matter. The grain yield for each plot (with
13% water content) was measured from an area of 4 m2 after maturity. The spike number
per m2 was counted in six 2 m inner rows, and the grain number per spike was determined
by counting the grains of each spike from 100 randomly selected plants in each plot before
harvest. The 1000-grain weight (with 13% water content) was calculated by weighing 1000
seeds from the yield measurement sample with 3 replicates.

Contribution ratio of dry matter after anthesis to grain = (dry matter at anthesis− dry
matter at maturity without grain)/grain dry matter.

2.3.2. Water Use Efficiency, N Partial Factor Productivity, and N Use Efficiency (NUtE)

The evapotranspiration (ET) during the growing season of winter wheat was deter-
mined using the following soil water balance equation [28]:

ET = SI + P + ∆W (1)

where ET (mm) is total evapotranspiration during a growing season; SI (mm) is the
irrigation amount; P (mm) is the precipitation; ∆W (mm) is the soil water storage at sowing
minus the soil water storage at maturity at a 2 m soil depth. No runoff and drainage were
observed at any of the experimental sites in this study; thus, they were ignored. Capillary
rise was also negligible because the groundwater table was lower than 2.5 m below the
ground surface [29].

Total nitrogen concentration (Nc) in plants was determined using the Kjeldah method [30].
Water use efficiency (WUE), nitrogen use efficiency (NUtE), and N partial factor productiv-
ity (PFPN) were calculated as follows [31,32]:

WUE = GY/ET (2)

PFPN = GY/N (3)

Plant-acquired N = DM × Nc% (4)

NUtE = GY/Plant-acquired N (5)

where GY (kg ha−1) is the grain yield, ET (mm) is the total evapotranspiration, N is the
nitrogen application rate (kg ha−1) applied in the experimental treatments, DM is dry
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matter accumulation of plants at maturity; Nc% is the nitrogen concentration in plants
at maturity.

2.3.3. Canopy Characteristics (Tillers Rate per Stem, SPAD, PPFD, LAI, and SLA)

In order to clarify the canopy characteristics under different managements, the light
distribution in the canopy and photosynthetic traits including chlorophyll content, specific
leaf area and leaf area index as well as the tillers rate per stem were measured.

Tillers rate per stem (%) = (spikes number at maturity- emergence number)/emergence
number × 100% [33].

Chlorophyll content (SPAD) in the flag, second, and third leaves from the top were
measured with a SPAD-502 Minolta chlorophyll meter (Spectrum Technologies, Plainfield,
IL, USA) in 10 leaves per plot starting from anthesis until 30 days after anthesis (30DAA).

The relative photosynthetically active photon flux density (PPFD) of the top three
leaves and whole canopy intercepted were measured at 0, 3, 9, 15, 21, 24, and 28 days after
anthesis for each replication by linear photosynthetic active radiation ceptometer (AccuPAR,
Decagon Devices Inc., Washington, USA). All the PPFD measurements were taken when
the sky was clear and sunny and restricted to from 11:00 h to 14:00 h (solar time).

Specific leaf area was calculated by dividing the area of a leaf by its dry weight at
anthesis; it means leaf area per unit weight.

Leaf area index (LAI) was measured at anthesis. The top three leaves and the re-
maining green leaves area were measured by a Li-3100 area meter (Li-Cor, Inc., Lincoln,
Nebraska, USA), and green leaf area index (LAI) was calculated.

2.4. Data Analysis

Figure 1 was created using OriginPro 2016 (OriginLab Corp., Northampton, MA, USA).
Other figures were created using software R [34], bars in figures represent the standard
errors of mean. Treatment means were compared using the least significant difference test
with a significance level of p < 0.05. Pearson correlation analysis was conducted by the
correlation procedure in the SPSS (IBM SPSS Statistics 24).

3. Results
3.1. Yield

As shown in Table 3, grain yield was lowest in T3 treatment (0 kg N ha−1), and the
highest grain yield was achieved in T1 treatment (270 kg N ha−1) for 3 winter wheat grow-
ing seasons. Grain yield in T1 was significantly higher than FP and T3 treatments, and there
was no significant difference in yield between T2 and FP except that T2 was significantly
higher than FP in the 2016–2017 growing season. Compared with FP, on average, an 18.9%
higher yield was achieved by reducing 18% N rate, changing N rate applied ratio, and
increasing organic manure in T1. By optimizing management, grain yield was on average
improved by 9.4% in T2 under reducing 36% N rate as compared with FP treatment.
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Table 3. Grain yield, yield components, and harvest index (HI) under different treatments in the 2016–2019 growing seasons
of winter wheat.

Year Treatment Yield
(t ha−1)

Spike Number
(m−2)

Grains
(spike−1)

1000 Grain
Weight (g) HI

2016–2017
2017–2018
2018–2019

FP 8.3 b 672.2 b 28 b 41.2 d 0.40 b
T1 9.5 a 765.0 a 33 a 42.7 c 0.43 a
T2 9.2 a 701.5 b 32 a 44.8 b 0.44 a
T3 7.4 c 625.2 c 27 c 48.1 a 0.44 a
FP 6.4 b 614.5 b 27 a 44.5 b 0.43 c
T1 7.0 a 742.7 a 28 a 43.5 c 0.45 bc
T2 6.5 b 612.6 b 27 a 45.6 a 0.45 b
T3 4.4 c 557.6 c 21 b 45.7 a 0.48 a
FP 7.4 b 611.5 c 27 b 46.7 a 0.41 b
T1 9.9 a 813.8 a 33 a 42.7 b 0.43 b
T2 8.7 ab 700.0 b 34 a 39.4 c 0.46 a
T3 5.1 c 495.9 d 18 c 46.4 a 0.43 b

Mean FP 7.4 b 632.7 b 27 b 44.0 b 0.42 c
T1 8.8 a 773.9 a 31 a 43.0 b 0.44 b
T2 8.1 ab 671.4 b 31 a 43.2 b 0.45 ab
T3 5.6 c 559.6 c 22 c 46.8 a 0.45 a

Values within columns followed by the different letters are statistically significant at p < 0.05 level among treatments.

Spike number m−2 showed the same trend as grain yield. In the highest yield treat-
ment (T1), the spike number was also the highest; however, there was opposite trend
between yield and thousand grain weight (TGW). There was no significant difference in
grain number per spike between T1 and T2, but they were significantly higher than FP and
T3 (Table 3).

3.2. Population Uniformity

In Table 4, T1 had the higher plant height (PH) and tillers rate per stem (TRS) than
FP; at the same time, it had lower variation coefficients in PH and TRS than FP, indicating
that the population in T1 was relatively uniform. There was no significant difference in
PH and TRS between T2 and FP; however, T2 had a lower variation coefficient than FP,
resulting in a higher population uniformity than FP. There were similar trends in the three
growing seasons.

Table 4. Plant height and tillers rate per stem (TRS) and respective coefficient of variation (CV) at maturity under different
treatments in the 2016–2019 growing seasons of winter wheat.

Treatment

2016–2017 2017–2018 2018–2019

Height
(cm)

CV1
(%)

TRS
(%)

CV2
(%)

Height
(cm)

CV1
(%)

TRS
(%)

CV2
(%)

Height
(cm)

CV1
(%)

TRS
(%)

CV2
(%)

FP 74.1 b 4.8 18.3 bc 19.9 69.5 b 3.4 11.3 b 19.2 75.9 b 3.6 18.9 b 35.7
T1 80.0 a 1.8 37.2 a 14.8 74.2 a 1.3 31.1 a 15.8 77.4 a 1.0 38.6 a 3.0
T2 75.0 ab 4.6 22.6 b 6.6 69.0 b 1.0 15.5 b 12.7 73.8 b 1.4 21.3 b 24.3
T3 66.5 c 2.1 11.4 c 27.5 58.0 c 1.4 3.1 c 26.0 56.5 c 2.1 0.9 c 23.0

CV1: the variation coefficient of wheat height; CV2: the variation coefficient of tillers rate per stem. Values within columns followed by the
different letters are statistically significant at p < 0.05 level among treatments.

3.3. LAI, PPFD Penetrated, and SLA

The leaf area index (LAI), specific leaf area (SLA) at anthesis, and relative photosyn-
thetically active photon flux density (PPFD) after anthesis were examined to reflect canopy
structure characteristics under different treatments. For 3 years’ growing seasons, the LAI
of T1 was significantly higher than that of other treatments, and there was no significant
difference between T2 and FP (Figure 2).
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2018–2019 (C) growing seasons. Different letters in the figure indicate statistical differences among treatments (LSDp < 0.05).

The SLA of flag leaf at anthesis under T1 and T2 treatments were lower than that of FP
and T3, while the opposite trend was observed in the second leaf and third leaf (Figure 3).
It indicated that the flag leaf area of T1 and T2 treatment was thicker and larger than that
of other treatments.
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The PPFD can reflect the interception of light radiation. The differences of light
radiation interception by top three leaves and whole canopy under different treatments
was shown in Figure 4. After flowering, the values of relative PPFD penetrated under the
canopy increased during grain filling stage. With the leaves gradually aged, the canopy
light interception decreased. The light radiation was intercepted by the top three leaves
and whole canopy in the tendency of T1 > T2 > FP > T3.
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Figure 4. Relative photosynthetically active photon flux density (PPFD) penetrated of the top three leaves (A) and whole
canopy (B) at 3, 9, 15, 21, 24, and 28 days after anthesis under different treatments in 2017–2018 growing season.

3.4. Chlorophyll Content (SPAD)

In 2016–2017 growing season, the chlorophyll content in the flag and second leaf
of T1 was highest after anthesis, and those of FP was similar to T2 treatment; while the
chlorophyll content in the third leaf of FP was higher than that of other treatments and it
began to decrease until 18 days after anthesis (Figure 5 A–C).
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Figure 5. Chlorophyll content (SPAD) of the flag leaf (A and D), the second leaf (B and E), and the third leaf (C and F) under
different treatments at 3, 11, 15, 18, and 23 days after anthesis in 2016–2017 (A–C) and at 0, 12, 20, and 24 days after anthesis
in 2017–2018 (D–F) growing season.

In the 2017–2018 growing season, the chlorophyll content of the top three leaves in T2
were lower than those in T1 and FP treatments, and in the second leaf of T2, it decreased
rapidly after 11 days after anthesis (DAA11). Chlorophyll content in the third leaf of FP
was also higher than that of other treatments. There is no nitrogen fertilizer application in
T3 and its chlorophyll content in the top three leaves was significantly lower than in other
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nitrogen treatments. In a word, increasing the nitrogen rates delayed the leaf senescence,
especially for the lower leaf in the canopy.

3.5. Dry Matter and HI

As shown in Figure 6, dry matter at anthesis and maturity in T1 treatment was highest
in all treatments, and T3 treatment was lowest due to the lack of N fertilizer. There was no
significant difference in dry matter at anthesis and maturity between T2 and FP. The harvest
index (HI) was lowest in FP treatment (Table 3), and it was always lower than in T2 during
the three growing seasons, which may lead to the lower grain yield than T2. The trend of
contribution ratio of dry matter after anthesis to grain was T1 > T2 > FP > T3, consistently
(Figure 6).
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Figure 6. Dry matter at anthesis, after anthesis (A–C) and contribution ratio of dry matter after
anthesis to grain (D–F) under different treatments in 2016–2017 (A and D), 2017–2018 (B and E), and
2018–2019 (C and F) growing seasons. In Figure A–C, the bottom half of the column is the dry matter
pre-anthesis, shown in blue color, while the top half of the column is the dry matter after anthesis,
shown in red color. Different letters in the figure indicate statistical differences among treatments
(LSDp < 0.05).

3.6. WUE, NUtE, and PFPN

Across the three winter wheat growing seasons, T1 had the highest ET, with a mean of
480 mm (Table 5). The 3 years’ average ET under T2 treatment (401 mm) was significantly
lower (by 12.6%) than under FP (459 mm) without yield losses. Meanwhile, T2 saved
75 mm irrigation water every winter wheat growing season. Over the 3-year period, the
mean WUE of 1.5 kg m−3 in T3 treatment was the lowest among the four treatments
(Table 5). The averaged WUE is 1.8 kg m−3 in T1 and 2.1 kg m−3 in T2, which were 12.5
and 31.3% higher than that of FP (1.6 kg m−3), respectively.
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Table 5. Annual irrigation, precipitation, ∆W, evapotranspiration (ET), and water use efficiency (WUE) under different
treatments during 2016–2019 growing seasons of winter wheat.

Year Treatment Irrigation
(mm)

Precipitation
(mm)

Soil Water Storage at
Sowing

(mm)

Soil Water Storage at
Maturity

(mm)

ET
(mm)

WUE
(kg·m−3)

2016–2017

FP 150 83.5 742.2 489.7 486 b 1.7 b
T1 150 83.5 775.2 492.7 516 a 1.9 a
T2 75 83.5 776.2 456.7 478 b 1.9 a
T3 75 83.5 778.5 469.0 468 b 1.6 c

2017–2018

FP 105 187.9 797.2 659.1 431 a 1.5 b
T1 105 187.9 786.8 626.7 453 a 1.5 ab
T2 75 187.9 752.8 617.7 398 b 1.6 a
T3 75 187.9 778.9 692.8 349 c 1.2 c

2018–2019

FP 150 62.3 770.8 522.1 461 a 1.6 c
T1 150 62.3 753.0 495.3 470 a 2.1 b
T2 75 62.3 740.5 550.8 327 b 2.7 a
T3 75 62.3 706.2 517.5 326 b 1.6 c

ET (mm) is total evapotranspiration during a growing season; soil water storage at sowing and maturity at a 2 m soil depth. Values within
columns followed by the different letters are statistically significant at p < 0.05 level among treatments.

The detailed information of N uptake, nitrogen use efficiency (NUtE), and N partial
factor productivity (PFPN) were listed in Table 6. For N uptake, it was significantly higher
in T1 treatment than other treatments. Although the amount of N rates applied in FP was
the highest, there was no significant difference in nitrogen uptake between FP and T2.
Meanwhile, T2 saved 36% N rates compared with FP. Nitrogen use efficiency (NUtE) was
the fraction of plant acquired N to be converted to grain yield (kg kg−1). Treatment T3
performed best in NUtE for three growing seasons, because of its low nitrogen uptake.
NUtE in T2 was significantly higher than T1 and FP, and NUtE in FP was the lowest.
The PFPN was higher in T2 than in T1 and FP by 18.7 and 73.5% on average, respectively.

Table 6. Annual chemical N fertilizer input, total N uptake by the plant, N use efficiency (NUtE),
and partial factor productivity from applied N (PFPN) under different treatments during 2016–2019
growing seasons.

Year Treatment N Fertilizer
(kg ha−1)

N Uptake NUtE PFPN
(kg ha−1) (kg·kg−1) (kg·kg−1)

2016–2017 FP 330 256 b 32.4 c 25.2 c
T1 270 270 a 35.2 bc 35.2 b
T2 210 248 b 37.1 b 43.8 a
T3 0 165 c 44.8 a /

2017–2018 FP 330 215 b 29.8 b 19.4 c
T1 270 243 a 28.8 b 25.9 b
T2 210 199 b 32.7 ab 30.9 a
T3 0 118 c 37.3 a /

2018–2019 FP 330 267 b 27.7 b 22.4 c
T1 270 322 a 30.7 b 36.7 b
T2 210 240 b 36.3 a 41.4 a
T3 0 131 c 38.9 a /

Values within columns followed by the different letters are statistically significant at p < 0.05 level
among treatments.

3.7. Pearson Correlation Coefficients among GY, WUE, NUtE, Canopy Characteristic Traits

Grain yield and WUE were significantly correlated with the dry matter at anthesis
(DMA), dry matter after anthesis (DMAA) and at maturity (DMM), contribution ratio of
dry matter after anthesis to grain (CRG), grain number per m2 (GN), spike number per m2

(SN), total green LAI at anthesis, and flag leaf SPAD at 24 DAA (Table 7). Nitrogen use
efficiency (NUtE) was significantly and positively correlated with the 1000-grain weight
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and PPFD of whole canopy intercepted at 28 DAA. Grain number per m2 and spike number
per m2 were significantly correlated with total green LAI at anthesis and flag leaf SPAD at
24 DAA.

Table 7. Pearson correlation coefficients among GY, WUE, NUtE, canopy characteristics traits agronomical and physiologi-
cal traits.

DMA DMM DMAA CRG GN TGW SN LAI FSPAD FSLA PPFD GY

LAI 0.80 ** 0.83 ** 0.58 ** 0.74 ** 0.68 ** −0.41 * 0.88 ** 1
FSPAD 0.59 ** 0.63 ** 0.54 ** 0.71 ** 0.62 ** −0.54 ** 0.67 ** 0.86 ** 1
FSLA −0.54 −0.57 −0.39 −0.52 −0.56 0.36 −0.60 * −0.64 * −0.50 1
PPFD −0.89 ** −0.89 ** −0.52 −0.71 ** −0.65 * 0.57 −0.78 ** −0.94 ** −0.81 ** 0.61 * 1

GY 0.96 ** 0.94 ** 0.77 ** 0.53 ** 0.92 ** −0.45 * 0.78 ** 0.70 ** 0.53 ** −0.62 * −0.90 ** 1
WUE 0.62 ** 0.63 ** 0.41 * 0.42 * 0.70 ** −0.65 ** 0.53 ** 0.67 ** 0.53 ** −0.65 * −0.75 ** 0.75 **
NUtE 0.07 0.06 0.02 −0.36 0.05 0.50* −0.19 −0.36 −0.57 ** −0.38 0.74 ** 0.14

DMA, dry matter at anthesis; DMM, dry matter at maturity; DMAA, dry matter after anthesis; CRG, contribution ratio of dry matter
after anthesis to grain yield; GN, grain number per spike; TGW, thousand grains weight; SN, spike number per m2; LAI, total green leaf
area index at anthesis; FSPAD, flag leaf SPAD at 24 DAA; FSLA, flag leaf specific leaf area at anthesis; PPFD, relative photosynthetically
active photon flux density penetrated of whole canopy at 28 DAA; GY, grain yield; WUE, water use efficiency; NUtE, nitrogen utilization
efficiency. * and ** mean significant difference at p < 0.05 and p < 0.01, respectively.

4. Discussion
4.1. Grain Yield, Dry Matter, and Resource Use Efficiency as Affected by Water and
Nitrogen Management

Previous studies have shown that the winter wheat yield and resource use efficiency
could be improved by optimizing the management of water and fertilizer on the North
China Plain [35,36]. In this study, the grain yield of T1 treatment (8.8 t ha−1) and T2
treatment (8.1 t ha−1) averaged over three years were 18.9 and 9.4% higher than that of FP
treatment, respectively (Table 3), and T2 treatment obtained the higher NUtE (35.4 kg kg−1),
PFPN (38.7 kg kg−1), and WUE (2.1 kg·m−3) (Tables 5 and 6). This showed that optimizing
nitrogen rate and irrigation period can further increase nitrogen use efficiency and WUE in
the NCP.

Grain yield in wheat is directly related to the spike number [37]. As Slafer et al. [38]
reported that a small variation in yield may be due to either grains per m2 or individual
grain weight, while grains per m2 accounted for large changes in yield. Changes in grains
m−2 are primarily associated with spike number m−2 [38]. However, the spike number is
most vulnerable to environmental conditions and management practices. The water and
nitrogen interaction was significant for yield, biomass at maturity, and spike number [39].
In this study, spike number and grains per spike under T1 treatment were significantly
higher than FP, whereas there was no significant difference in 1000-grain weight between
the two treatments across the three winter wheat growing seasons (Table 3). This showed
that optimum water and nitrogen management increased spike number and grain number
per spike and, then, increased grain yield. Of course, there was Zn application in T1
treatment, which may also contribute to the increase in grain yield. Yilmaz et al. [40] also
tested that biomass production and yield components were increased by soil application of
Zn compared with other applications.

Improving biomass production and HI is a highly promising approach to increase
grain yield [41,42]. Further, it is believed that, in most situations, increases in dry matter
remobilization from vegetative tissues to grains and the harvest index are closely associ-
ated with higher grain yields, PFPN and WUE in cereals [43–45]. In this study, correlation
analysis showed that the dry matter at anthesis (DMA), dry matter after anthesis (DMAA)
and at maturity (DMM), and contribution ratio of dry matter after anthesis to grain (CRG)
were all significantly and positively correlated with grain yield and WUE (Table 7). Al-
though the dry matter at anthesis and maturity of FP was higher than that of T2 during
the 2017–2019 two years’ growing seasons, the yield was lower than that of T2 because
of its lower harvest index (Table 3 and Figure 6). It is probably that water deficiency in
T2 promoted pre-anthesis dry matter from vegetative tissues to grains during the filling
stage [44] and, thus, increased the harvest index, WUE, and NUtE.
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Across the 3 years, compared to FP, the WUE of T1 and T2 increased by 12.5 and
31.3%, respectively (Table 5). The increase in WUE for T1 was due to the higher increase
in grain yield (18.9%) than ET (4.6%), while for T2, the increase in WUE was due to the
increase in grain yield (9.4%) and the decrease in ET (12.6%). This study also showed that
when rainfall was high (2017-2018), the soil water consumption was low; when the rainfall
was low (2016–2017 and 2018–2019), the soil water consumption was high. In addition,
WUE was significantly and positively correlated with grain yield (Table 7). This result was
similar to our previous research [46]. Therefore, grain yield can be used to predict WUE of
wheat in the NCP.

4.2. Canopy Structure as Affected by Water and Nitrogen Management

Crop management practices can coordinate the distribution of light and N within
the canopy by improving canopy eco-physiological characteristics to maximize canopy
photosynthesis and result in higher yield and NUE [24]. Research has shown that N
fertilization management affects leaf chlorophyll content and, hence, light harvesting by
plant [27]. Leaf area index (LAI) affects canopy structure, and it together with chlorophyll
contents can diagnose nitrogen [47]. It was verified that plant N uptake was proportional
with LAI [48]. In this study, the chlorophyll content (SPAD) and LAI were higher in
T1 than in other treatments, and the SPAD of flag leaf was significantly and positively
correlated with yield and WUE; however, it was significantly and negatively correlated
with NUtE (Table 7). Although the nitrogen content is related to the photosynthetic
capacity of leaves, the more N supply, the higher RuBPCase activity and chlorophyll
content; however, excessive N fertilization would result in environmental pollution and
low N use efficiency [48–50]. The high chlorophyll content in top three leaves especially
in the third leaf after anthesis in FP indicated a lot of nitrogen residue in the leaves [51],
which decreased the total nitrogen uptake of the plant (Figure 5, Table 6). As a result, there
is lower nitrogen use efficiency in FP than other treatments.

Light interception by the canopy is important for crop growth [52]. Compared with
FP, T1 and T2 intercepted more radiation in the top three leaves and the whole canopy
after anthesis (Figure 4). Additionally, PPFD penetrated was significantly and negatively
correlated with LAI (Table 7). These results are consistent with Liu et al. [53]. LAI at anthesis
and flag leaf SPAD at 24 DAA (FSPAD) were significantly and positively correlated with
grain yield and WUE, while flag leaf SLA at anthesis and PPFD penetrated of the whole
canopy intercepted at 28 DAA were significantly and negatively correlated with grain yield
and WUE; the opposite results were found in NUtE (Table 7). Overall, improving the light
distribution in the canopy can significantly increase canopy photosynthesis, yield potential,
and NUE [24].

It is believed that, in most situations, improving the uniformity of the population
is beneficial to intercept radiation [54]. Meanwhile, light interception by the canopy is
an important factor to determine dry matter production and crop growth [55]. In this
study, the coefficient variance of wheat height and tillers rate per stem (TRS) under FP
was higher than that of T1 and T2 (Table 4), which indicates that population uniformity
of FP was lower than T1 and T2. T1 intercepted more radiation with better uniformity
of the population and, hence, improved dry matter production and yield. T2 also had
better population uniformity and canopy structure, resulting in higher yield and resource
use efficiency.

There are many factors affecting population uniformity and canopy structure in the
farmers’ practice (FP). Many farmers were using wheat seeds, which were harvested last
year and sowing next growing season to save seed cost. In addition, poor quality of
sowing results in a shortage of seedlings. Canopy structure significantly affects crop light
interception and photosynthesis and further influences productivity [24]. The reason for
farmers’ low yield was analyzed from the perspective of crop canopy structure. Overall,
our research demonstrated that those managements that can increase grain yield and
resource use efficiency all improved canopy structure.
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5. Conclusions

Adoption of integrated management practices, i.e., reducing N fertilizer rates, improv-
ing irrigation management, and applying organic fertilizer, could increase both grain yield
and resource use efficiency. Compared with FP, the average irrigation and N rate of the T2
treatment were significantly lower, whereas WUE, PFPN, and NUtE in T2 were significantly
higher than those of FP. Increases in yield under T1 and T2 treatments were mainly through
improving population uniformity and further coordinating distribution of light within the
canopy. Canopy structure profile parameters, i.e., the variation coefficient of tillers rate
per stem and plant height, relative photosynthetically active photon flux density (PPFD)
penetrated of whole canopy, LAI and SLA are responsible for canopy productivity. Besides,
T2 treatment with one-time irrigation at jointing increased the contribution ratio of dry
matter after anthesis to grain and, thus, improved the harvest index, which contributed to
higher grain yield and higher resource use efficiency. The effect of a single irrigation event
on grain yield in winter wheat growing seasons under different rainfall conditions needs
to be further studied in the future.
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