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Abstract: To achieve healthy and optimal yields of agricultural products, the principles of nutrition
must be observed and appropriate fertilizers must be applied. Nutritional deficiencies or overabun-
dance reduce the quality and yield of the products. Thus, their early detection prevents physiological
disorders and associated diseases. Most research efforts have focused on spectroscopy, which extracts
only spectral data from a single point of the product. The present study aims to detect early excess
nitrogen in cucumber plants by using a new hyperspectral imaging technique based on a hybrid of
artificial neural networks and the imperialist competitive algorithm (ANN-ICA), which can provide
spectral and spatial information on the leaves at the same time. First, cucumber seeds were planted
in 18 pots. The same inputs were applied to all the pots until the plants grew; after that, 30% excess
nitrogen was applied to nine pots with irrigation water, while it remained constant in the other nine
pots. Each day, six leaves were collected from each pot, and their images were captured using a
hyperspectral camera (in the range of 400–1100 nm). The wavelengths of 715, 783 and 821 nm were
determined as the most effective for early detection of excess nitrogen using a hybrid of artificial
neural networks and the artificial bee colony algorithm (ANN-ABC). The parameter of days of treat-
ment was classified using ANN-ICA. The performance of the classifier was evaluated using different
criteria, namely recall, accuracy, specificity, precision and the F-measure. The results indicate that the
differences between different days were statistically significant. This means that the hyperspectral
imaging technique was able to detect plants with excess nitrogen in the near-infrared range (NIR),
with a correct classification rate of 96.11%.

Keywords: artificial neural networks; cucumber; early detection; hyperspectral image; nitrogen

1. Introduction

In recent decades, the demand for higher quality agricultural products has increased.
Mechanical, bacterial and contamination damage are factors that may shorten the shelf life
of fruits and vegetables and reduce their marketability. Therefore, research is being con-
ducted to inspect these products to ensure their quality and health, using non-destructive
techniques such as imaging and spectroscopy. However, traditional spectroscopy only
provides spectral information from a given location of the products, determining location-
dependent quantities. On the other hand, external features of the agricultural products
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can be extracted using machine vision systems based on visible imaging [1–7]. However,
these systems are incapable of inspecting samples with the same color, classifying complex
targets (such as predicting chemical components) and detecting invisible defects, since
they capture images using visible wavelengths in the form of monochrome or color images.
By integrating the advantages of spectroscopy and imaging, hyperspectral imaging (HSI)
can simultaneously provide spectral and spatial information, which is vital for predicting
the quality of agricultural products. This technique uses the properties of reflectance,
absorption and transmission of light [8–10].

In recent years, HSI has emerged as a powerful tool for determining the internal and
external features of different types of objects [11,12]. Many applications have been proposed
for detecting contaminants, diseases and defects of biological products, among others; for
example, prediction of nutrient deficiencies in citrus [13], prediction of micronutrients in
wheat [14], diagnosing phosphorus abnormalities and nitrogen deficiency in rice [15–17],
determination of chlorophyll content in cucumber [18], estimation of chlorophyll content
in tea plants [19], early detection of diseases in meat [20], and poisonous fungi on corn [21]
and wheat [22].

Ghosal et al. [23] used a relatively simple convolutional neural network (CNN) for clas-
sifying soybean into three classes, viz. nutrition-deficient (potassium and iron), herbicide-
damaged and healthy. The correct classification rate was 94%. Shamshiri et al. [24] used
support vector machines for detecting nitrogen, potassium and magnesium deficiency in
palm oil. Audebert et al. [25] compared the effectiveness of support vector machines and
deep learning to predict the nitrogen content of tea plants using 120 hyperspectral images
of tea leaves. The performance of the support vector model was better than deep learning.
Balasubramaniam and Ananthi [26] used c-means fuzzy clustering to classify various types
of crops, including chickpea, sugarcane, corn, cotton, cucumber, banana, rice, corn, wheat,
canola, coconut, sugar beet and barley, from the viewpoint of deficiencies in manganese
(Mn), molybdenum (Mo), phosphorus (P), zinc (Zn), potassium (K) and boron (Br). The
accuracy rate varied from 0.91 to 0.99, depending on the type of product and the nutrient
deficiency. Backhaus et al. [27] mentioned that the age of leaves was a major factor in
determining nutritional stress using hyperspectral imaging; they reported that the results
from young leaves had statistically significant differences compared with other leaves. The
growth stage and age of leaves had different effects in the spectral information. In the case
of regression techniques, it may be necessary to extract separate models for different plant
growth stages. Condori et al. [28] used the CNN model to detect nitrogen deficiency in
maize, wherein three growth stages were considered using 384 hyperspectral images. The
results showed that the growth stage was an effective factor. Mogollón et al. [29] used a
simple Bayes method to classify magnesium (Mg) content in corn. The leaves were sampled
at three growth stages. The best classification accuracy, obtained using fractal dimension
with focal analysis was 75%.

Observing the principles of nutrition and applying appropriate fertilizer is the key
factor for achieving healthy agricultural products. Symptoms of nutritional disorders of
cucumber often appear on the leaves. Fertilization should be based on regular analysis
of the soil and leaves. Often, farmers do not pay attention to the symptoms of nutrition
deficiency on the leaves, although it can reduce the quality and yield of the crops. Reliable
diagnosis of the nutritional status of plants is an essential part of farm management, as both
excess and deficiencies of nutrients can cause severe damage and reduced yields; therefore,
early detection of nutritional problems makes it possible to control biological disorders.
Moreover, it reduces environmental impact. Leaf laboratory analysis is an accurate method,
but it is destructive and time-consuming [30].

The present study aimed to early detect excess nitrogen consumption in cucumber
plants using a hyperspectral imaging technique based on artificial neural networks and
the imperialist competitive algorithm (ANN-ICA). The hybrid ANN-ICA approach was
applied to find the optimal configuration of the neural network, which is responsible for
detecting excess nitrogen in plants. The main innovations of the proposed method are:
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(1) extraction of images of the leaves at different wavelengths in the range from 400 to
1100 nm to find the most effective hyperspectral images for classification; (2) selection of
the key wavelengths using hybrid artificial neural networks and the artificial bee colony
algorithm (ANN-ABC) to obtain the most useful spectral information; (3) classification
using a hybrid artificial neural network (ANN) with an optimal structure that guarantees
the high accuracy of the method; and (4) training the system at different iterations to
examine the reliability of the proposed system.

2. Materials and Methods

Figure 1 shows the main steps of the research process carried out in the present study,
from the collection of the cucumber leaves used in the experiments to the comparison of
the proposed method with a traditional laboratory analysis of the nitrogen content. These
steps are described in detail in the following subsections.

Figure 1. Different stages of the proposed methodology for classifying cucumber plant nitrogen content. ANN-ABC: artificial
neural networks and artificial bee colony algorithm. ANN-ICA: artificial neural networks and imperialist competitive
algorithm.

2.1. Data Collection

Initially, 18 pots were prepared and cucumber seeds (Super Arshiya-F1 cultivar) were
planted in each pot and kept in the research greenhouse of the University of Mohaghegh
Ardabili, Iran, as shown in Figure 2. All the pots consumed the same inputs until the plants
grew. After that, 30% excess nitrogen was applied with irrigation water to 9 pots. Next,
6 leaves were picked from each pot every day, and hyperspectral images of these leaves
were captured with a hyperspectral camera. The sampling process continued until the
leaves turned yellow and the symptoms of fertilizer overapplication were clearly visible.
This occurred on the fourth day, so the images go from Day 0 (just before applying excess
nitrogen) until Day 3.

The increase of 30% in the application of nitrogen was selected by considering some
previous works related to the use of fertilizers. For example, Ma et al. [31] presented a
method to detect deficiencies and excess of nitrogen in soybean leaves using RGB color
images, with levels of nitrogen of 0%, 50%, 100% and 150%. Yang et al. [32] analyzed the
effect of different levels of nitrogen in cucumber yield and fertilization efficiency, with
application levels of 250, 300 and 350 kg/hm2, i.e., 20% and 40% increases, respectively.
Thus, our selection of a 30% increase can be considered as an average value, trying to detect
the excess nitrogen in relatively low increments.
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Figure 2. Overview of the cucumber pots used in the experiments.

2.2. Capturing Hyperspectral Images and Extracting the Spectral Properties of the Leaves

To extract spectral images from the leaves, a hardware system was configured. The
components of this system were: (1) a laptop with Intel Corei5CFI, 330 M at 2.13 GHz,
4 GB of RAM, and Windows 10; (2) a hyperspectral camera (FSR, Fanavaran Physics Noor
Co., Tehran, Iran) with a spectral range from 400 to 1100 nm; (3) a light source of tungsten
halogen with a power of 10 W (StellarNet, Tampa, FL, USA) and (4) an illumination
chamber to prevent ambient light. The hyperspectral camera was located on the left side of
the chamber, and the samples were located horizontally in front of the camera at a distance
of 1 m. A pair of lamps illuminated the sample from the corners, as depicted in Figure 3.

Figure 3. Hardware configuration of the capture system: (a) hyperspectral camera; (b) illumination chamber.

Figure 4 shows some examples of the hyperspectral images of cucumber leaves in the
range of 400–1100 nm. The image resolution is 400 × 640 pixels, with a depth of 8 bits per
pixel for each wavelength.

In total, 327 images of wavelengths in the range of 400–1100 nm were captured for
each cucumber leaf. As can be seen, at the beginning and the end of this range, the
images have poor quality due to noise and lack of illumination. These images were
also included in further processing but were automatically removed since they were not
effective. Moreover, although the images contain a part of the background, as shown in
Figure 4, these background pixels were removed from the analysis.



Agronomy 2021, 11, 575 5 of 20

Figure 4. Some examples of the hyperspectral images of cucumber leaves in the range of wavelengths from 400 to 1100 nm:
(a) 420 nm; (b) 540 nm; (c) 690 nm; (d) 800 nm; (e) 950 nm; (f) 1040 nm.

2.3. Selection of the Key Wavelengths for Early Detection of Excess Nitrogen

After imaging the leaves from pots with normal nitrogen levels and with excess nitro-
gen, a hybrid approach of artificial neural networks and the artificial bee colony algorithm
(ANN-ABC) was used to find the most interesting wavelengths for the subsequent pro-
cesses. ABC is a heuristic optimization process proposed by Pham et al. [33]. This algorithm
is inspired by the behavior of bees in their search for food sources [34]. The steps of the
ABC algorithm are as follows:

1. First, the initial responses (or candidate sites) are generated and evaluated.
2. The better responses are selected and the scout bees are sent to those sites.
3. The scout bees return to the hive with a waggle dance (producing a neighboring

response).
4. All the answers are compared and the best one is selected.
5. The position of the best answer is saved.
6. If the ideal conditions are not met, return to Step 2.

Following this scheme, in this study, different vectors of wavelengths were sent as the
input to an artificial neural network, and the output of the network was the corresponding
nitrogen content of the leaf (i.e., the number of days of application of excess nitrogen). For
example, consider that the selected vector of wavelengths is (700, 800, 900 nm); this means
that the ANN receives tuples of 3 values, corresponding to the light intensities in these
spectral frequencies for a given pixel of the images. For each vector of wavelengths, a
complete process of training the ANN and testing the trained network on the test set was
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done. Each vector was recorded together with the answer to this input, which was given
by the mean squared error (MSE) produced by the ANN in the classification of the test
set. The vector with the least MSE was then selected as the optimal input, and the related
wavelengths were selected as the key wavelengths. The structure of the ANN used in this
procedure is presented in Table 1.

Table 1. Structure of hidden layers of the artificial neural network (ANN) used to select the key
wavelengths in the artificial neural networks and the artificial bee colony algorithm (ANN-ABC)
process.

Property Value

Number of hidden layers 1
Number of neurons 13

Transfer function Radial basis
Back-propagation network training function Levenberg-Marquardt

Back-propagation weight/bias learning function Hebb weight learning rule

2.4. Pre-Processing of the Spectral Data

As depicted in Figure 4, the original data may be affected by noise due to the light
source, the effect of the ambient light, the camera and so on. Therefore, the data must be
pre-processed [35]. In this study, reflective spectral data were first converted to absorption
using the following equation:

Absorption spectra = log(1/Reflectance spectra) (1)

The light scattering was then corrected by a standard normal distribution (SNV) with
wavelet detrending. Finally, the smoothing operation was performed with the Savitzki-
Golay filter using ParLeS software, version 3.1 [36]. ParLeS is a specialized chemometrics
software package that is used for multivariate modeling and forecasting, as shown in
Figure 5.

Figure 5. Some original and pre-processed spectral diagrams of different samples using ParLeS software, version 3.1.
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2.5. Destructive Extraction of Nitrogen in the Laboratory

The process for extracting and measuring nitrogen in the leaves was a destructive lab-
oratory procedure, using the classical Kjeldahl method [37]. Figure 6 depicts the equipment
used in this process. The method consists of five steps:

1. Powdering. The samples (leaves) must first be powdered. For this purpose, an oven
(model BC OVEN 70, Behdad Co., Tehran, Iran) was used. It is made of stainless steel,
resistant to high heat and has an electrical protection system, as shown in Figure 6a.

2. Kjeldahl device. In order to measure the total leaf nitrogen, a Kjeldahl device (model
VAP20, Gerhardt GmbH & Co., Königswinter, Germany) was used, as shown in
Figure 6b. The Kjeldahl method proceeds with the steps of digestion, distillation and
titration to determine total nitrogen. First, the sample is digested with sulfuric acid;
next, the nitrogen of the sample is converted to ammonium sulfate. The nitrogen
of ammonium sulfate is then released in the form of ammonia and converted to
ammonium borate with boric acid, titrated using normal sulfuric acid 1% and, finally,
the total nitrogen content of the sample is obtained by calculating the consumed acid.

3. Digestion. The first step in the standard procedure to determine total nitrogen of
leaf is digestion. In this study, a digester of model VAP20 (Gerhardt GmbH & Co.,
Königswinter, Germany) was used, as can be seen in Figure 6c. It has 12 digestion
stands. The main characteristics of this device include safety, processing of fatty
and inhomogeneous samples, the possibility of digestion of samples with very low
volume, an automatic digestion system with temperature control, and an automatic
digestion system with time control.

4. Distillation. After the digestion step, a refrigerant was used to distill the sample.
Distillation was performed in the shortest possible time by adding distilled water and
NaOH at 32%. The heat required for distillation was supplied by constant-pressure
steam, presented in Figure 6d.

5. Titration. The last step is titration, which was carried out with a burette made of glass
with a stopper and a valve at the tip to control the flow of the chemical solution.

After the titration step, the total nitrogen was obtained by calculating the acid con-
sumption as:

Total N = (Vs-Vb)/md × NH2SO4 × 0.014meqN × 100 (2)

where Vs is the consumed volume of the sample, Vb is the consumed volume of the control
treatment, md is the dry weight of the sample and NH2SO4 is the normality of sulfuric acid
with 0.014 mEq.

2.6. Classification of the Days of Application of Nitrogen to the Pots Using ANN-ICA

The objective of the present study was to detect excess nitrogen consumption using
hyperspectral images in the key wavelengths selected. For this purpose, the images of the
leaves were classified using an ANN, whose output was the number of days of application
of excess nitrogen, as previously described. In this way, the system was able to predict
overapplication of nitrogen in the early stages. Various parameters had to be set in the
configuration of the ANN, which greatly affected the accuracy achieved in the classification.
These included the number of hidden layers, the number of neurons, transfer functions, the
back-propagation network training function, and back-propagation weight/bias learning
function. In our case, the imperialist competitive algorithm (ICA) algorithm was used to
optimally adjust the parameters of the ANN.
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Figure 6. Laboratory equipment used for measuring the total nitrogen content of the leaves: (a) oven; (b) Kjeldahl device;
(c) digestion; (d) distillation; (e) titration.

ICA is a metaheuristic algorithm based on cultural, social and political evolution.
In this algorithm, all countries are looking for the general optimal point to solve an
optimization problem [38,39]. As in the hybrid ANN-ABC approach, ICA controls the
execution of the ANN under different configurations, combining the aforementioned
parameters of the ANN and selecting the optimal configuration of the network. Specifically,
the number of hidden layers can be between 1 and 3. The number of neurons in each
hidden layer can be between 0 (no hidden layer) and 25. The transfer function for each
layer was selected from a set of 8 transfer functions available in the neural network toolkit
of MATLAB (MathWorks, Natick, MA, USA) such as tangential sigmoid, radial basis and
softmax. The back-propagation training function was selected from a set of 6 functions, and
the back-propagation weight/bias learning function was selected from a set of 15 different
functions available in the same toolkit.

During the ANN-ICA process, the method considers a vector with a selection of the
parameters, representing a specific configuration of the ANN. For example, the vector x =
[13, logsig, traingdx, learnos] indicates that the ANN has 1 hidden layer with 13 neurons, a
log-sigmoid transfer function, gradient descent with momentum back-propagation, and
the Outstar weight/bias learning function, respectively. The MSE of each vector obtained
in the training/test process of the ANN was measured and the vectors with the lowest MSE
were selected as the optimal configuration of the network. Table 2 shows this selection of
the parameters obtained by ANN-ICA.
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Table 2. Structure of hidden layers obtained by the artificial neural networks and the imperialist
competitive algorithm (ANN-ICA) for the classification. Transfer functions: poslin: positive linear;
satlins: symmetric saturating linear; tribas: triangular basis.

Property Value

Number of hidden layers 3
Number of neurons per layer 1st: 12; 2nd: 9; 3rd: 21

Transfer functions 1st: poslin; 2nd: satlins; 3rd: tribas
Back-propagation network training function Batch training

Back-propagation weight/bias learning function Instar weight learning function

After selecting the optimal structure of the ANN, 200 iterations were executed to
evaluate the validity of the classifier. In all the iterations, 60% of the total data were
randomly selected for training, 10% for validation and the remaining 30% for testing.

2.7. Evaluation of the Performance of the ANN-ICA Classifier

Different criteria are commonly applied to evaluate the performance of a classifier.
Two groups can be distinguished. The first category includes the performance parameters
extracted from the confusion matrix, i.e., recall, accuracy, specificity, precision and the
F-measure. The second category is given by the graphical criteria associated with the
receiver operating characteristic curve (ROC) and the area under the ROC curve (AUC) [2].
Table 3 contains the definitions of the parameters in the first group.

Table 3. Performance parameters of a classifier associated with the confusion matrix. TP: true
positives; TN: true negatives; FN: false negatives; FP: false positives.

Name Equation Description

Recall TP
TP+FN × 100

Percentage of positive samples that have been
correctly identified

Precision TP
TP+FP × 100

Percentage of positive outputs that have been
correctly classified

Accuracy TP+TN
TP+FN+FP+TN × 100 Percentage of total correct classifications

Specificity TN
TN+FP × 100

Percentage of negative samples that have been
correctly identified

F-measure 2×Recall×Precision
Recall+Precision Harmonic weighted average of recall and precision

3. Results and Discussion
3.1. Key Wavelengths for Classifying Leaves from Different Days

The key wavelengths for early and non-destructive detection of leaves with excess
nitrogen were obtained using the ANN-ABC approach described in Section 2.3. The
selected wavelengths were 715, 783 and 821 nm. Figure 7 presents some samples of the
hyperspectral images of the selected wavelengths for different days.
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Figure 7. Hyperspectral images of the selected wavelengths during the sampling days. Left column
(a,d,g,j): 715 nm; middle column (b,e,h,k): 783 nm; right column (c,f,i,l): 821 nm. Rows: days since
the excess nitrogen started, from top to bottom: D0 (a–c), D1 (d–f), D2 (g–i) and D3 (j–l), respectively.
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3.2. Performance of ANN-ICA for the Classification of Leaves with Excess Nitrogen

As described in Section 2.6, the hybrid ANN-ICA method was used to predict the
number of days when the leaves began to receive excess nitrogen using the images of
the selected wavelengths. Table 4 presents the performance of the classifier using the
confusion matrix, the accuracy or correct classification rate (CCR) and the error rate for
the 200 iterations of the training/test process. This makes an equivalent of 155,000 test
samples. Only 6024 of these samples were incorrectly classified in the wrong class. This
number of misclassifications resulted in a total accuracy of 96.11%.

Table 4. Evaluation of the performance of the ANN-ICA classifier using the confusion matrix at
200 repetitions. D0: the day before applying excess nitrogen; D1, D2 and D3: one, two and three days
after applying excess nitrogen, respectively.

Predicted/
Real Class D0 D1 D2 D3 Total Class Error

Rate (%) CCR (%)

D0 44,872 899 49 0 45,820 2.06

96.11
D1 1079 40,914 151 957 43,101 5.07
D2 1 617 29,581 416 30,615 3.37
D3 0 1008 847 33,609 35,464 5.23

Table 5 evaluates the same results using the five performance criteria, namely recall,
accuracy, specificity, precision and F-measure. A recall of 100% means that none of the
samples was incorrectly classified in the given class; thus, the low recall obtained for D1
(94.18%) means that most of the samples were incorrectly classified in class D1. The reason
is that in the early hours, it is more difficult to identify excess nitrogen than in the following
days. According to the table, it is obvious that more samples were classified correctly in
class D3 than in other classes, since the accuracy of class D3 was the highest (98.87%). In
fact, on the third day, the leaves reacted clearly to the excess nitrogen and it was easy to
detect them visually. The value of specificity was 99.14% for class D2, which was higher
than the others. It means that class D2 had the least error. The accuracy was 94.76% for
class D3, which was the lowest value among all classes, indicating that many samples were
incorrectly classified in other classes. Finally, since the F-measure is the weighted harmonic
mean of recall and accuracy, it can be understood that the value for class D0 was higher
than the others.

Table 5. Evaluation of the performance of the ANN-ICA classifier at 200 repetitions, using the criteria
derived from the confusion matrix.

Class Recall (%) Accuracy (%) Specificity (%) Precision (%) F-Measure (%)

D0 97.64 98.65 99.09 97.93 97.79
D1 94.18 96.93 98.01 94.92 94.55
D2 96.58 98.62 99.14 96.62 96.60
D3 96.07 98.87 98.41 94.76 95.41

Figure 8 represents the performance of the classifier using box plots of CCR and AUC
for the 200 repetitions of the process. According to the results in Figure 8b, the box plot
diagrams of AUCs are compact for all classes, indicating the high performance and stability
of this classifier. It is also evident from the box plots that although the excess nitrogen
could be detected on the first day after applying it (D1), from the second day onwards (D2
and D3), the AUC charts increased. This indicates that the detection algorithm had higher
performance on D2 and D3 than on D1, as expected. However, contrary to expectations,
the AUC of D2 was higher than that of D3. This could be due to newly sprouted leaves on
the third day, which, compared with the older leaves, produced errors. However, these
errors were not large enough to cause statistically significant differences.
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Figure 8. Box plots of the performance of the ANN-ICA classifier for the 200 repetitions: (a) correct classification rate (CCR);
(b) area under the receiver operating characteristic (ROC) curve (AUC) for each class; AUCD0, AUCD1, AUCD2 and AUCD3

correspond to Days 0, 1, 2 and 3, respectively.

Figure 9 shows the ROC curves of the classifier averaged for the 200 repetitions. These
curves are independent of the number of samples in each class and only examine the
performance of the classifiers based on the ratio of incorrectly classified samples; the lower
the curves, the lower the performance of a classifier. According to Figure 9, the ROC curves
of all the classes are very close to the ideal curve, indicating the very high performance of
the proposed algorithm.

Figure 9. ROC curves of the ANN-ICA classifier at 200 repetitions for the four classes.

3.3. Performance of the Classifier in the Best Training Case

From the 200 repetitions of the training/test process, we considered it interesting to
extract the results of the best case. The performance measures for this specific case are
presented in Tables 6 and 7 and in Figure 10.
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Table 6. Evaluation of the performance of the ANN-ICA classifier for the best training case.

Predicted/Real
Class D0 D1 D2 D3 Total Class Error Rate

(%) CCR (%)

D0 237 4 0 0 241 1.65

97.93
D1 1 219 0 4 224 2.23
D2 0 2 142 0 144 1.38
D3 0 2 3 161 166 3.01

Table 7. Evaluation of the performance of the ANN-ICA classifier using the criteria derived from the
confusion matrix, for the best training case.

Class Recall (%) Accuracy (%) Specificity
(%)

Precision
(%)

F-Measure
(%)

D0 99.57 99.34 99.23 98.34 98.95
D1 96.47 98.31 99.08 97.76 97.11
D2 97.93 99.34 99.67 98.61 98.26
D3 97.57 98.82 99.17 96.98 97.28

Figure 10. ROC curves of the ANN-ICA classifier for the four classes for the best training case.

Table 8 compares the performance of the ANN-ICA classifier using the mean and
standard deviation of the CCR and AUC for the 200 repetitions and the best training case.
As shown, the CCR and AUCs in the best training case indicate that the proposed algorithm
was able to detect excess nitrogen early.

Table 8. Performance of the ANN-ICA classifier for early detection of excess nitrogen using spectral
data, comparing the mean and standard deviation (SD) of the 200 repetitions, and the best case.

Execution CCR (%) AUCD0 AUCD1 AUCD2 AUCD3

Mean 96.11 0.9985 0.9938 0.9986 0.9969
SD 0.739 0.00143 0.00314 0.00099 0.00195

Best 97.93 0.9996 0.9978 0.9991 0.9986
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3.4. Statistical Analysis of the Key Wavelengths Using ANOVA and Tukey’s Test

To ensure a reliable classification of the proposed algorithm, a statistical analysis was
performed on the effective spectrum data using ANOVA and the Tukey test. The null
hypothesis (H0) was that the spectral images of the key wavelengths were equal for all the
days of treatment, and the alternative hypothesis (Ha) was that they were different. While
the ANOVA tests only inform whether there are some differences in the means, the Tukey
test analyzes which means are different from the others. For conciseness, the results of
these tests are shown in Tables A1–A6 in Appendix A.

These statistical tests also included an analysis of the values of the nitrogen content of
the leaves obtained in the laboratory using the destructive Kjeldahl method. In this case,
H0 was that the nitrogen content was equal in all the treatments, while Ha was that they
were different. The results are presented in Tables A7 and A8.

According to the obtained results, it is evident that there was a statistically significant
difference between all the classes (days of treatment), both in the spectral images and in
the nitrogen content, which means that it was possible to identify the plants with excess
nitrogen consumption immediately after 1 day of applying it. These results are consistent
with the results of the proposed classification algorithm; thus, the conclusions of the
experimental results can be trusted.

3.5. Sample Images and Comparison with Other Works

Some examples of the hyperspectral images of two classes of leaves with normal
nitrogen fertilizer (D0) and leaves with excess nitrogen (D1) at two spectral ranges of
visible (Vis) and near-infrared (NIR) light are shown in Figure 11. As can be seen, on the
first day after applying excess nitrogen, the contaminated pixels were not detectable in
the visible range. However, at the NIR range there were white pixels clearly visible at the
edges of the leaf that represented excess nitrogen consumption. In other words, if classical
spectral analysis were applied to the entire leaf, the detection of overapplication would
be done at a later stage, since the negative effects start at the tips of the leaves. By using
spectral images, the problems can be detected earlier.

After assessing the performance of the proposed algorithm, the results were compared
with other methods conducted by different researchers. Table 9 compares the results of
these methods using the reported values of classification accuracy (or CCR).

Table 9. Comparison of the results obtained in this study with other research.

Method Product Type Early Detection Type CCR (%)

Proposed method Cucumber Excess nitrogen 96.11
[40] Tomato Gray mold disease 94.44–97.22
[41] Prawns Freshness 95.0–98.33
[42] Honey Adulteration 84.0–95.0
[43] Oilseed rape Waterlogging stress 94.44–95.9
[44] Wheat Insects 96.7
[45] Wheat Fungi 94.6
[46] Bell peppers Bruises 94.9

It must be observed that the problems addressed in these papers and the product
types are different, since no comparable works have been found in the literature regarding
the detection of excess nitrogen in cucumber leaves. Therefore, this information is offered
to compare our results with other state-of-the-art work in HSI processing. The accuracy
of the proposed method, above 96%, is comparable with or better than most of these
previous techniques. Another important advantage of HSI with respect to traditional
spectral analysis is that it enables automation of the image acquisition process. Although
in the current experiment, the images were obtained in a capture chamber, it is possible
to mount such cameras on drones or satellites. In this way, after obtaining the images, a
leaf detector could be applied to find the leaves and then analyze the nitrogen content on
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each one of them. This is not possible if spatial information is not available. However, the
problems derived from natural lighting and uncontrolled conditions should be addressed,
which pose a challenge in NIR spectral analysis.

Figure 11. Sample images of the cucumber leaves at different wavelengths. Upper row (a,b): without
treatment (D0); lower row (c,d): after 1 day of application of excess nitrogen (D1). Left column (a,c):
wavelength in the visible band (582 nm); right column (b,d): wavelength in the near-infrared range
(NIR) band (908 nm).

4. Conclusions

In recent years, agricultural producers have increased the use of chemical fertilizers
per unit of area, instead of using modern agricultural knowledge to produce more. The
illusion of increasing yield due to the use of more water and chemical fertilizers has led
to the excessive use of water and fertilizer resources. The continuation of these practices
has led, in some countries, to situations of soil and water contamination, in addition to
additional expenses.

Hyperspectral imaging (HSI) has been recognized as a non-destructive and rapid
analytical tool for evaluating product quality and diagnosing diseases using new tech-
nological advances in data measurement. In the present study, a new HSI methodology
was proposed to evaluate early detection of excess nitrogen consumption in cucumber
plants, complemented with computational intelligence methods using hybrid approaches
of artificial neural networks (ANN) and metaheuristic algorithms (ABC and ICA). First,
using the hybrid ANN-ABC algorithm, the wavelengths of 715, 773 and 821 nm were
determined as the key wavelengths to analyze nitrogen in the leaves. The hybrid approach
ANN-ICA was then applied to predict the number of days of treatment using the HSI data
in the selected wavelengths.

The performance of the proposed classifier was evaluated using the confusion matrix
and the ROC curves. The total correct classification rate achieved was 96.11%, indicating a
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good ability to detect excess nitrogen in cucumber plants. The statistical analysis showed
that the differences between the images of the selected wavelengths for the different days
of treatment were statistically significant.

By early detection of excess fertilizer, nitrogen-rich soil can be improved. One of the
ways to improve the soil with excess nitrogen is by applying mulch. The nitrogen-rich soil
of mulch decomposes large amounts of soil nitrogen. The proposed technique can be used
to adjust the use of nitrogen to the optimum values, thus reducing the use of fertilizers and
the risk of contamination.

One of the limitations of the proposed method is that it requires specialized imaging
equipment, although the processing can be done on an average computer. The high
cost of this equipment would not be affordable for most farmers. In the future, with the
development of specialized cameras in the selected wavelengths, it will be possible to
estimate the nitrogen content of the plants using images taken in the field, thus maintaining
it at optimal levels. For this purpose, new challenges derived from the use of natural
lighting conditions should be addressed. Another future research line would be to study
different levels of nitrogen lower than 30% so that the system would be more sensitive to
detect small excesses in the use of fertilizers.
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Appendix A

This appendix contains the results of the statistical tests used to analyze the differences
in the images under the different treatments. The null hypothesis (H0) was that the images
of cucumber leaves of all the treatments were equal, considering the key wavelengths
selected in the ANN-ABC process: 715, 783 and 821 nm. The treatment was the number of
days of application of excess nitrogen (0, 1, 2 and 3). The alternative hypothesis (Ha) was
that they were different. Two tests were applied for each wavelength: the ANOVA test to
analyze if all the treatments were equal and Tukey’s honestly significant difference (HSD)
test to analyze the statistical significance of the differences between each pair of treatments.

Table A1. Statistical analysis of ANOVA for the key wavelength of 715 nm for the four excess nitrogen
treatments.

Sum of
Squares

Degrees of
Freedom

Mean
Square F Significance

Between groups 96.256 3 32.085
Within groups 39.493 2581 0.015 2097 0.000

Total 135.749 2584
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Table A2. Statistical Tukey’s honestly significant difference (HSD) test for the key wavelength of
715 nm for the four excess nitrogen treatments: D0, D1, D2 and D3.

I Class J Class Mean Difference (I–J) Standard Error Significance

D0 D1 −0.26439385 * 0.00642292 0.000
D2 0.05836787 * 0.00707141 0.000
D3 −0.43466605 * 0.00677766 0.000

D1 D0 0.26439385 * 0.00642292 0.000
D2 0.32276172 * 0.00715925 0.000
D3 −0.17027220 * 0.00686926 0.000

D2 D0 −0.05836787 * 0.00707141 0.000
D1 −0.32276172 * 0.00715925 0.000
D3 −0.49303392 * 0.00747914 0.000

D3 D0 0.43466605 * 0.00677766 0.000
D1 0.17027220 * 0.00686926 0.000
D2 0.49303392 * 0.00747914 0.000

* The mean difference is statistically significant at the 0.05 level.

Table A3. Statistical analysis of ANOVA for the key wavelength of 783 nm for the four excess nitrogen
treatments.

Sum of
Squares

Degrees of
Freedom

Mean
Square F Significance

Between groups 87.467 3 29.156
Within groups 22.280 2581 0.009 3378 0.000

Total 109.747 2584

Table A4. Statistical Tukey’s HSD test for the key wavelength of 783 nm for the four excess nitrogen
treatments: D0, D1, D2 and D3.

I Class J Class Mean Difference (I–J) Standard Error Significance

D0 D1 −0.33859174 * 0.00482421 0.000
D2 −0.27702890 * 0.00531128 0.000
D3 −0.48981082 * 0.00509064 0.000

D1 D0 0.33859174 * 0.00482421 0.000
D2 0.06156284 * 0.00537726 0.000
D3 −0.15121908 * 0.00515945 0.000

D2 D0 0.27702890 * 0.00531128 0.000
D1 −0.06156284 * 0.00537726 0.000
D3 −0.21278192 * 0.00561752 0.000

D3 D0 0.48981082 * 0.00509064 0.000
D1 0.15121908 * 0.00515945 0.000
D2 0.21278192 * 0.00561752 0.000

* The mean difference is statistically significant at the 0.05 level.

Table A5. Statistical analysis of ANOVA for the key wavelength of 823 nm for the four excess nitrogen
treatments.

Sum of
Squares

Degrees of
Freedom

Mean
Square F Significance

Between groups 8.748 3 2.916
Within groups 18.750 2581 0.007 401.397 0.000

Total 27.498 2584
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Table A6. Statistical Tukey’s HSD test for the key wavelength of 823 nm for the four excess nitrogen
treatments: D0, D1, D2 and D3.

I Class J Class Mean Difference (I–J) Standard Error Significance

D0 D1 −0.03132414 * 0.00442557 0.000
D2 −0.07949664 * 0.00487239 0.000
D3 −0.15395705 * 0.00466999 0.000

D1 D0 0.03132414 * 0.00442557 0.000
D2 −0.04817250 * 0.00493292 0.000
D3 −0.12263291 * 0.00473311 0.000

D2 D0 0.07949664 * 0.00487239 0.000
D1 0.04817250 * 0.00493292 0.000
D3 −0.07446041 * 0.00515334 0.000

D3 D0 0.15395705 * 0.00466999 0.000
D1 0.12263291 * 0.00473311 0.000
D2 0.07446041 * 0.00515334 0.000

* The mean difference is statistically significant at the 0.05 level.

The same statistical tests (ANOVA and Tukey’s HSD) were also applied for the nitro-
gen content of the cucumber leaves measured in laboratory using the destructive Kjeldahl
method for the four treatments. Again, the null hypothesis (H0) was that the nitrogen
content of the leaves was the same for all the treatments, and the alternative hypothesis
(Ha) was that they were different.

Table A7. Statistical analysis of ANOVA for the nitrogen content of the leaves for the four treatments.

Sum of
Squares

Degrees of
Freedom

Mean
Square F Significance

Between groups 0.893 3 0.298
Within groups 0.002 8 0.000 1127 0.000

Total 0.895 11

Table A8. Statistical Tukey’s HSD test for the nitrogen content of the leaves for the four excess
nitrogen treatments: D0, D1, D2 and D3.

I Class J Class Mean Difference (I–J) Standard Error Significance

D0 D1 −0.6103333 * 0.0132707 0.000
D2 −0.0956667 * 0.0132707 0.000
D3 0.0956667 * 0.0132707 0.000

D1 D0 0.6103333 * 0.0132707 0.000
D2 0.5146667 * 0.0132707 0.000
D3 0.7060000 * 0.0132707 0.000

D2 D0 0.0956667 * 0.0132707 0.000
D1 −0.5146667 * 0.0132707 0.000
D3 0.1913333 * 0.0132707 0.000

D3 D0 −0.0956667 * 0.0132707 0.000
D1 −0.7060000 * 0.0132707 0.000
D2 −0.1913333 * 0.0132707 0.000

* The mean difference is statistically significant at the 0.05 level.
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