18 pages, 3471 KiB  
Article
Preparation, Characterization, and In Vivo Pharmacokinetic Study of the Supercritical Fluid-Processed Liposomal Amphotericin B
by Chang-baek Lim, Sharif Md Abuzar, Pankaj Ranjan Karn, Wonkyung Cho, Hee Jun Park, Cheong-Weon Cho and Sung-Joo Hwang
Pharmaceutics 2019, 11(11), 589; https://doi.org/10.3390/pharmaceutics11110589 - 8 Nov 2019
Cited by 26 | Viewed by 5337
Abstract
Here, we aimed to prepare and optimize liposomal amphotericin B (AmB) while using the supercritical fluid of carbon dioxide (SCF-CO2) method and investigate the characteristics and pharmacokinetics of the SCF-CO2-processed liposomal AmB. Liposomes containing phospholipids, ascorbic acid (vit C), [...] Read more.
Here, we aimed to prepare and optimize liposomal amphotericin B (AmB) while using the supercritical fluid of carbon dioxide (SCF-CO2) method and investigate the characteristics and pharmacokinetics of the SCF-CO2-processed liposomal AmB. Liposomes containing phospholipids, ascorbic acid (vit C), and cholesterol were prepared by the SCF-CO2 method at an optimized pressure and temperature; conventional liposomes were also prepared using the thin film hydration method and then compared with the SCF-CO2-processed-liposomes. The optimized formulation was evaluated by in vitro hemolysis tests on rat erythrocytes and in vivo pharmacokinetics after intravenous administration to Sprague-Dawley rats and compared with a marketed AmB micellar formulation, Fungizone®, and a liposomal formulation, AmBisome®. The results of the characterization studies demonstrated that the SCF-CO2-processed-liposomes were spherical particles with an average particle size of 137 nm (after homogenization) and drug encapsulation efficiency (EE) was about 90%. After freeze-drying, mean particle size, EE, and zeta potential were not significantly changed. The stability study of the liposomes showed that liposomal AmB that was prepared by the SCF method was stable over time. In vivo pharmacokinetics revealed that the SCF-CO2-processed-liposomes were bioequivalent to AmBisome®; the hemolytic test depicted less hematotoxicity than Fungizone®. Therefore, this method could serve as a potential alternative for preparing liposomal AmB for industrial applications. Full article
(This article belongs to the Special Issue Supercritical Fluid and Pharmaceutical Applications)
Show Figures

Graphical abstract

33 pages, 2716 KiB  
Review
Advances in Lipid and Metal Nanoparticles for Antimicrobial Peptide Delivery
by Marcin Makowski, Ítala C. Silva, Constança Pais do Amaral, Sónia Gonçalves and Nuno C. Santos
Pharmaceutics 2019, 11(11), 588; https://doi.org/10.3390/pharmaceutics11110588 - 8 Nov 2019
Cited by 96 | Viewed by 9590
Abstract
Antimicrobial peptides (AMPs) have been described as excellent candidates to overcome antibiotic resistance. Frequently, AMPs exhibit a wide therapeutic window, with low cytotoxicity and broad-spectrum antimicrobial activity against a variety of pathogens. In addition, some AMPs are also able to modulate the immune [...] Read more.
Antimicrobial peptides (AMPs) have been described as excellent candidates to overcome antibiotic resistance. Frequently, AMPs exhibit a wide therapeutic window, with low cytotoxicity and broad-spectrum antimicrobial activity against a variety of pathogens. In addition, some AMPs are also able to modulate the immune response, decreasing potential harmful effects such as sepsis. Despite these benefits, only a few formulations have successfully reached clinics. A common flaw in the druggability of AMPs is their poor pharmacokinetics, common to several peptide drugs, as they may be degraded by a myriad of proteases inside the organism. The combination of AMPs with carrier nanoparticles to improve delivery may enhance their half-life, decreasing the dosage and thus, reducing production costs and eventual toxicity. Here, we present the most recent advances in lipid and metal nanodevices for AMP delivery, with a special focus on metal nanoparticles and liposome formulations. Full article
(This article belongs to the Special Issue Breakthroughs in Antimicrobial Peptides)
Show Figures

Graphical abstract

22 pages, 1929 KiB  
Article
IVIVC Assessment of Two Mouse Brain Endothelial Cell Models for Drug Screening
by Ina Puscas, Florian Bernard-Patrzynski, Martin Jutras, Marc-André Lécuyer, Lyne Bourbonnière, Alexandre Prat, Grégoire Leclair and V. Gaëlle Roullin
Pharmaceutics 2019, 11(11), 587; https://doi.org/10.3390/pharmaceutics11110587 - 8 Nov 2019
Cited by 20 | Viewed by 5549
Abstract
Since most preclinical drug permeability assays across the blood-brain barrier (BBB) are still evaluated in rodents, we compared an in vitro mouse primary endothelial cell model to the mouse b.End3 and the acellular parallel artificial membrane permeability assay (PAMPA) models for drug screening [...] Read more.
Since most preclinical drug permeability assays across the blood-brain barrier (BBB) are still evaluated in rodents, we compared an in vitro mouse primary endothelial cell model to the mouse b.End3 and the acellular parallel artificial membrane permeability assay (PAMPA) models for drug screening purposes. The mRNA expression of key feature membrane proteins of primary and bEnd.3 mouse brain endothelial cells were compared. Transwell® monolayer models were further characterized in terms of tightness and integrity. The in vitro in vivo correlation (IVIVC) was obtained by the correlation of the in vitro permeability data with log BB values obtained in mice for seven drugs. The mouse primary model showed higher monolayer integrity and levels of mRNA expression of BBB tight junction (TJ) proteins and membrane transporters (MBRT), especially for the efflux transporter Pgp. The IVIVC and drug ranking underlined the superiority of the primary model (r2 = 0.765) when compared to the PAMPA-BBB (r2 = 0.391) and bEnd.3 cell line (r2 = 0.019) models. The primary monolayer mouse model came out as a simple and reliable candidate for the prediction of drug permeability across the BBB. This model encompasses a rapid set-up, a fair reproduction of BBB tissue characteristics, and an accurate drug screening. Full article
(This article belongs to the Special Issue Drug Delivery to the Brain)
Show Figures

Graphical abstract

23 pages, 4958 KiB  
Article
C60 Fullerene as an Effective Nanoplatform of Alkaloid Berberine Delivery into Leukemic Cells
by Anna Grebinyk, Svitlana Prylutska, Anatoliy Buchelnikov, Nina Tverdokhleb, Sergii Grebinyk, Maxim Evstigneev, Olga Matyshevska, Vsevolod Cherepanov, Yuriy Prylutskyy, Valeriy Yashchuk, Anton Naumovets, Uwe Ritter, Thomas Dandekar and Marcus Frohme
Pharmaceutics 2019, 11(11), 586; https://doi.org/10.3390/pharmaceutics11110586 - 8 Nov 2019
Cited by 37 | Viewed by 5082
Abstract
A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have [...] Read more.
A herbal alkaloid Berberine (Ber), used for centuries in Ayurvedic, Chinese, Middle-Eastern, and native American folk medicines, is nowadays proved to function as a safe anticancer agent. Yet, its poor water solubility, stability, and bioavailability hinder clinical application. In this study, we have explored a nanosized carbon nanoparticle—C60 fullerene (C60)—for optimized Ber delivery into leukemic cells. Water dispersions of noncovalent C60-Ber nanocomplexes in the 1:2, 1:1, and 2:1 molar ratios were prepared. UV–Vis spectroscopy, dynamic light scattering (DLS), and atomic force microscopy (AFM) evidenced a complexation of the Ber cation with the negatively charged C60 molecule. The computer simulation showed that π-stacking dominates in Ber and C60 binding in an aqueous solution. Complexation with C60 was found to promote Ber intracellular uptake. By increasing C60 concentration, the C60-Ber nanocomplexes exhibited higher antiproliferative potential towards CCRF-CEM cells, in accordance with the following order: free Ber < 1:2 < 1:1 < 2:1 (the most toxic). The activation of caspase 3/7 and accumulation in the sub-G1 phase of CCRF-CEM cells treated with C60-Ber nanocomplexes evidenced apoptosis induction. Thus, this study indicates that the fast and easy noncovalent complexation of alkaloid Ber with C60 improved its in vitro efficiency against cancer cells. Full article
Show Figures

Graphical abstract

12 pages, 1209 KiB  
Article
Conjugation of Amisulpride, an Anti-Psychotic Agent, with 5-Aminosalicylic Acid via an Azo Bond Yields an Orally Active Mutual Prodrug against Rat Colitis
by Wooseong Kim, Dayoon Kim, Seongkeun Jeong, Sanghyun Ju, Hanju Lee, Soojin Kim, Jin-Wook Yoo, In-Soo Yoon and Yunjin Jung
Pharmaceutics 2019, 11(11), 585; https://doi.org/10.3390/pharmaceutics11110585 - 7 Nov 2019
Cited by 6 | Viewed by 3527
Abstract
Amisulpride (ASP), an anti-psychotic agent, is a pharmacologically equivalent to sulpiride (SP). Because SP demonstrates anti-ulcer and anti-colitic activities, ASP with an aniline moiety was azo-coupled to salicylic acid to generate 5-(aminoethanoylsulfamoyl)-N-[(1-ethylpyrrolidin-2-yl)methyl]-2-methoxybenzamide (ASP-azo-ASA), with the expectation that it would act as [...] Read more.
Amisulpride (ASP), an anti-psychotic agent, is a pharmacologically equivalent to sulpiride (SP). Because SP demonstrates anti-ulcer and anti-colitic activities, ASP with an aniline moiety was azo-coupled to salicylic acid to generate 5-(aminoethanoylsulfamoyl)-N-[(1-ethylpyrrolidin-2-yl)methyl]-2-methoxybenzamide (ASP-azo-ASA), with the expectation that it would act as a colon-specific mutual prodrug against colitis. Following a 24 h incubation, approximately 80% of ASP-azo-ASA was cleaved to form ASP and 5-aminosalicylic acid (5-ASA) in the cecal contents, whereas it remained stable in the small intestinal contents. Oral gavage of ASP-azo-ASA (oral ASP-azo-ASA) delivered 5-ASA to the cecum to levels comparable with those observed for sulfasalazine (SSZ; clinical colon-specific prodrug of 5-ASA) and without detectable concentrations of ASP in the blood, indicating efficient colonic delivery. Oral ASP-azo-ASA ameliorated 2, 4-dinitrobenzenesulfonic acid hydrate (DNBS)-induced colitis in rats more effectively than oral SSZ. Additionally, oral ASP-azo-ASA lowered the levels of inflammatory mediators in the inflamed distal colon more effectively than oral SSZ. Combined treatment with 5-ASA and ASP via the rectal route more effectively reversed colonic damage and inflammation than treatment with 5-ASA or ASP alone, confirming the mutual anti-colitic actions of 5-ASA and ASP. In conclusion, ASP-azo-ASA is an orally active mutual prodrug against rat colitis with limited systemic absorption of ASP. Full article
Show Figures

Graphical abstract

18 pages, 3728 KiB  
Article
Fabrication of Ion-Crosslinking Aminochitosan Nanoparticles for Encapsulation and Slow Release of Curcumin
by Xiaoxiao Sun, Dongyan Yu, Zhuoyang Ying, Chuqiao Pan, Nan Wang, Fangfang Huang, Junhong Ling and Xiao-kun Ouyang
Pharmaceutics 2019, 11(11), 584; https://doi.org/10.3390/pharmaceutics11110584 - 7 Nov 2019
Cited by 32 | Viewed by 4280
Abstract
Curcumin (Cur) has anticancer activities but has poor stability, which can be improved using carrier materials. In this study, chitosan was aminated to increase the number of amino groups on its surface, modified with folic acid (FA), and then made into nanoparticles by [...] Read more.
Curcumin (Cur) has anticancer activities but has poor stability, which can be improved using carrier materials. In this study, chitosan was aminated to increase the number of amino groups on its surface, modified with folic acid (FA), and then made into nanoparticles by ionic crosslinking. Owing to ion interaction, the negatively charged, non-toxic tripolyphosphate (TPP) interacted with the positively charged amino group on the aminated chitosan (AmCS) surface, producing FA-AmCS-TPP nanoparticles, which were then characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectrophotometry (FT-IR), and thermogravimetric analysis (TGA). Their small particle size (175.2 ± 0.99 nm) and good surface positive potential (+42.4 mV) are beneficial for carrying antitumor drugs. We subsequently investigated whether coating of Cur by AmCS allows slow drug release by FA-AmCS-TPP nanoparticles in different pH environments, and estimated the Cur loading efficiency (EE-Cur). Our results showed that the cumulative release rate of Cur at 48 h was 56.2%, and that the EE-Cur reached 94.26 ± 0.91% with nanoparticles composed of 0.10 g AmCS, 10.0 mg FA, 10.0 mg TPP, and 15.0 mg Cur. Additionally, cytotoxicity experiments showed that the Cur/FA-AmCS-TPP nanoparticles had good targeting ability for tumor cells. Therefore, the non-toxic targeted composite nanoparticles had potential as a new antitumor agent that can overcome the limitations of Cur. Full article
(This article belongs to the Special Issue Chitosan Nanoparticles in Drug Delivery)
Show Figures

Graphical abstract

8 pages, 4996 KiB  
Communication
Design of a Novel Oxygen Therapeutic Using Polymeric Hydrogel Microcapsules Mimicking Red Blood Cells
by Amanda Cherwin, Shelby Namen, Justyna Rapacz, Grace Kusik, Alexa Anderson, Yale Wang, Matey Kaltchev, Rebecca Schroeder, Kellen O’Connell, Sydney Stephens, Junhong Chen and Wujie Zhang
Pharmaceutics 2019, 11(11), 583; https://doi.org/10.3390/pharmaceutics11110583 - 7 Nov 2019
Cited by 21 | Viewed by 4683
Abstract
The goal of this research was to develop a novel oxygen therapeutic made from a pectin-based hydrogel microcapsule carrier mimicking red blood cells. The study focused on three main criteria for developing the oxygen therapeutic to mimic red blood cells: size (5–10 μm), [...] Read more.
The goal of this research was to develop a novel oxygen therapeutic made from a pectin-based hydrogel microcapsule carrier mimicking red blood cells. The study focused on three main criteria for developing the oxygen therapeutic to mimic red blood cells: size (5–10 μm), morphology (biconcave shape), and functionality (encapsulation of oxygen carriers; e.g., hemoglobin (Hb)). The hydrogel carriers were generated via the electrospraying of the pectin-based solution into an oligochitosan crosslinking solution using an electrospinning setup. The pectin-based solution was investigated first to develop the simplest possible formulation for electrospray. Then, Design-Expert® software was used to optimize the production process of the hydrogel microcapsules. The optimal parameters were obtained through the analysis of a total of 17 trials and the microcapsule with the desired morphology and size was successfully prepared under the optimized condition. Fourier transform infrared spectroscopy (FTIR) was used to analyze the chemistry of the microcapsules. Moreover, the encapsulation of Hb into the microcapsule did not adversely affect the microcapsule preparation process, and the encapsulation efficiency was high (99.99%). The produced hydrogel microcapsule system shows great promise for creating a novel oxygen therapeutic. Full article
(This article belongs to the Special Issue Recent Development of Electrospinning for Drug Delivery)
Show Figures

Figure 1

23 pages, 7035 KiB  
Article
Folate Receptor-Targeting and Reactive Oxygen Species-Responsive Liposomal Formulation of Methotrexate for Treatment of Rheumatoid Arthritis
by Minglei Chen, Kambere Amerigos Daddy J.C., Zhigui Su, Nida El Islem Guissi, Yanyu Xiao, Li Zong and Qineng Ping
Pharmaceutics 2019, 11(11), 582; https://doi.org/10.3390/pharmaceutics11110582 - 6 Nov 2019
Cited by 59 | Viewed by 6059
Abstract
Multifunctional nanomedicines with active targeting and stimuli-responsive drug release function utilizing pathophysiological features of the disease are regarded as an effective strategy for treatment of rheumatoid arthritis (RA). Under the inflammatory environment of RA, activated macrophages revealed increased expression of folate receptor and [...] Read more.
Multifunctional nanomedicines with active targeting and stimuli-responsive drug release function utilizing pathophysiological features of the disease are regarded as an effective strategy for treatment of rheumatoid arthritis (RA). Under the inflammatory environment of RA, activated macrophages revealed increased expression of folate receptor and elevated intracellular reactive oxygen species (ROS) level. In this study, we successfully conjugated folate to polyethylene glycol 100 monostearate as film-forming material and further prepared methotrexate (MTX) and catalase (CAT) co-encapsulated liposomes, herein, shortened to FOL-MTX&CAT-L, that could actively target to activated macrophages. Thereafter, elevated intracellular hydrogen peroxide, the main source of ROS, diffused into liposomes and encapsulated CAT catalyzed the decomposition of hydrogen peroxide into oxygen and water. Continuous oxygen-generation inside liposomes would eventually disorganize its structure and release the encapsulated MTX. We characterized the in vitro drug release, cellular uptake and cytotoxicity studies as well as in vivo pharmacokinetics, biodistribution, therapeutic efficacy and safety studies of FOL-MTX&CAT-L. In vitro results revealed that FOL-MTX&CAT-L possessed sufficient ROS-sensitive drug release, displayed an improved cellular uptake through folate-mediated endocytosis and exhibited a higher cytotoxic effect on activated RAW264.7 cells. Moreover, in vivo results showed prolonged blood circulation time of PEGylated liposomes, enhanced accumulation of MTX in inflamed joints of collagen-induced arthritis (CIA) mice, reinforced therapeutic efficacy and minimal toxicity toward major organs. These results imply that FOL-MTX&CAT-L may be used as an effective nanomedicine system for RA treatment. Full article
Show Figures

Figure 1

17 pages, 3185 KiB  
Article
Doxorubicin-Loaded Delta Inulin Conjugates for Controlled and Targeted Drug Delivery: Development, Characterization, and In Vitro Evaluation
by Lixin Wang, Yunmei Song, Ankit Parikh, Paul Joyce, Rosa Chung, Liang Liu, Franklin Afinjuomo, John D. Hayball, Nikolai Petrovsky, Thomas G. Barclay and Sanjay Garg
Pharmaceutics 2019, 11(11), 581; https://doi.org/10.3390/pharmaceutics11110581 - 6 Nov 2019
Cited by 27 | Viewed by 4823
Abstract
Delta inulin, also known as microparticulate inulin (MPI), was modified by covalently attaching doxorubicin to its nanostructured surface for use as a targeted drug delivery vehicle. MPI is readily endocytosed by monocytes, macrophages, and dendritic cells and in this study, we sought to [...] Read more.
Delta inulin, also known as microparticulate inulin (MPI), was modified by covalently attaching doxorubicin to its nanostructured surface for use as a targeted drug delivery vehicle. MPI is readily endocytosed by monocytes, macrophages, and dendritic cells and in this study, we sought to utilize this property to develop a system to target anti-cancer drugs to lymphoid organs. We investigated, therefore, whether MPI could be used as a vehicle to deliver doxorubicin selectively, thereby reducing the toxicity of this antibiotic anthracycline drug. Doxorubicin was covalently attached to the surface of MPI using an acid–labile linkage to enable pH-controlled release. The MPI-doxorubicin conjugate was characterized using FTIR and SEM, confirming covalent attachment and indicating doxorubicin coupling had no obvious impact on the physical nanostructure, integrity, and cellular uptake of the MPI particles. To simulate the stability of the MPI-doxorubicin in vivo, it was stored in artificial lysosomal fluid (ALF, pH 4.5). Although the MPI-doxorubicin particles were still visible after 165 days in ALF, 53% of glycosidic bonds in the inulin particles were hydrolyzed within 12 days in ALF, reflected by the release of free glucose into solution. By contrast, the fructosidic bonds were much more stable. Drug release studies of the MPI-doxorubicin in vitro, demonstrated a successful pH-dependent controlled release effect. Confocal laser scanning microscopy studies and flow cytometric analysis confirmed that when incubated with live cells, MPI-doxorubicin was efficiently internalized by immune cells. An assay of cell metabolic activity demonstrated that the MPI carrier alone had no toxic effects on RAW 264.7 murine monocyte/macrophage-like cells, but exhibited anti-cancer effects against HCT116 human colon cancer cells. MPI-doxorubicin had a greater anti-cancer cell effect than free doxorubicin, particularly when at lower concentrations, suggesting a drug-sparing effect. This study establishes that MPI can be successfully modified with doxorubicin for chemotherapeutic drug delivery. Full article
(This article belongs to the Special Issue Novel Anticancer Drug Delivery Systems)
Show Figures

Figure 1

16 pages, 758 KiB  
Review
Production and Application of Multicistronic Constructs for Various Human Disease Therapies
by Alisa A. Shaimardanova, Daria S. Chulpanova, Kristina V. Kitaeva, Ilmira I. Abdrakhmanova, Vladislav M. Chernov, Catrin S. Rutland, Albert A. Rizvanov and Valeriya V. Solovyeva
Pharmaceutics 2019, 11(11), 580; https://doi.org/10.3390/pharmaceutics11110580 - 6 Nov 2019
Cited by 33 | Viewed by 10941
Abstract
The development of multicistronic vectors has opened up new opportunities to address the fundamental issues of molecular and cellular biology related to the need for the simultaneous delivery and joint expression of several genes. To date, the examples of the successful use of [...] Read more.
The development of multicistronic vectors has opened up new opportunities to address the fundamental issues of molecular and cellular biology related to the need for the simultaneous delivery and joint expression of several genes. To date, the examples of the successful use of multicistronic vectors have been described for the development of new methods of treatment of various human diseases, including cardiovascular, oncological, metabolic, autoimmune, and neurodegenerative disorders. The safety and effectiveness of the joint delivery of therapeutic genes in multicistronic vectors based on the internal ribosome entry site (IRES) and self-cleaving 2A peptides have been shown in both in vitro and in vivo experiments as well as in clinical trials. Co-expression of several genes in one vector has also been used to create animal models of various inherited diseases which are caused by mutations in several genes. Multicistronic vectors provide expression of all mutant genes, which allows the most complete mimicking disease pathogenesis. This review comprehensively discusses multicistronic vectors based on IRES nucleotide sequence and self-cleaving 2A peptides, including its features and possible application for the treatment and modeling of various human diseases. Full article
(This article belongs to the Special Issue Gene Delivery Vectors and Physical Methods: Present and Future Trends)
Show Figures

Graphical abstract

21 pages, 6836 KiB  
Article
Micelle-Forming Block Copolymers Tailored for Inhibition of P-gp-Mediated Multidrug Resistance: Structure to Activity Relationship
by Alena Braunová, Martin Kaňa, Júlia Kudláčová, Libor Kostka, Jan Bouček, Jan Betka, Milada Šírová and Tomáš Etrych
Pharmaceutics 2019, 11(11), 579; https://doi.org/10.3390/pharmaceutics11110579 - 5 Nov 2019
Cited by 13 | Viewed by 3480
Abstract
Multidrug resistance (MDR) is often caused by the overexpression of efflux pumps, such as ABC transporters, in particular, P-glycoprotein (P-gp). Here, we investigate the di- and tri- block amphiphilic polymer systems based on polypropylene glycol (PPO) and copolymers of (N-(2-hydroxypropyl)methacrylamide) (PHPMA) [...] Read more.
Multidrug resistance (MDR) is often caused by the overexpression of efflux pumps, such as ABC transporters, in particular, P-glycoprotein (P-gp). Here, we investigate the di- and tri- block amphiphilic polymer systems based on polypropylene glycol (PPO) and copolymers of (N-(2-hydroxypropyl)methacrylamide) (PHPMA) as potential macromolecular inhibitors of P-gp, and concurrently, carriers of drugs, passively targeting solid tumors by the enhanced permeability and retention (EPR) effect. Interestingly, there were significant differences between the effects of di- and tri- block polymer-based micelles, with the former being significantly more thermodynamically stable and showing much higher P-gp inhibition ability. The presence of Boc-protected hydrazide groups or the Boc-deprotection method did not affect the physico-chemical or biological properties of the block copolymers. Moreover, diblock polymer micelles could be loaded with free PPO containing 5–40 wt % of free PPO, which showed increased P-gp inhibition in comparison to the unloaded micelles. Loaded polymer micelles containing more than 20 wt % free PPO showed a significant increase in toxicity; thus, loaded diblock polymer micelles containing 5–15 wt % free PPO are potential candidates for in vitro and in vivo application as potent MDR inhibitors and drug carriers. Full article
(This article belongs to the Special Issue Advanced Polymeric Delivery Systems for Cancer Therapy)
Show Figures

Graphical abstract

20 pages, 2021 KiB  
Article
Development and Evaluation of Physiologically Based Pharmacokinetic Drug–Disease Models for Predicting Rifampicin Exposure in Tuberculosis and Cirrhosis Populations
by Muhammad F. Rasool, Sundus Khalid, Abdul Majeed, Hamid Saeed, Imran Imran, Mohamed Mohany, Salim S. Al-Rejaie and Faleh Alqahtani
Pharmaceutics 2019, 11(11), 578; https://doi.org/10.3390/pharmaceutics11110578 - 5 Nov 2019
Cited by 20 | Viewed by 6251
Abstract
The physiologically based pharmacokinetic (PBPK) approach facilitates the construction of novel drug–disease models by allowing incorporation of relevant pathophysiological changes. The aim of the present work was to explore and identify the differences in rifampicin pharmacokinetics (PK) after the application of its single [...] Read more.
The physiologically based pharmacokinetic (PBPK) approach facilitates the construction of novel drug–disease models by allowing incorporation of relevant pathophysiological changes. The aim of the present work was to explore and identify the differences in rifampicin pharmacokinetics (PK) after the application of its single dose in healthy and diseased populations by using PBPK drug–disease models. The Simcyp® simulator was used as a platform for modeling and simulation. The model development process was initiated by predicting rifampicin PK in healthy population after intravenous (i.v) and oral administration. Subsequent to successful evaluation in healthy population, the pathophysiological changes in tuberculosis and cirrhosis population were incorporated into the developed model for predicting rifampicin PK in these populations. The model evaluation was performed by using visual predictive checks and the comparison of mean observed/predicted ratios (ratio(Obs/pred)) of the PK parameters. The predicted PK parameters in the healthy population were in adequate harmony with the reported clinical data. The incorporation of pathophysiological changes in albumin concentration in the tuberculosis population revealed improved prediction of clearance. The developed PBPK drug–disease models have efficiently described rifampicin PK in tuberculosis and cirrhosis populations after administering single drug dose, as the ratio(Obs/pred) for all the PK parameters were within a two-fold error range. The mechanistic nature of the developed PBPK models may facilitate their extension to other diseases and drugs. Full article
(This article belongs to the Special Issue Pharmacokinetics in Optimizing Dosing)
Show Figures

Graphical abstract

15 pages, 4303 KiB  
Article
Opportunities for Successful Stabilization of Poor Glass-Forming Drugs: A Stability-Based Comparison of Mesoporous Silica Versus Hot Melt Extrusion Technologies
by Felix Ditzinger, Daniel J. Price, Anita Nair, Johanna Becker-Baldus, Clemens Glaubitz, Jennifer B. Dressman, Christoph Saal and Martin Kuentz
Pharmaceutics 2019, 11(11), 577; https://doi.org/10.3390/pharmaceutics11110577 - 4 Nov 2019
Cited by 17 | Viewed by 5069
Abstract
Amorphous formulation technologies to improve oral absorption of poorly soluble active pharmaceutical ingredients (APIs) have become increasingly prevalent. Currently, polymer-based amorphous formulations manufactured by spray drying, hot melt extrusion (HME), or co-precipitation are most common. However, these technologies have challenges in terms of [...] Read more.
Amorphous formulation technologies to improve oral absorption of poorly soluble active pharmaceutical ingredients (APIs) have become increasingly prevalent. Currently, polymer-based amorphous formulations manufactured by spray drying, hot melt extrusion (HME), or co-precipitation are most common. However, these technologies have challenges in terms of the successful stabilization of poor glass former compounds in the amorphous form. An alternative approach is mesoporous silica, which stabilizes APIs in non-crystalline form via molecular adsorption inside nano-scale pores. In line with these considerations, two poor glass formers, haloperidol and carbamazepine, were formulated as polymer-based solid dispersion via HME and with mesoporous silica, and their stability was compared under accelerated conditions. Changes were monitored over three months with respect to solid-state form and dissolution. The results were supported by solid-state nuclear magnetic resonance spectroscopy (SS-NMR) and scanning electron microscopy (SEM). It was demonstrated that mesoporous silica was more successful than HME in the stabilization of the selected poor glass formers. While both drugs remained non-crystalline during the study using mesoporous silica, polymer-based HME formulations showed recrystallization after one week. Thus, mesoporous silica represents an attractive technology to extend the formulation toolbox to poorly soluble poor glass formers. Full article
(This article belongs to the Special Issue Advances in Amorphous Drug Formulations)
Show Figures

Graphical abstract

13 pages, 1986 KiB  
Article
Effect of Lactose Pseudopolymorphic Transition on the Aerosolization Performance of Drug/Carrier Mixtures
by Andrea Della Bella, Michele Müller, Andrea Danani, Luciano Soldati and Ruggero Bettini
Pharmaceutics 2019, 11(11), 576; https://doi.org/10.3390/pharmaceutics11110576 - 4 Nov 2019
Cited by 6 | Viewed by 3352
Abstract
Physico-chemical properties of lactose are key factors in adhesive mixtures used as dry powder inhaler (DPI). Despite the abundant literature on this topic, the effect of the polymorphism and pseudo-polymorphism of lactose has been seldom investigated and discussed although often lactose used in [...] Read more.
Physico-chemical properties of lactose are key factors in adhesive mixtures used as dry powder inhaler (DPI). Despite the abundant literature on this topic, the effect of the polymorphism and pseudo-polymorphism of lactose has been seldom investigated and discussed although often lactose used in DPI is subjected to unit operations, which may alter its solid-state properties. Here, we studied the aerosolization performance of salbutamol sulphate (SS) or budesonide (BUD) formulations by investigating the effect of lactose pseudopolymorphism in ternary (coarse lactose/fine lactose/drug) and binary (coarse lactose/drug) mixtures. An improvement of the aerosolization performance of SS formulations with the increase of the amount of fine micronized lactose up to 30% (fine particle fraction (FPF) = 57%) was observed. Micronized lactose contained hygroscopic anhydrous α-lactose, which converted to α-lactose monohydrate at ambient conditions. This implied that the positive effect of fines on the aerosolization performance decreased and eventually disappeared with the formulation aging. Positive effect on SS deposition was observed also with binary mixtures with anhydrous lactose, whereas the opposite occurred with budesonide-containing formulations. The collected data demonstrated the crucial role of the carrier crystal form on the positive effect of fines on the deposition. Full article
Show Figures

Graphical abstract

26 pages, 1810 KiB  
Review
Synthesis, Characterization, and Three-Dimensional Structure Generation of Zinc Oxide-Based Nanomedicine for Biomedical Applications
by Su-Eon Jin and Hyo-Eon Jin
Pharmaceutics 2019, 11(11), 575; https://doi.org/10.3390/pharmaceutics11110575 - 4 Nov 2019
Cited by 98 | Viewed by 10698
Abstract
Zinc oxide (ZnO) nanoparticles have been studied as metal-based drugs that may be used for biomedical applications due to the fact of their biocompatibility. Their physicochemical properties, which depend on synthesis techniques involving physical, chemical, biological, and microfluidic reactor methods affect biological activity [...] Read more.
Zinc oxide (ZnO) nanoparticles have been studied as metal-based drugs that may be used for biomedical applications due to the fact of their biocompatibility. Their physicochemical properties, which depend on synthesis techniques involving physical, chemical, biological, and microfluidic reactor methods affect biological activity in vitro and in vivo. Advanced tool-based physicochemical characterization is required to identify the biological and toxicological effects of ZnO nanoparticles. These nanoparticles have variable morphologies and can be molded into three-dimensional structures to enhance their performance. Zinc oxide nanoparticles have shown therapeutic activity against cancer, diabetes, microbial infection, and inflammation. They have also shown the potential to aid in wound healing and can be used for imaging tools and sensors. In this review, we discuss the synthesis techniques, physicochemical characteristics, evaluation tools, techniques used to generate three-dimensional structures, and the various biomedical applications of ZnO nanoparticles. Full article
Show Figures

Graphical abstract