25 pages, 4063 KB  
Review
Sand and Dust Storms’ Impact on the Efficiency of the Photovoltaic Modules Installed in Baghdad: A Review Study with an Empirical Investigation
by Miqdam T. Chaichan, Hussein A. Kazem, Ali H. A. Al-Waeli, Kamaruzzaman Sopian, Mohammed A. Fayad, Wissam H. Alawee, Hayder A. Dhahad, Wan Nor Roslam Wan Isahak and Ahmed A. Al-Amiery
Energies 2023, 16(9), 3938; https://doi.org/10.3390/en16093938 - 7 May 2023
Cited by 34 | Viewed by 5558
Abstract
Airborne dust and dust storms are natural disasters that transport dust over long distances from the source basin, sometimes reaching hundreds of kilometers. Today, Iraq is a basin that produces dust storms that strike all neighboring countries such as Iran, Kuwait and Saudi [...] Read more.
Airborne dust and dust storms are natural disasters that transport dust over long distances from the source basin, sometimes reaching hundreds of kilometers. Today, Iraq is a basin that produces dust storms that strike all neighboring countries such as Iran, Kuwait and Saudi Arabia. These storms affect the productivity and capacity of the photovoltaic modules and reduce the amount of electricity that is generated clearly. Airborne dust reduces the intensity of solar radiation by scattering and absorbing it. In addition, the dust accumulated on the photovoltaic modules causes a deterioration in their productivity. In this study, an extensive review of wind movement and its sources, especially those that hit the city of Baghdad, the capital of Iraq, was conducted. Practical experiments were also carried out during a storm to measure important variables that had not been measured practically before at this site. The experimental tests were carried out starting from 1 April 2022 and continued until 12 April. Within this period, a dust storm occurred that lasted for three consecutive days that was considered one of the most severe storms that the city of Baghdad had experienced in the last few years. Practical measurements showed a deterioration in the solar radiation intensity by up to 54.5% compared to previous days. The air temperature during the storm decreased by 21.09% compared to the days before the storm. From the measurements of ultrafine aerosol particles PM1 and PM2.5, there was a significant increase of 569.9% and 441% compared to the days before the storm, respectively. Additionally, the measurements showed an increase of 217.22% and 319.21% in PM10 and total suspended particles, respectively. Indoor performance experiments showed a deterioration of current, voltage, power and electrical efficiency by 32.28%, 14.45%, 38.52% and 65.58%, respectively, due to dust accumulated during the storm days compared to the previous days. In the outdoor experiments, the rates of deterioration of current, voltage, power and electrical efficiency were greater, reaching 60.24%, 30.7%, 62.3% and 82.93%, respectively, during the storm days compared to the days before it. During a storm, cleaning the panels is futile due to the high concentration of dust in the air, especially by water. However, the photovoltaic modules can be dry cleaned with bristle brushes after the storm has subsided. Full article
(This article belongs to the Special Issue Current Advances in Fuel Cell Technology)
Show Figures

Figure 1

19 pages, 15068 KB  
Article
Seismic Monitoring at the Farnsworth CO2-EOR Field Using Time-Lapse Elastic-Waveform Inversion of 3D-3C VSP Data
by Xuejian Liu, Lianjie Huang, Kai Gao, Tom Bratton, George El-Kaseeh, William Ampomah, Robert Will, Paige Czoski, Martha Cather, Robert Balch and Brian McPherson
Energies 2023, 16(9), 3939; https://doi.org/10.3390/en16093939 - 6 May 2023
Cited by 2 | Viewed by 2452
Abstract
During the Development Phase of the U.S. Southwest Regional Partnership on Carbon Sequestration, supercritical CO2 was continuously injected into the deep oil-bearing Morrow B formation of the Farnsworth Unit in Texas for Enhanced Oil Recovery (EOR). The project injected approximately 94 kilotons [...] Read more.
During the Development Phase of the U.S. Southwest Regional Partnership on Carbon Sequestration, supercritical CO2 was continuously injected into the deep oil-bearing Morrow B formation of the Farnsworth Unit in Texas for Enhanced Oil Recovery (EOR). The project injected approximately 94 kilotons of CO2 to study geologic carbon storage during CO2-EOR. A three-dimensional (3D) surface seismic dataset was acquired in 2013 to characterize the subsurface structures of the Farnsworth site. Following this data acquisition, the baseline and three time-lapse three-dimensional three-component (3D-3C) vertical seismic profiling (VSP) data were acquired at a narrower surface area surrounding the CO2 injection and oil/gas production wells between 2014 and 2017 for monitoring CO2 injection and migration. With these VSP datasets, we inverted for subsurface velocity models to quantitatively monitor the CO2 plume within the Morrow B formation. We first built 1D initial P-wave (Vp) and S-wave (Vs) velocity models by upscaling the sonic logs. We improved the deep region of the Vp and Vs models by incorporating the deep part of a migration velocity model derived from the 3D surface seismic data. We improved the shallow region of 3D Vp and Vs models using 3D traveltime tomography of first arrivals of VSP downgoing waves. We further improved the 3D baseline velocity models using elastic-waveform inversion (EWI) of the 3D baseline VSP upgoing data. Our advanced EWI method employs alternative tomographic and conventional gradients and total-variation-based regularization to ensure the high-fidelity updates of the 3D baseline Vp and Vs models. We then sequentially applied our 3D EWI method to the three time-lapse datasets to invert for spatiotemporal changes of Vp and Vs in the reservoir. Our inversion results reveal the volumetric changes of the time-lapse Vp and Vs models and show the evolution of the CO2 plume from the CO2 injection well to the oil/gas production wells. Full article
(This article belongs to the Special Issue Forecasting CO2 Sequestration with Enhanced Oil Recovery II)
Show Figures

Figure 1

18 pages, 5376 KB  
Article
Clean Energy Action Index Efficiency: An Analysis in Global Uncertainty Contexts
by Rui Dias, Nicole Horta and Mariana Chambino
Energies 2023, 16(9), 3937; https://doi.org/10.3390/en16093937 - 6 May 2023
Cited by 18 | Viewed by 2889
Abstract
Climate change, the scarcity of fossil fuels, advances in clean energy, and volatility of crude oil prices have led to the recognition of clean energy as a viable alternative to dirty energy. This paper investigates the multifractal scaling behavior and efficiency of green [...] Read more.
Climate change, the scarcity of fossil fuels, advances in clean energy, and volatility of crude oil prices have led to the recognition of clean energy as a viable alternative to dirty energy. This paper investigates the multifractal scaling behavior and efficiency of green finance markets, as well as traditional markets such as gold, crude oil, and natural gas between 1 January 2018, and 9 March 2023. To test the serial dependency (autocorrelation) and the efficient market hypothesis, in its weak form, we employed the Lo and Mackinlay test and the DFA method. The empirical findings showed that returns data series exhibit signs of (in)efficiency. Additionally, there is a negative autocorrelation among the crude oil market, the Clean Energy Fuels Index, the Global Clean Energy Index, the gold market, and the natural gas market. Arbitration strategies can be used to obtain abnormal returns, but caution should be exercised as prices may increase above their actual market value and reduce the profitability of trading. This work contributes to the body of knowledge on sustainable finance by teaching investors how to use predictive strategies on the future values of their investments. Full article
Show Figures

Figure 1

15 pages, 36848 KB  
Article
An Easily Scalable Dynamic Wireless Power Transfer System for Electric Vehicles
by Jannis Noeren, Nejila Parspour and Lukas Elbracht
Energies 2023, 16(9), 3936; https://doi.org/10.3390/en16093936 - 6 May 2023
Cited by 12 | Viewed by 3835
Abstract
This article deals with a LCC-LCC compensated dynamic wireless power transfer system for electric vehicle charging applications. The presented prototype system allows for a power transfer of about 10 kW at 20 cm coil copper to copper distance. With just one circular pickup [...] Read more.
This article deals with a LCC-LCC compensated dynamic wireless power transfer system for electric vehicle charging applications. The presented prototype system allows for a power transfer of about 10 kW at 20 cm coil copper to copper distance. With just one circular pickup coil and a very straightforward control scheme, a new coil arrangement enables a seamless power transfer. Furthermore, the system’s design power level is easily adjustable by the size of the the pickup coil. The hardware architecture as well as the software functionality are described in detail. A 20 m test track was built up according to the outlined principle. By measuring the transmitted power, the efficiency and the interference between the primary segments and its effect on the inverter currents are examined. The results show an effective DC to DC efficiency in the range of 91 to 92% and a power fluctuation of approximately 25%. Full article
Show Figures

Figure 1

18 pages, 10247 KB  
Perspective
Advances in Climatic Form Finding in Architecture and Urban Design
by Francesco De Luca
Energies 2023, 16(9), 3935; https://doi.org/10.3390/en16093935 - 6 May 2023
Cited by 6 | Viewed by 3275
Abstract
Researchers, architects and planners are increasingly urged to develop and apply sustainable methods and solutions to reduce the impact of the built environment on climate, adapt cities to climate change and reduce or eliminate resource depletion and building-related carbon emissions. In recent years, [...] Read more.
Researchers, architects and planners are increasingly urged to develop and apply sustainable methods and solutions to reduce the impact of the built environment on climate, adapt cities to climate change and reduce or eliminate resource depletion and building-related carbon emissions. In recent years, taking advantage of state-of-the-art computational and environmental design tools, researchers and designers are developing new digital workflows, methods and solutions to investigate climate-optimal and performative buildings and urban forms. This perspective paper analyses state-of-the-art computational methods; form generation processes; and tools, criteria and workflows that present how these are integrated into climatic form finding, allowing the improvement of building and urban environmental performances. Additionally, current challenges and future directions are presented. Full article
Show Figures

Figure 1

17 pages, 6818 KB  
Article
Hosting Capacity Estimate Based on Photovoltaic Distributed Generation Deployment: A Case Study in a Campus of the University of São Paulo
by Igor Cordeiro, Welson Bassi and Ildo Luís Sauer
Energies 2023, 16(9), 3934; https://doi.org/10.3390/en16093934 - 6 May 2023
Cited by 3 | Viewed by 3347
Abstract
Distributed generation, which is mainly deployed with PV systems that benefit economically prosumers, has soared in use in Brazil. Despite this, PV capacity in excess may cause technical issues which concern planning engineers who have adopted rules of thumb to screen interconnection requests [...] Read more.
Distributed generation, which is mainly deployed with PV systems that benefit economically prosumers, has soared in use in Brazil. Despite this, PV capacity in excess may cause technical issues which concern planning engineers who have adopted rules of thumb to screen interconnection requests without any detailed study. Recently, the hosting capacity concept has been employed to assess how much PV capacity a distribution grid can host without deteriorating grid parameters, reliability, or power quality. A steady-state and worst-case-based scenario was used to run deterministic power flow simulations to estimate the hosting capacity of a specific radial circuit at a campus of the University of São Paulo, referred to as “USP-105”. Although the result may be not completely accurate, it was found that USP-105 can accommodate 103% of its peak load or 4970.6 kW of PV power, which reduced the circuit’s annual peak load by 9%. Another finding was that hosting capacity increased when PV-DG deployment was dispersed along the circuit rather than concentrated on a single location (e.g., closest, or furthest to the substation). Utilities may therefore benefit from a simple and quick assessment to obtain an overview of how specific circuits behave on PV deployment and indicate which locations are technically more beneficial. Full article
(This article belongs to the Topic Distributed Energy Systems and Resources)
Show Figures

Figure 1

14 pages, 5428 KB  
Article
Graded-Index Active Layer for Efficiency Enhancement in Polymer Solar Cell
by M. A. Morsy and Khalid Saleh
Energies 2023, 16(9), 3933; https://doi.org/10.3390/en16093933 - 6 May 2023
Cited by 4 | Viewed by 1701
Abstract
In this paper, narrow-bandgap polymer acceptors combining a benzotriazole (BTz)-core fused-ring segment, named the PZT series, were used with a high-absorption-efficiency polymer (PBDB) compound with branched 2-butyl octyl, linear n-octyl, and methyl to be utilized as a graded-index (GI) active layer of the [...] Read more.
In this paper, narrow-bandgap polymer acceptors combining a benzotriazole (BTz)-core fused-ring segment, named the PZT series, were used with a high-absorption-efficiency polymer (PBDB) compound with branched 2-butyl octyl, linear n-octyl, and methyl to be utilized as a graded-index (GI) active layer of the polymer solar cells (PSCs) to increase the photocurrent and enhance solar efficiency compared to the existing PBDB-T:PZT and PBDB-T:PZT-γ. In addition, a two-dimensional photonic crystal (2D-PhC) structure was utilized as a light-trapping anti-reflection coating (ARC) thin film based on indium tin oxide (ITO) to reduce incident light reflection and enhance its absorption. The dimensions of the cell layers were optimized to achieve the maximum power-conversion efficiency (PCE). Furthermore, the design and simulations were conducted from a 300 nm to 1200 nm wavelength range using a finite difference time-domain (FDTD) analysis. One of the most important results expected from the study was the design of a nano solar cell at (64 µm)2 with a PCE of 25.1%, a short-circuit current density (JSC) of 27.74 mA/cm2, and an open-circuit voltage (VOC) of 0.986 V. Full article
Show Figures

Figure 1

20 pages, 5912 KB  
Article
Yaw Optimisation for Wind Farm Production Maximisation Based on a Dynamic Wake Model
by Zhiwen Deng, Chang Xu, Zhihong Huo, Xingxing Han and Feifei Xue
Energies 2023, 16(9), 3932; https://doi.org/10.3390/en16093932 - 6 May 2023
Cited by 10 | Viewed by 2791
Abstract
In recent years, a major focus on wind farm wake control is to maximise the production of wind farms. To improve the power generation efficiency of wind farms through wake regulation, this study investigates yaw optimisation for wind farm production maximisation from the [...] Read more.
In recent years, a major focus on wind farm wake control is to maximise the production of wind farms. To improve the power generation efficiency of wind farms through wake regulation, this study investigates yaw optimisation for wind farm production maximisation from the perspective of time-varying wakes. To this end, we first deduce a simplified dynamic wake model according to the momentum conservation theory and backward difference method. The accuracy of the proposed model is verified by simulation comparisons. Then, the time lag of wake propagation and its impact on wind farm production maximisation through wake meandering is analysed. On this basis, a yaw optimisation method for increasing wind farm energy capture is presented. This optimisation method uses the proposed dynamic wake model for wind farm prediction. The results indicate that the optimisation period is critical to the effect of the optimisation method on wind farm energy capture. Full article
(This article belongs to the Special Issue Wind Turbines, Wind Farms and Wind Energy)
Show Figures

Figure 1

18 pages, 5770 KB  
Article
Hybrid (Gas and Geothermal) Greenhouse Simulations Aimed at Optimizing Investment and Operative Costs: A Case Study in NW Italy
by Jessica Maria Chicco, Leonardo Fonte, Giuseppe Mandrone, Andrea Tartaglino and Damiano Vacha
Energies 2023, 16(9), 3931; https://doi.org/10.3390/en16093931 - 6 May 2023
Cited by 5 | Viewed by 2306
Abstract
Generally, greenhouses are high energy-consuming, sometimes accounting for 50% of the cost of greenhouse production. Geothermal energy plays a very important role in maintaining the desired temperature and reducing energy consumption. This work deals with a project of a hybrid heating plant (97% [...] Read more.
Generally, greenhouses are high energy-consuming, sometimes accounting for 50% of the cost of greenhouse production. Geothermal energy plays a very important role in maintaining the desired temperature and reducing energy consumption. This work deals with a project of a hybrid heating plant (97% geothermal energy and 3% gas-condensing boiler) for the innovative Plant Phenotyping Greenhouse at the University Campus in Grugliasco (few km West of the city of Turin). The aim of the study is to testify to the energy efficiency of this kind of hybrid plant as well as its economic sustainability. Numerical simulations of a GRT were used to calibrate the system and verify that the software reasonably modeled the real case. They helped to correctly size the geothermal plant, also providing data about the thermal energy storage and production during on and off plant cycles. The results show a thermal power of 50.92 kW over 120 days of plant operation, in line with the expected energy needs to meet the base load demand. Long-term results further ensure a negligeable impact on the ground, with a thermal plume between 5 and 10 m from the plant, reducing substantially in a few months after switching off the plant. Full article
(This article belongs to the Special Issue Shallow Geothermal Energy 2023)
Show Figures

Figure 1

24 pages, 6556 KB  
Article
Toward a Fast but Reliable Energy Performance Evaluation Method for Existing Residential Building Stock
by Stefano Converso, Paolo Civiero, Stefano Ciprigno, Ivana Veselinova and Saffa Riffat
Energies 2023, 16(9), 3930; https://doi.org/10.3390/en16093930 - 6 May 2023
Cited by 6 | Viewed by 2915
Abstract
Building a reliable energy model for old residential buildings with insufficient documentation and user assistance is a challenging and time-consuming task. Nevertheless, the ambitious European decarbonization targets require this building stock to be renovated, making energy assessment a key priority. In line with [...] Read more.
Building a reliable energy model for old residential buildings with insufficient documentation and user assistance is a challenging and time-consuming task. Nevertheless, the ambitious European decarbonization targets require this building stock to be renovated, making energy assessment a key priority. In line with this goal, the following study explores a more simplified and automatic framework to generate a residential building energy model (BEM). The paper’s approach is based on the concept of urban building energy modelling (UBEM) archetypes or building prototypes and is customized according to the principles of dynamic simulations performed in the existing BEM software, Integrated Environmental Solutions Virtual Environment IES VE, and Solemma Open Studio. Therefore, based on three real starting inputs, a prototype database (DB) of assigned inputs is generated, i.e., an input matrix, using Google Maps as a geometry source. Other data are drawn from tabular DB. The proposed approach is evaluated by benchmarking the simulation results with precise models and monitoring the data that come from the Horizon2020 project REZBUILD. Nevertheless, a level of simplification is introduced that creates less accurate results for total or system-level energy consumption; this is compensated for using a set of simple calibration steps. The approach gives promising results for daily indoor temperature, making it a suitable indicator for evaluating further retrofitting alternatives. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Graphical abstract

23 pages, 6969 KB  
Article
Flow Characteristics of Electrochemical Catalytic Reduction of CO2 in Microchannel
by Qingjun Yang, Rizhi Dong, Rui Zhu, Shangru Yang and Wen Xie
Energies 2023, 16(9), 3929; https://doi.org/10.3390/en16093929 - 6 May 2023
Cited by 1 | Viewed by 2479
Abstract
Human beings need abundant material support and energy supply in their exploration of the universe. The sustainable supply of materials is an important condition for long-term space exploration. In situ resource utilization technology (ISRU) is an important way to realize the sustainable development [...] Read more.
Human beings need abundant material support and energy supply in their exploration of the universe. The sustainable supply of materials is an important condition for long-term space exploration. In situ resource utilization technology (ISRU) is an important way to realize the sustainable development of space exploration, which uses the abundant raw materials in outer space to transform energy and materials. In this paper, a microfluidic reaction device based on in situ resource utilization is designed, which converts H2O and CO2 into O2 and organic matter through photoelectrocatalysis. The flow and mixing process of gas-liquid two-phase flow was studied, and both the characteristics of mass transfer and the chemical reaction of fluids in the microchannel were studied. The dynamic process of the fluid-in-microchannel chemical reaction was expounded, and a prediction model of the volumetric mass transfer coefficient was proposed. The results show that the mass transfer coefficient of the chemical reaction is affected by the gas-liquid flow characteristics, and the mass transfer affects the rate of the chemical reaction. The material conversion of in situ resources by using the microchannel device can improve efficiency and accurately control the reaction products. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

28 pages, 13970 KB  
Article
DC Link Voltage Enhancement in DC Microgrid Using PV Based High Gain Converter with Cascaded Fuzzy Logic Controller
by Senthilnathan Rajendran, Vigneysh Thangavel, Narayanan Krishnan and Natarajan Prabaharan
Energies 2023, 16(9), 3928; https://doi.org/10.3390/en16093928 - 6 May 2023
Cited by 15 | Viewed by 3399
Abstract
Renewable-based sources can be interconnected through power electronic converters and connected with local loads and energy storage devices to form a microgrid. Nowadays, DC microgrids are gaining more popularity due to their higher efficiency and reliability as compared to AC microgrid systems. The [...] Read more.
Renewable-based sources can be interconnected through power electronic converters and connected with local loads and energy storage devices to form a microgrid. Nowadays, DC microgrids are gaining more popularity due to their higher efficiency and reliability as compared to AC microgrid systems. The DC Microgrid has power electronics converters between the DC loads and renewable-based energy sources. The power converters controlled with an efficient control algorithm for maintaining stable DC bus voltage in DC microgrids under various operating modes is a challenging task for researchers. With an aim to address the above-mentioned issues, this study focuses on the DC link voltage enhancement of a DC Microgrid system consisting of PV, DFIG-based wind energy conversion system (WECS), and battery Energy Storage System (ESS). To elevate PV output voltage and minimize the oscillations in DC link voltage, a high-gain Luo converter with Cascaded Fuzzy Logic Controller (CFLC) is proposed. Droop control with virtual inertia and damping control is proposed for DFIG-based WECS to provide inertia support. Artificial Neural Network (ANN) based droop control is utilised to regulate the ESS’s State of Charge (SOC). The effectiveness of the proposed converter and its control algorithms for maintaining stable DC bus link voltage has been analysed using MATLAB/Simulink and experimentally validated using a prototype model and FPGA Spartan 6E controllers. Full article
(This article belongs to the Special Issue Coordination and Optimization of Energy Management in Smart Grids)
Show Figures

Figure 1

13 pages, 5052 KB  
Article
Experimental Validation of Double Paraboloid Reflection for Obtaining Quasi-Homogeneous Distribution of Concentrated Solar Flux
by Gonçalo Domingos, José Carlos Garcia Pereira, Pedro Alexandre Rodrigues Rosa, José Rodríguez and Luís Guerra Rosa
Energies 2023, 16(9), 3927; https://doi.org/10.3390/en16093927 - 6 May 2023
Cited by 3 | Viewed by 2167
Abstract
This work demonstrates that the quasi-homogeneous distribution of concentrated solar flux is achievable by using double paraboloid reflection, with a primary reflector to concentrate the sunlight, and a secondary reflector to homogenise the radiation flux. For that, three slightly different secondary reflectors were [...] Read more.
This work demonstrates that the quasi-homogeneous distribution of concentrated solar flux is achievable by using double paraboloid reflection, with a primary reflector to concentrate the sunlight, and a secondary reflector to homogenise the radiation flux. For that, three slightly different secondary reflectors were designed and manufactured, matching the specifications of the paraboloid concentrator of the SF60 solar furnace located in PSA—Plataforma Solar de Almería, which was used as primary reflector. Starting from preliminary simulations of the optical apparatus, the secondary geometries were selected and then the reflectors were manufactured from 7075-T6 aluminium alloy, using conventional and CNC machining technologies, with further processing to achieve a mirror-like finish. The results obtained from solar irradiation tests corroborate that the “double paraboloid reflection” methodology proposed in previous theoretical works seems to be technically feasible and can be a solution for obtaining homogeneously distributed fluxes of highly concentrated solar radiation. Full article
(This article belongs to the Topic Concentrated Solar Technologies and Applications)
Show Figures

Figure 1

21 pages, 1684 KB  
Article
The Impact of ICT Capital Services on Economic Growth and Energy Efficiency in China
by Huifang E, Shuangjie Li, Liming Wang and Huidan Xue
Energies 2023, 16(9), 3926; https://doi.org/10.3390/en16093926 - 6 May 2023
Cited by 2 | Viewed by 3018
Abstract
This study aims to investigate the impact of ICT capital services on economic growth and energy efficiency in China at both national and industrial levels during the period 2000–2020. To achieve this aim, this study introduces a measurement method for capital services, explores [...] Read more.
This study aims to investigate the impact of ICT capital services on economic growth and energy efficiency in China at both national and industrial levels during the period 2000–2020. To achieve this aim, this study introduces a measurement method for capital services, explores ICT’s contributions to economic growth, and analyzes the impact of ICT on energy efficiency. The empirical results of this study indicate that although the ICT capital services scale is relatively small, accounting for only 8.87% of the total in 2020, its growth rate is faster than that of non-ICT capital services, and the distribution of ICT capital services varies widely among different industries. Additionally, based on the economic growth decomposition framework, this study finds that the contribution of ICT capital services to economic growth is 6.95% on average. It is significantly higher in certain industries, such as Financial industry; Information transmission, software and information technology services; Construction; and Manufacturing compared to others. The total factor energy efficiency (TFEE) reveals that industries with higher energy consumption have lower energy efficiency, while the panel regression model illustrates that the development of ICT has a positive impact on improving energy efficiency, with variability across industries. Overall, the findings of this study provide crucial scientific evidence and policy implications for promoting the development of ICT and integrating it with various industries, which can significantly contribute to boosting economic growth and energy efficiency. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

19 pages, 13961 KB  
Article
An Optimal Control Method for Greenhouse Climate Management Considering Crop Growth’s Spatial Distribution and Energy Consumption
by Kangji Li, Yanhui Mi and Wen Zheng
Energies 2023, 16(9), 3925; https://doi.org/10.3390/en16093925 - 6 May 2023
Cited by 9 | Viewed by 2464
Abstract
The environmental factors of greenhouses affect crop growth greatly and are mutually coupled and spatially distributed. Due to the complexity of greenhouse climate modeling, the current optimal control of greenhouse crop growth rarely considers the spatial distribution issues of environmental parameters. Proper Orthogonal [...] Read more.
The environmental factors of greenhouses affect crop growth greatly and are mutually coupled and spatially distributed. Due to the complexity of greenhouse climate modeling, the current optimal control of greenhouse crop growth rarely considers the spatial distribution issues of environmental parameters. Proper Orthogonal Decomposition (POD) is a technique to reduce the order of a model by projecting it onto an orthogonal basis. In this paper, POD is used to extract environmental features from Computational Fluid Dynamics (CFD) simulations, and a low-dimensional feature subspace is obtained by energy truncation. With multi-dimensional interpolation, fast and low-dimensional reconstruction of the dynamic variation of greenhouse climates is achieved. On this basis, a rolling-horizon optimal control scheme is proposed. For each finite horizon, the external meteorological data are updated, and the response of the greenhouse environment is quickly calculated by the POD model. With the performance criterion J of maximizing crop production and energy efficiency, through the particle swarm optimization algorithm, the optimal settings for the greenhouse shading rate and the fan speed are derived. Such control computations are rolled forward during the whole planting season. Results of a case study show that the proposed method has low computation cost and high spacial resolution and can effectively improve the spatiotemporal accuracy of greenhouse climate management. In addition, different from traditional global optimal control methods, the proposed rolling-horizon scheme can correct various external disturbances in the procedure of crop growth, and thus it is more robust and has potential for engineering applications. Full article
Show Figures

Figure 1