12 pages, 633 KiB  
Review
Vitamin D-Related Genetic Variations and Nonalcoholic Fatty Liver Disease: A Systematic Review
by Aunchalee Jaroenlapnopparat, Pichatorn Suppakitjanusant, Ben Ponvilawan and Nipith Charoenngam
Int. J. Mol. Sci. 2022, 23(16), 9122; https://doi.org/10.3390/ijms23169122 - 14 Aug 2022
Cited by 12 | Viewed by 2932
Abstract
Background: Studies have demonstrated the link between vitamin-D-related genetic variations and nonskeletal outcomes. We aimed to identify all available data on the association of vitamin-D-related genetic variations with nonalcoholic fatty liver disease (NAFLD). Methods: Potentially eligible studies were identified from Embase and Medline [...] Read more.
Background: Studies have demonstrated the link between vitamin-D-related genetic variations and nonskeletal outcomes. We aimed to identify all available data on the association of vitamin-D-related genetic variations with nonalcoholic fatty liver disease (NAFLD). Methods: Potentially eligible studies were identified from Embase and Medline databases from inception to June 2022 using a search strategy that comprised terms for “Vitamin D” and “NAFLD”. Eligible studies must report the association between vitamin D-related genetic variations and presence, severity or response to treatment of NAFLD. Data were extracted from each eligible study. Results: A total of 3495 articles were identified. After a systematic review, twelve studies were included. A total of 26 genetic variations were identified. Presence of NAFLD was associated with variations of GC (rs222054, rs222020, rs10011000, rs7041), VDR (rs2228570, rs11168287, rs10783219, rs4752), CYP24A1 (rs3787557, rs6068816, rs2296241, rs2248359) and CYP27B1 (rs4646536). Severity of NAFLD was associated with variations of GC (rs4588), VDR (rs2228570, rs4334089), CYP2R1 (rs10741657), DHCR7 (rs1544410, rs3829251, rs12785878) and CYP24A1 (rs3787557, rs6068816, rs6097809, rs6127119, rs2248359, rs3787554, rs4809960, rs6022999). Response to calcitriol treatment was associated with variation of VDR (rs10735810). Conclusions: Multiple vitamin D-related genetic variations were associated with NAFLD, indicating the role of vitamin D in the pathogenesis of NAFLD. Full article
(This article belongs to the Special Issue The Role of Vitamin D in Human Health and Diseases 2.0)
Show Figures

Figure 1

17 pages, 15594 KiB  
Case Report
Mystery(n) Phenotypic Presentation in Europeans: Report of Three Further Novel Missense RNF213 Variants Leading to Severe Syndromic Forms of Moyamoya Angiopathy and Literature Review
by Claudia Santoro, Giuseppe Mirone, Mariateresa Zanobio, Giusy Ranucci, Alessandra D’Amico, Domenico Cicala, Maria Iascone, Pia Bernardo, Vincenzo Piccolo, Andrea Ronchi, Giuseppe Limongelli, Marco Carotenuto, Vincenzo Nigro, Giuseppe Cinalli and Giulio Piluso
Int. J. Mol. Sci. 2022, 23(16), 8952; https://doi.org/10.3390/ijms23168952 - 11 Aug 2022
Cited by 4 | Viewed by 2925
Abstract
Moyamoya angiopathy (MMA) is a rare cerebral vasculopathy in some cases occurring in children. Incidence is higher in East Asia, where the heterozygous p.Arg4810Lys variant in RNF213 (Mysterin) represents the major susceptibility factor. Rare variants in RNF213 have also been found in European [...] Read more.
Moyamoya angiopathy (MMA) is a rare cerebral vasculopathy in some cases occurring in children. Incidence is higher in East Asia, where the heterozygous p.Arg4810Lys variant in RNF213 (Mysterin) represents the major susceptibility factor. Rare variants in RNF213 have also been found in European MMA patients with incomplete penetrance and are today a recognized susceptibility factor for other cardiovascular disorders, from extracerebral artery stenosis to hypertension. By whole exome sequencing, we identified three rare and previously unreported missense variants of RNF213 in three children with early onset of bilateral MMA, and subsequently extended clinical and radiological investigations to their carrier relatives. Substitutions all involved highly conserved residues clustered in the C-terminal region of RNF213, mainly in the E3 ligase domain. Probands showed a de novo occurring variant, p.Phe4120Leu (family A), a maternally inherited heterozygous variant, p.Ser4118Cys (family B), and a novel heterozygous variant, p.Glu4867Lys, inherited from the mother, in whom it occurred de novo (family C). Patients from families A and C experienced transient hypertransaminasemia and stenosis of extracerebral arteries. Bilateral MMA was present in the proband’s carrier grandfather from family B. The proband from family C and her carrier mother both exhibited annular figurate erythema. Our data confirm that rare heterozygous variants in RNF213 cause MMA in Europeans as well as in East Asian populations, suggesting that substitutions close to positions 4118–4122 and 4867 of RNF213 could lead to a syndromic form of MMA showing elevated aminotransferases and extracerebral vascular involvement, with the possible association of peculiar skin manifestations. Full article
(This article belongs to the Special Issue Molecular Researches on Ischemic Stroke)
Show Figures

Figure 1

18 pages, 6456 KiB  
Article
Molecular Mimicry of the Rheumatoid Arthritis-Related Immunodominant T-Cell Epitope within Type II Collagen (CII260-270) by the Bacterial L-Asparaginase
by Dzhemal Moten, Ivanka Teneva, Desislava Apostolova, Tsvetelina Batsalova and Balik Dzhambazov
Int. J. Mol. Sci. 2022, 23(16), 9149; https://doi.org/10.3390/ijms23169149 - 15 Aug 2022
Cited by 9 | Viewed by 2924
Abstract
The etiology of most autoimmune diseases, including rheumatoid arthritis (RA), remains unclear. Both genetic and environmental factors are believed to be involved in pathogenesis. Molecular mimicry is considered one of the mechanisms for the occurrence of autoimmune diseases. The aim of the study [...] Read more.
The etiology of most autoimmune diseases, including rheumatoid arthritis (RA), remains unclear. Both genetic and environmental factors are believed to be involved in pathogenesis. Molecular mimicry is considered one of the mechanisms for the occurrence of autoimmune diseases. The aim of the study was to determine whether the bacterial peptide L-ASNase67-81, which mimics the immunodominant T-cell epitope CII259-273, can induce T-cell reactivity in blood samples from RA patients and healthy subjects through molecular mimicry. Using bioinformatic molecular modeling methods, we first determined whether the L-ASNase67-81 peptide binds to the HLA-DRB1*04:01 molecule and whether the formed MHCII–peptide complex interacts with the corresponding T-cell receptor. To validate the obtained results, leukocytes isolated from early RA patients and healthy individuals were stimulated in vitro with L-ASNase67-81 and CII259-273 peptides as well as with bacterial L-asparaginase or human type II collagen (huCII). The activated T cells (CD4+CD154+) were analyzed by flow cytometry (FACS), and the levels of cytokines produced (IL-2, IL-17A/F, and IFN-γ) were measured by ELISA. Our in silico analyses showed that the bacterial peptide L-ASNase67-81 binds better to HLA-DRB1*04:01 compared to the immunodominant T-cell epitope CII259-273, mimicking its structure and localization in the binding groove of MHCII. Six contact points were involved in the molecular interaction of the peptide with the TCR. FACS data showed that after in vitro stimulation with the L-ASNase67-81 peptide, the percentage of activated T cells (CD154+CD4+) was significantly increased in both cell cultures isolated from ERA patients and those isolated from healthy individuals, as higher values were observed for the ERA group (9.92 ± 0.23 vs. 4.82 ± 0.22). Furthermore, the ELISA assays revealed that after stimulation with L-ASNase67-81, a significant increase in the production of the cytokines IL-2, IL-17A/F, and IFN-γ was detected in the group of ERA patients. Our data showed that the bacterial L-ASNase67-81 peptide can mimic the immunodominant T-cell epitope CII259-273 and activate HLA-DRB1*04:01-restricted T cells as well as induce cytokine production in cells isolated from ERA patients. These results are the first to demonstrate that a specific bacterial antigen could play a role in the pathogenesis of RA, mimicking the immunodominant T-cell epitope from type II collagen. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

12 pages, 1625 KiB  
Article
Extraction and Biological Evaluation of Matrix-Bound Nanovesicles (MBVs) from High-Hydrostatic Pressure-Decellularized Tissues
by Mako Kobayashi, Naoki Ishida, Yoshihide Hashimoto, Jun Negishi, Hideki Saga, Yoshihiro Sasaki, Kazunari Akiyoshi, Tsuyoshi Kimura and Akio Kishida
Int. J. Mol. Sci. 2022, 23(16), 8868; https://doi.org/10.3390/ijms23168868 - 9 Aug 2022
Cited by 4 | Viewed by 2924
Abstract
Decellularized tissues are widely used as promising materials in tissue engineering and regenerative medicine. Research on the microstructure and components of the extracellular matrix (ECM) was conducted to improve the current understanding of decellularized tissue functionality. The presence of matrix-bound nanovesicles (MBVs) embedded [...] Read more.
Decellularized tissues are widely used as promising materials in tissue engineering and regenerative medicine. Research on the microstructure and components of the extracellular matrix (ECM) was conducted to improve the current understanding of decellularized tissue functionality. The presence of matrix-bound nanovesicles (MBVs) embedded within the ECM was recently reported. Results of a previous experimental investigation revealed that decellularized tissues prepared using high hydrostatic pressure (HHP) exhibited good in vivo performance. In the current study, according to the hypothesis that MBVs are one of the functional components in HHP-decellularized tissue, we investigated the extraction of MBVs and the associated effects on vascular endothelial cells. Using nanoparticle tracking assay (NTA), transmission electron microscopy (TEM), and RNA analysis, nanosized (100–300 nm) and membranous particles containing small RNA were detected in MBVs derived from HHP-decellularized small intestinal submucosa (SIS), urinary bladder matrix (UBM), and liver. To evaluate the effect on the growth of vascular endothelial cells, which are important in the tissue regeneration process, isolated SIS-derived MBVs were exposed to vascular endothelial cells to induce cell proliferation. These results indicate that MBVs can be extracted from HHP-decellularized tissues and may play a significant role in tissue remodeling. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

12 pages, 1844 KiB  
Article
Anti-Inflammatory Effect of Topiramate in a Chronic Model of TNBS-Induced Colitis
by Inês Silva, Priscila Mendes, Sofia Guerra, Rui Pinto and Vanessa Mateus
Int. J. Mol. Sci. 2022, 23(16), 9127; https://doi.org/10.3390/ijms23169127 - 15 Aug 2022
Cited by 6 | Viewed by 2917
Abstract
Inflammatory bowel disease (IBD) is characterized by a chronic and relapsing inflammatory response in the gastrointestinal tract, resulting in severe symptoms such as abdominal pain, vomiting, diarrhea, bloody stools, and weight loss. Currently, there is no cure, and the pharmacological treatment includes drugs [...] Read more.
Inflammatory bowel disease (IBD) is characterized by a chronic and relapsing inflammatory response in the gastrointestinal tract, resulting in severe symptoms such as abdominal pain, vomiting, diarrhea, bloody stools, and weight loss. Currently, there is no cure, and the pharmacological treatment includes drugs that induce and keep the patient in remission, not reversing the underlying pathogenic mechanism. These therapies, in the long term, may cause various side effects and complications, which has increased the need to investigate new, more effective, and safer pharmacological approaches. In preclinical studies, topiramate has demonstrated a potential anti-inflammatory effect by inhibiting the production of several pro-inflammatory cytokines. This study aimed to investigate the effect of topiramate in a chronic TNBS-induced colitis model in rodents. Experimental colitis was induced by four intrarectal administrations of 1% TNBS in female CD-1 mice. Topiramate 10 and 20 mg were administered intraperitoneally for 14 days. Several parameters were evaluated, such as bodyweight, alkaline phosphatase (ALP), fecal hemoglobin, fecal calprotectin, tumor necrosis factor (TNF)-α, and interleukin (IL)-10. Topiramate reduces TNBS-induced colonic damage in a model of chronic experimental colitis and normalizes the stool consistency and anus appearance. Additionally, topiramate significantly reduced the concentration of ALP, fecal hemoglobin, fecal calprotectin, TNF-α, and IL-10, demonstrating it to be a promising pharmacological approach for the treatment of IBD in the future. Full article
Show Figures

Figure 1

23 pages, 6618 KiB  
Article
Tailoring Nylon 6/Acrylonitrile-Butadiene-Styrene Nanocomposites for Application against Electromagnetic Interference: Evaluation of the Mechanical, Thermal and Electrical Behavior, and the Electromagnetic Shielding Efficiency
by Carlos Bruno Barreto Luna, Emanuel Pereira do Nascimento, Danilo Diniz Siqueira, Bluma Guenther Soares, Pankaj Agrawal, Tomás Jeferson Alves de Mélo and Edcleide Maria Araújo
Int. J. Mol. Sci. 2022, 23(16), 9020; https://doi.org/10.3390/ijms23169020 - 12 Aug 2022
Cited by 11 | Viewed by 2915
Abstract
Nylon 6/acrylonitrile-butadiene-styrene nanocomposites were prepared by mixing in a molten state and injection molded for application in electromagnetic interference shielding and antistatic packaging. Multi-wall carbon nanotubes (MWCNT) and maleic anhydride-grafted ABS compatibilizer were incorporated to improve the electrical conductivity and mechanical performance. The [...] Read more.
Nylon 6/acrylonitrile-butadiene-styrene nanocomposites were prepared by mixing in a molten state and injection molded for application in electromagnetic interference shielding and antistatic packaging. Multi-wall carbon nanotubes (MWCNT) and maleic anhydride-grafted ABS compatibilizer were incorporated to improve the electrical conductivity and mechanical performance. The nanocomposites were characterized by oscillatory rheology, Izod impact strength, tensile strength, thermogravimetry, current-voltage measurements, shielding against electromagnetic interference, and scanning electron microscopy. The rheological behavior evidenced a severe increase in complex viscosity and storage modulus, which suggests an electrical percolation phenomenon. Adding 1 to 5 phr MWCNT into the nanocomposites produced electrical conductivities between 1.22 × 10−6 S/cm and 6.61 × 10−5 S/cm. The results make them suitable for antistatic purposes. The nanocomposite with 5 phr MWCNT showed the highest electromagnetic shielding efficiency, with a peak of –10.5 dB at 9 GHz and a value around –8.2 dB between 11 and 12 GHz. This was possibly due to the higher electrical conductivity of the 5 phr MWCNT composition. In addition, the developed nanocomposites, regardless of MWCNT content, showed tenacious behavior at room temperature. The results reveal the possibility for tailoring the properties of insulating materials for application in electrical and electromagnetic shielding. Additionally, the good mechanical and thermal properties further widen the application range. Full article
(This article belongs to the Special Issue Advanced Polymer Composite Materials III)
Show Figures

Figure 1

26 pages, 8521 KiB  
Article
Fighting Antibiotic-Resistant Bacterial Infections by Surface Biofunctionalization of 3D-Printed Porous Titanium Implants with Reduced Graphene Oxide and Silver Nanoparticles
by Hongshan San, Marianne Paresoglou, Michelle Minneboo, Ingmar A. J. van Hengel, Aytac Yilmaz, Yaiza Gonzalez-Garcia, Ad C. Fluit, Peter-Leon Hagedoorn, Lidy E. Fratila-Apachitei, Iulian Apachitei and Amir A. Zadpoor
Int. J. Mol. Sci. 2022, 23(16), 9204; https://doi.org/10.3390/ijms23169204 - 16 Aug 2022
Cited by 9 | Viewed by 2912
Abstract
Nanoparticles (NPs) have high multifunctional potential to simultaneously enhance implant osseointegration and prevent infections caused by antibiotic-resistant bacteria. Here, we present the first report on using plasma electrolytic oxidation (PEO) to incorporate different combinations of reduced graphene oxide (rGO) and silver (Ag) NPs [...] Read more.
Nanoparticles (NPs) have high multifunctional potential to simultaneously enhance implant osseointegration and prevent infections caused by antibiotic-resistant bacteria. Here, we present the first report on using plasma electrolytic oxidation (PEO) to incorporate different combinations of reduced graphene oxide (rGO) and silver (Ag) NPs on additively manufactured geometrically ordered volume-porous titanium implants. The rGO nanosheets were mainly embedded parallel with the PEO surfaces. However, the formation of ‘nano-knife’ structures (particles embedded perpendicularly to the implant surfaces) was also found around the pores of the PEO layers. Enhanced in vitro antibacterial activity against methicillin-resistant Staphylococcus aureus was observed for the rGO+Ag-containing surfaces compared to the PEO surfaces prepared only with AgNPs. This was caused by a significant improvement in the generation of reactive oxygen species, higher levels of Ag+ release, and the presence of rGO ‘nano-knife’ structures. In addition, the implants developed in this study stimulated the metabolic activity and osteogenic differentiation of MC3T3-E1 preosteoblast cells compared to the PEO surfaces without nanoparticles. Therefore, the PEO titanium surfaces incorporating controlled levels of rGO+Ag nanoparticles have high clinical potential as multifunctional surfaces for 3D-printed orthopaedic implants. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Medical and Food Processing Areas)
Show Figures

Figure 1

20 pages, 3918 KiB  
Article
Sensitive Detection of Hydroxytyrosol in Extra Virgin Olive Oils with a Novel Biosensor Based on Single-Walled Carbon Nanotubes and Tyrosinase
by Alexandra Virginia Bounegru and Constantin Apetrei
Int. J. Mol. Sci. 2022, 23(16), 9132; https://doi.org/10.3390/ijms23169132 - 15 Aug 2022
Cited by 13 | Viewed by 2906
Abstract
Hydroxytyrosol (HT) is an important marker for the authenticity and quality assessment of extra virgin olive oils (EVOO). The aim of the study was the qualitative and quantitative determination of hydroxytyrosol in commercial extra virgin olive oils of different origins and varieties using [...] Read more.
Hydroxytyrosol (HT) is an important marker for the authenticity and quality assessment of extra virgin olive oils (EVOO). The aim of the study was the qualitative and quantitative determination of hydroxytyrosol in commercial extra virgin olive oils of different origins and varieties using a newly developed biosensor based on a screen-printed electrode modified with single-layer carbon nanotubes and tyrosinase (SPE-SWCNT-Ty). The enzyme was immobilized on a carbon-based screen-printed electrode previously modified with single-layer carbon nanotubes (SPE-SWCNT-Ty) by the drop-and-dry method, followed by cross-linking with glutaraldehyde. The modified electrode surface was characterized by different methods, including electrochemical (cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS)) and spectrometric (Fourier transform infrared (FTIR) spectroscopy) methods. Cyclic voltammetry was used for the quantitative determination of HT, obtaining a detection limit of 3.49 × 10−8 M and a quantification limit of 1.0 × 10−7 M, with a wide linearity range (0.49–15.602 µM). The electrochemical performance of the SPE-SWCNT-Ty biosensor was compared with that of the modified SPE-SWCNT sensor, and the results showed increased selectivity and sensitivity of the biosensor due to the electrocatalytic activity of tyrosinase. The results obtained from the quantitative determination of HT showed that commercial EVOOs contain significant amounts of HT, proving the high quality of the finished products. The determination of the antiradical activity of HT was carried out spectrophotometrically using the free reagent galvinoxyl. The results showed that there is a very good correlation between the antiradical capacity of EVOOs, the voltammetric response and implicitly the increased concentration of HT. SPE-SWCNT-Ty has multiple advantages such as sensitivity, selectivity, feasibility and low cost and could be used in routine analysis for quality control of food products such as vegetable oils. Full article
Show Figures

Figure 1

18 pages, 2145 KiB  
Article
Differentially CTCF-Binding Sites in Cattle Rumen Tissue during Weaning
by Clarissa Boschiero, Yahui Gao, Ransom L. Baldwin VI, Li Ma, Cong-jun Li and George E. Liu
Int. J. Mol. Sci. 2022, 23(16), 9070; https://doi.org/10.3390/ijms23169070 - 13 Aug 2022
Cited by 3 | Viewed by 2903
Abstract
The weaning transition in calves is characterized by major structural changes such as an increase in the rumen capacity and surface area due to diet changes. Studies evaluating rumen development in calves are vital to identify genetic mechanisms affected by weaning. This study [...] Read more.
The weaning transition in calves is characterized by major structural changes such as an increase in the rumen capacity and surface area due to diet changes. Studies evaluating rumen development in calves are vital to identify genetic mechanisms affected by weaning. This study aimed to provide a genome-wide characterization of CTCF-binding sites and differentially CTCF-binding sites (DCBS) in rumen tissue during the weaning transition of four Holstein calves to uncover regulatory elements in rumen epithelial tissue using ChIP-seq. Our study generated 67,280 CTCF peaks for the before weaning (BW) and 39,891 for after weaning (AW). Then, 7401 DCBS were identified for the AW vs. BW comparison representing 0.15% of the cattle genome, comprising ~54% of induced DCBS and ~46% of repressed DCBS. Most of the induced and repressed DCBS were in distal intergenic regions, showing a potential role as insulators. Gene ontology enrichment revealed many shared GO terms for the induced and the repressed DCBS, mainly related to cellular migration, proliferation, growth, differentiation, cellular adhesion, digestive tract morphogenesis, and response to TGFβ. In addition, shared KEGG pathways were obtained for adherens junction and focal adhesion. Interestingly, other relevant KEGG pathways were observed for the induced DCBS like gastric acid secretion, salivary secretion, bacterial invasion of epithelial cells, apelin signaling, and mucin-type O-glycan biosynthesis. IPA analysis further revealed pathways with potential roles in rumen development during weaning, including TGFβ, Integrin-linked kinase, and Integrin signaling. When DCBS were further integrated with RNA-seq data, 36 putative target genes were identified for the repressed DCBS, including KRT84, COL9A2, MATN3, TSPAN1, and AJM1. This study successfully identified DCBS in cattle rumen tissue after weaning on a genome-wide scale and revealed several candidate target genes that may have a role in rumen development, such as TGFβ, integrins, keratins, and SMADs. The information generated in this preliminary study provides new insights into bovine genome regulation and chromatin landscape. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

11 pages, 3194 KiB  
Article
A Comprehensive Search of Non-Canonical Proteins in Non-Small Cell Lung Cancer and Their Impact on the Immune Response
by Ehsan Irajizad, Johannes F. Fahrmann, James P. Long, Jody Vykoukal, Makoto Kobayashi, Michela Capello, Chuan-Yih Yu, Yining Cai, Fu Chung Hsiao, Nikul Patel, Soyoung Park, Qian Peng, Jennifer B. Dennison, Taketo Kato, Mei Chee Tai, Ayumu Taguchi, Humam Kadara, Ignacio I. Wistuba, Hiroyuki Katayama, Kim-Anh Do, Samir M. Hanash and Edwin J. Ostrinadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2022, 23(16), 8933; https://doi.org/10.3390/ijms23168933 - 11 Aug 2022
Cited by 4 | Viewed by 2895
Abstract
There is substantial interest in mining neoantigens for cancer applications. Non-canonical proteins resulting from frameshift mutations have been identified as neoantigens in cancer. We investigated the landscape of non-canonical proteins in non-small cell lung cancer (NSCLC) and their induced immune response in the [...] Read more.
There is substantial interest in mining neoantigens for cancer applications. Non-canonical proteins resulting from frameshift mutations have been identified as neoantigens in cancer. We investigated the landscape of non-canonical proteins in non-small cell lung cancer (NSCLC) and their induced immune response in the form of autoantibodies. A database of cryptoproteins was computationally constructed and comprised all alternate open reading frames (altORFs) and ORFs identified in pseudogenes, noncoding RNAs, and untranslated regions of mRNAs that did not align with known canonical proteins. Proteomic profiles of seventeen lung adenocarcinoma (LUAD) cell lines were searched to evaluate the occurrence of cryptoproteins. To assess the immunogenicity, immunoglobulin (Ig)-bound cryptoproteins in plasmas were profiled by mass spectrometry. The specimen set consisted of plasmas from 30 newly diagnosed NSCLC cases, pre-diagnostic plasmas from 51 NSCLC cases, and 102 control plasmas. An analysis of LUAD cell lines identified 420 cryptoproteins. Plasma Ig-bound analyses revealed 90 cryptoproteins uniquely found in cases and 14 cryptoproteins that had a fold-change >2 compared to controls. In pre-diagnostic samples, 17 Ig-bound cryptoproteins yielded an odds ratio ≥2. Eight Ig-bound cryptoproteins were elevated in both pre-diagnostic and newly diagnosed cases compared to controls. Cryptoproteins represent a class of neoantigens that induce an autoantibody response in NSCLC. Full article
(This article belongs to the Special Issue Proteomics and Its Applications in Cancers 2.0)
Show Figures

Figure 1

12 pages, 1998 KiB  
Article
Dermatopontin Influences the Development of Obesity-Associated Colon Cancer by Changes in the Expression of Extracellular Matrix Proteins
by Victoria Catalán, Paula Domench, Javier Gómez-Ambrosi, Beatriz Ramírez, Sara Becerril, Amaia Mentxaka, Amaia Rodríguez, Víctor Valentí, Rafael Moncada, Jorge Baixauli, Camilo Silva, Javier Escalada and Gema Frühbeck
Int. J. Mol. Sci. 2022, 23(16), 9222; https://doi.org/10.3390/ijms23169222 - 17 Aug 2022
Cited by 8 | Viewed by 2894
Abstract
Dysfunctional adipose tissue (AT) in the context of obesity leads to chronic inflammation together with an altered extracellular matrix (ECM) remodelling, favouring cancer development and progression. Recently, the influence of dermatopontin (DPT) in AT remodelling and inflammation has been proposed. We aimed to [...] Read more.
Dysfunctional adipose tissue (AT) in the context of obesity leads to chronic inflammation together with an altered extracellular matrix (ECM) remodelling, favouring cancer development and progression. Recently, the influence of dermatopontin (DPT) in AT remodelling and inflammation has been proposed. We aimed to evaluate the role of DPT in the development of obesity-associated colon cancer (CC). Samples obtained from 73 subjects [26 lean (LN) and 47 with obesity (OB)] were used in a case-control study. Enrolled subjects were further subclassified according to the established diagnostic protocol for CC (42 without CC and 31 with CC). In vitro studies in the adenocarcinoma HT-29 cell line were performed to analyse the impact of pro- and anti-inflammatory mediators on the transcript levels of DPT as well as the effect of DPT on ECM remodelling and inflammation. Although obesity increased (p < 0.05) the circulating levels of DPT, its concentrations were significantly decreased (p < 0.05) in patients with CC. Gene expression levels of DPT in the colon from patients with CC were downregulated and, oppositely, a tendency towards increased mRNA levels in visceral AT was found. We further showed that DPT expression levels in HT-29 cells were enhanced (p < 0.05) by inflammatory factors (LPS, TNF-α and TGF-β), whereas the anti-inflammatory IL-4 decreased (p < 0.05) its expression levels. We also demonstrated that DPT upregulated (p < 0.05) the mRNA of key molecules involved in ECM remodelling (COL1A1, COL5A3, TNC and VEGFA) whereas decorin (DCN) expression was downregulated (p < 0.05) in HT-29 cells. Finally, we revealed that the adipocyte-conditioned medium obtained from volunteers with OB enhanced (p < 0.01) the expression of DPT in HT-29 and Caco-2 cells. The decreased circulating and expression levels of DPT in the colon together with the tendency towards increased levels in visceral AT in patients with CC and its influence on the expression of ECM proteins suggest a possible role of DPT in the OB-associated CC. Full article
(This article belongs to the Special Issue Extracellular Matrix and Cancer: An Intricate Affair)
Show Figures

Figure 1

17 pages, 3474 KiB  
Article
Evaluation of the Safety and Ochratoxin A Degradation Capacity of Pediococcus pentosaceus as a Dietary Probiotic with Molecular Docking Approach and Pharmacokinetic Toxicity Assessment
by Sungkwon Park, Jinsu Koo, Bosung Kim, Karthika Pushparaj, Arunkumar Malaisamy, Wen-Chao Liu and Balamuralikrishnan Balasubramanian
Int. J. Mol. Sci. 2022, 23(16), 9062; https://doi.org/10.3390/ijms23169062 - 13 Aug 2022
Cited by 8 | Viewed by 2894
Abstract
The present study evaluated the properties and ochratoxin A (OTA) degradation capacity of the dietary probiotic Pediococcus pentosaceus BalaMMB-P3, isolated from a milk coagulant. The acidic tolerance of the isolate at pH 2–3 was checked with bile salts. No hemolytic activity was noted, [...] Read more.
The present study evaluated the properties and ochratoxin A (OTA) degradation capacity of the dietary probiotic Pediococcus pentosaceus BalaMMB-P3, isolated from a milk coagulant. The acidic tolerance of the isolate at pH 2–3 was checked with bile salts. No hemolytic activity was noted, which confirmed the nonpathogenicity of the strain. The isolate was tested in vitro for antibiotic susceptibility, enzymatic activity, bile salts hydrolase activity and antifungal activity against Penicillium verrucosum, Fusarium graminearum and Aspergillus ochraceus. A molecular docking-based OTA toxicity assessment was carried out for multitargeted proteins. The 16S rRNA gene-based phylogenetic assessment identified the strain as P. pentosaceus, and was authenticated in GenBank. The carboxylesterase and glutathione s-transferase enzymes showed active and strong interactions with esters and amide bonds, respectively. The compound exhibited carcinogenic and cytotoxicity effects at an LD50 value of 20 mg/kg. Furthermore, the strain showed a potent ability to reduce OTA and suggested the prospects for utilization in nutritional aspects of food. Full article
Show Figures

Figure 1

9 pages, 711 KiB  
Communication
Multi-Omic Investigations of a 17–19 Translocation Links MINK1 Disruption to Autism, Epilepsy and Osteoporosis
by Jesper Eisfeldt, Jakob Schuy, Eva-Lena Stattin, Malin Kvarnung, Anna Falk, Lars Feuk and Anna Lindstrand
Int. J. Mol. Sci. 2022, 23(16), 9392; https://doi.org/10.3390/ijms23169392 - 20 Aug 2022
Cited by 7 | Viewed by 2893
Abstract
Balanced structural variants, such as reciprocal translocations, are sometimes hard to detect with sequencing, especially when the breakpoints are located in repetitive or insufficiently mapped regions of the genome. In such cases, long-range information is required to resolve the rearrangement, identify disrupted genes [...] Read more.
Balanced structural variants, such as reciprocal translocations, are sometimes hard to detect with sequencing, especially when the breakpoints are located in repetitive or insufficiently mapped regions of the genome. In such cases, long-range information is required to resolve the rearrangement, identify disrupted genes and, in symptomatic carriers, pinpoint the disease-causing mechanisms. Here, we report an individual with autism, epilepsy and osteoporosis and a de novo balanced reciprocal translocation: t(17;19) (p13;p11). The genomic DNA was analyzed by short-, linked- and long-read genome sequencing, as well as optical mapping. Transcriptional consequences were assessed by transcriptome sequencing of patient-specific neuroepithelial stem cells derived from induced pluripotent stem cells (iPSC). The translocation breakpoints were only detected by long-read sequencing, the first on 17p13, located between exon 1 and exon 2 of MINK1 (Misshapen-like kinase 1), and the second in the chromosome 19 centromere. Functional validation in induced neural cells showed that MINK1 expression was reduced by >50% in the patient’s cells compared to healthy control cells. Furthermore, pathway analysis revealed an enrichment of changed neural pathways in the patient’s cells. Altogether, our multi-omics experiments highlight MINK1 as a candidate monogenic disease gene and show the advantages of long-read genome sequencing in capturing centromeric translocations. Full article
Show Figures

Figure 1

13 pages, 3361 KiB  
Article
CXCL14 Attenuates Triple-Negative Breast Cancer Progression by Regulating Immune Profiles of the Tumor Microenvironment in a T Cell-Dependent Manner
by Carla Gibbs, Jae Young So, Abdul Ahad, Aleksandra M. Michalowski, Deok-Soo Son and Yang Li
Int. J. Mol. Sci. 2022, 23(16), 9314; https://doi.org/10.3390/ijms23169314 - 18 Aug 2022
Cited by 7 | Viewed by 2891
Abstract
Triple-negative breast cancer (TNBC) is aggressive and has a poor overall survival due to a lack of therapeutic targets compared to other subtypes. Chemokine signature revealed that TNBC had low levels of CXCL14, an orphan homeostatic chemokine to regulate the immune network. Here, [...] Read more.
Triple-negative breast cancer (TNBC) is aggressive and has a poor overall survival due to a lack of therapeutic targets compared to other subtypes. Chemokine signature revealed that TNBC had low levels of CXCL14, an orphan homeostatic chemokine to regulate the immune network. Here, we investigated if CXCL14 plays a critical role in TNBC progression, focusing on survival rates, tumor growth and metastasis, and immune profiles in the tumor microenvironment. Analysis of human breast-cancer datasets showed that low CXCL14 expression levels were associated with poor survival rates in patients with breast cancer, particularly for TNBC subtypes. Overexpression of CXCL14 in TNBC 4T1 orthotopic mouse model significantly reduced tumor weights and inhibited lung metastasis. Furthermore, the CXCL14 overexpression altered immune profiles in the tumor microenvironment as follows: decreased F4/80+ macrophages and CD4+CD25+ Treg cells, and increased CD8+T cells in primary tumors; decreased Ly6C+ myeloid cells and CD4+CD25+ Treg cells and increased CD4+ and CD8+T cells in lung metastatic tumors. CXCL14-induced reduction of tumor growth and metastasis was diminished in T cell-deficient nude mice. Taken together, our data demonstrate that CXCL14 inhibits TNBC progression through altering immune profiles in the tumor microenvironment and it is mediated in a T cell-dependent manner. Thus, CXCL14 could be used as a biomarker for prognosis. Full article
Show Figures

Figure 1

6 pages, 223 KiB  
Editorial
Molecular Mechanisms and Pathophysiology of Acute Stroke: Emphasis on Biomarkers in the Different Stroke Subtypes
by Teresa Gasull and Adrià Arboix
Int. J. Mol. Sci. 2022, 23(16), 9476; https://doi.org/10.3390/ijms23169476 - 22 Aug 2022
Cited by 25 | Viewed by 2890
Abstract
According to WHO data, strokes are the second leading cause of death in adult males, the first cause of death of adult women worldwide and one of the most important causes of disability and dementia in adults [...] Full article
(This article belongs to the Special Issue Molecular Mechanisms and Pathophysiology of Acute Stroke)