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Abstract: Nylon 6/acrylonitrile-butadiene-styrene nanocomposites were prepared by mixing in a
molten state and injection molded for application in electromagnetic interference shielding and
antistatic packaging. Multi-wall carbon nanotubes (MWCNT) and maleic anhydride-grafted ABS
compatibilizer were incorporated to improve the electrical conductivity and mechanical performance.
The nanocomposites were characterized by oscillatory rheology, Izod impact strength, tensile strength,
thermogravimetry, current-voltage measurements, shielding against electromagnetic interference,
and scanning electron microscopy. The rheological behavior evidenced a severe increase in complex
viscosity and storage modulus, which suggests an electrical percolation phenomenon. Adding 1 to
5 phr MWCNT into the nanocomposites produced electrical conductivities between 1.22× 10−6 S/cm
and 6.61 × 10−5 S/cm. The results make them suitable for antistatic purposes. The nanocomposite
with 5 phr MWCNT showed the highest electromagnetic shielding efficiency, with a peak of –10.5 dB
at 9 GHz and a value around –8.2 dB between 11 and 12 GHz. This was possibly due to the higher
electrical conductivity of the 5 phr MWCNT composition. In addition, the developed nanocomposites,
regardless of MWCNT content, showed tenacious behavior at room temperature. The results reveal
the possibility for tailoring the properties of insulating materials for application in electrical and
electromagnetic shielding. Additionally, the good mechanical and thermal properties further widen
the application range.

Keywords: polymeric nanocomposites; carbon nanotubes; electrical conductivity; electromagnetic
shielding; electrical sector

1. Introduction

Nanocomposites constitute a class of materials formed by hybrids of organic and
inorganic materials, wherein the inorganic nanometric phase is dispersed in a polymer
matrix [1,2]. In the last decades, widespread interest in polymer nanocomposites has been
motivated by their tuned mechanical, optical, electrical, and magnetic properties [3–5]. The
preparation of nanocomposites may involve many different nanofillers, such as graphite,
clay, silica, carbon nanotubes, graphene, and magnetic ferrites [6–10]. Of note, among the
various existing engineering polymers, Nylon 6 has received special attention for use in
nanocomposite development [11,12].

Nylon 6 (N) is a semicrystalline polymer with a glass transition temperature (Tg)
between 45 and 52 ◦C and a melting point (Tm) around 220 ◦C [13]. In general, Nylon 6 has
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high rigidity, good abrasion resistance, high tensile strength, high fatigue strength, high
service temperature, and good toughness above its Tg. These outstanding properties justify
its many applications, such as in mechanical parts, electronic components, and parts for
the automotive industry [14–16]. Nylon 6 is considered a pseudo-ductile polymer, having
high resistance to crack initiation compared with brittle polymer matrices. However, it
is inherently brittle in the presence of stress concentrators, such as a notch [17]. Some
works have addressed this problem by designing Nylon 6/clay nanocomposites [18,19].
The Nylon 6/clay systems showed improved tensile strength, toughness, thermal stability,
flame resistance, and thermomechanical strength. Recently, researchers have focused on
conductive nanofiller-based nanocomposites for antistatic packaging and electromagnetic
shielding [20–22]. Emphasis has been placed on the creation of flexible and efficient materi-
als able to protect against electromagnetic interference, especially polymer nanocomposites
reinforced with carbon nanotubes [23–25]. These materials are light, corrosion-resistant,
easily processable, and flexible.

Electromagnetic interference (EMI) is a type of environmental pollution caused by
natural phenomena and electronic devices [26,27]. The broad development of electronic
systems has brought out many concerns regarding electromagnetic pollution. Radio and
microwave radiations are emitted by all electronic devices, particularly those operating in
the radio wave and microwave frequency range [28–30]. A major concern is the interfer-
ence of electromagnetic radiation with electronics by the interaction of electrons with the
electric field of the radiation [31,32]. Electromagnetic interference is one of the most unde-
sirable by-products of telecommunication devices and electronic systems, causing, in some
cases, malfunction in electronic components [33,34]. In this context, the literature shows
many advances in protective materials against electromagnetic radiation, i.e., shielding
against electromagnetic interference (EMI) [35,36]. Nanocomposites are versatile materials
with potential for electromagnetic shielding applications, especially in electronic devices.
Some studies [37–39] have reported the high shielding efficiency of polyamide/conductive
nanofiller systems against EMI. However, their preparation for EMI shielding is mainly
done by directly mixing conductive fillers and polyamide. A single material can rarely
satisfy all the necessary technical requirements of mechanical and electrical properties for
special applications. Therefore, developing tough and highly conductive nanocomposites
is of great scientific interest. It can result in new materials with properties tailored to
multifunctional applications.

Flexible electronic materials are highly needed for various applications, such as robots,
wearable electronics, and other devices. Likewise, flexible materials for electromagnetic in-
terference (EMI) shielding with high mechanical and electrical performance are required to
avoid the adverse effects of electromagnetic radiation produced by electronic devices [40,41].
In this context, Nylon 6/ABS polymer blends are highly regarded for their superior me-
chanical properties when compatibilized with a suitable reactive copolymer, and thus,
are of prime importance in polymer technology. Nevertheless, Nylon 6/ABS blends are
insulating in nature and need conductive nanofillers (carbon black, graphene, or carbon
nanotubes) to improve their electrical properties and make high-performance nanocom-
posites for antistatic and magnetic shielding applications. Carbon nanotube-reinforced
Nylon 6/ABS nanocomposites show a good correlation between electrical conductivity,
rheology, and morphology [42]. However, adding a compatibilizing agent functionalized
with maleic anhydride optimizes the carbon nanotube/Nylon 6/ABS properties. There is a
lack of scientific literature on the potential of compatibilized Nylon 6/ABS nanocomposites
for application in EMI shielding. Therefore, this represents a relevant investigation topic
that can contribute to expanding the database regarding nanocomposites. An effective
compatibilizing agent for Nylon 6/ABS blends is maleic anhydride-grafted acrylonitrile-
butadiene-styrene (ABS-g-MA) since maleic anhydride is able to react with the amine
end-groups of Nylon 6 and at the same time be miscible with ABS.

Nylon 6/ABS nanocomposites compatibilized with ABS-g-MA are industrially rele-
vant. They can be applied in the automotive and electronics industry sectors. However,
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research on the effectiveness of Nylon 6/ABS/ABS-g-MA against electromagnetic interfer-
ence has not been explored in the literature and constitutes a relevant investigation point.
Therefore, the purpose of the present research is to develop Nylon 6/ABS nanocomposites
compatibilized with ABS-g-MA and reinforced with carbon nanotubes for application
against electromagnetic interference.

2. Results and Discussion
2.1. Rheological Properties

Figure 1a illustrates the complex viscosity curves (η*) as a function of the angular
frequency (ω) for Nylon 6, ABS, and their blends. The employed test conditions were: gap
between plates of 1 mm, a temperature of 230 ◦C, and 2% deformation. It was observed
that Nylon 6 has a typical Newtonian fluid behavior, with a constant plateau in practically
the entire analyzed interval. In this case, the complex viscosity is frequency independent.
On the other hand, ABS presented a higher complex viscosity that tended to continuously
decrease at higher angular frequencies, suggesting a pseudoplastic characteristic. The
blend viscosities were intermediate between the pure components (Nylon 6 and ABS)
and superior to that of Nylon 6. The Nylon 6/ABS and Nylon 6/ABS/ABS-g-MA blends
followed a pseudoplastic behavior. In addition, the Nylon 6/ABS/ABS-g-MA blend
exhibited complex viscosity slightly higher than the N/ABS binary system, suggesting that
the reactive compatibilizer (ABS-g-MA) increased phase interaction. Part of the ABS-g-MA
molecular structure is miscible with ABS, and, at the same time, maleic anhydride can react
with the terminal amine groups of Nylon 6. The miscibility of these groups can increase the
synergistic effect between components, generating good mechanical properties. According
to the literature [43,44], maleic anhydride groups react with the amine functional groups of
Nylon 6 to form imide groups.
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Figure 1. Complex viscosity of Nylon 6, ABS, blends, and nanocomposites as a function of in-
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nanocomposites with different MWCNT contents. N = Nylon 6. 

Figure 1. Complex viscosity of Nylon 6, ABS, blends, and nanocomposites as a function of in-
creasing MWCNT content. (a) Nylon 6, ABS and blends; (b) Nylon 6/ABS/ABS-g-MA blend and
nanocomposites with different MWCNT contents. N = Nylon 6.

Figure 1b presents the complex viscosity curves (η*) as a function of angular fre-
quency (ω) for the Nylon 6/ABS/ABS-g-MA blend and nanocomposites. Because the
Nylon 6/ABS/ABS-g-MA/MWCNT nanocomposites were hard to melt, test conditions
were adjusted as follows: 2 mm gap, 240 ◦C, and 2% deformation. For comparison, similar
conditions were employed to investigate the rheological behavior of the Nylon 6/ABS/ABS-
g-MA blend. At low frequency (<1 rad/s), the viscosity of the nanocomposites changed to
much higher values, which was also observed by other authors [45–47]. MWCNT addition
into the Nylon 6/ABS/ABS-g-MA system drastically increased the complex viscosity and
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intensified the pseudoplastic behavior. The complex viscosity of the nanocomposites con-
tinuously increased by incrementing MWCNT content, which hindered melt flow during
processing. Such behavior can be attributed to the increased friction between the polymer
matrix and the conductive charge, which restricts molecular movement in the polymer
matrix [48]. Accordingly, the material has less fluidity, becoming more rigid and behaving
like an elastic solid [49,50]. According to reports in the literature [51,52], the preferential lo-
cation of carbon nanotubes can affect the viscosity in multicomponent polymeric materials.
Nanofillers incorporated in the polymer matrix led to higher viscosities than when present
in the dispersed phase. Therefore, the preparation of Nylon 6/ABS/ABS-g-MA/MWCNT
mixtures suggests a preferred location of MWCNT in Nylon 6, resulting in high complex
viscosity values.

At high frequencies, the Nylon 6/ABS/ABS-g-MA/MWCNT nanocomposites approx-
imate the value of complex viscosity compared to the Nylon 6/ABS/ABS-g-MA system.
Stanciu et al. [53] reported that, at higher frequencies, the chains unfold and align in the
flow direction. Furthermore, with the collapse in the molecular structure of the mixture, the
carbon nanotubes are oriented in the flow direction (become aligned), thereby producing
a decrease in viscosity. Figure 1b shows that the nanocomposite with 5 phr MWCNT
presented the highest complex viscosity in the terminal zone, revealing a better dispersion
of the conductive additive in the Nylon 6 matrix. The literature [54] reported a similar
behavior and attributed the viscosity increment to a high dispersion state of the nanofiller.
This helps to improve the matrix-nanofiller interfacial contact area and, consequently,
produces a higher viscosity.

Figure 2a,b shows the storage modulus (G’) curves as a function of the oscillation
frequency for Nylon 6, ABS, and their blends and nanocomposites. Nylon 6 exhibited a
viscous liquid behavior, while ABS showed a predominant characteristic of a pseudo-solid.
The Nylon 6/ABS and Nylon 6/ABS/ABS-g-MA blends presented a slope tending to zero
at low frequencies, which is a typical behavior of pseudo-solid materials.
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Figure 2. Storage modulus curves of Nylon 6, ABS, blends, and nanocomposites. (a) Nylon 6,
ABS and blends; (b) Nylon 6/ABS/ABS-g-MA blend and nanocomposites with different MWCNT
contents; N = Nylon 6.

Figure 2b shows a very significant increase in the G’ values of the Nylon 6/ABS/ABS-
g-MA/MWCNT nanocomposites compared with the Nylon 6/ABS/ABS-g-MA blend. This
behavior indicates an increment in the viscoelastic characteristics of the nanocomposites
caused by MWCNT. The Nylon 6/ABS/ABS-g-MA/MWCNT systems presented increased
G’ values with increasing nanofiller content, mainly in the low-frequency region, which
is typical of polymers loaded with conductive particles [55,56]. The nanocomposites
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containing 3 and 5 phr MWCNT presented higher G’ values than the sample with 1 phr
MWCNT, following the same behavior observed for η*. Furthermore, the slope decrease
of the G’ curves at low frequencies, especially for 3 and 5 phr, indicates the formation
of a more effective percolated network structure for these compositions [57]. The result
was better electrical conductivity and more effective electromagnetic shielding, as will
be seen later. Apparently, the Nylon 6/ABS/ABS-g-MA/MWCNT nanocomposites from
1 phr MWCNT onwards showed a slope decrease tendency. This indicates an established
percolated filler network in the nanocomposites. In the high-frequency regime, except for
the sample with 5 phr MWCNT, the nanocomposites and the Nylon 6/ABS/ABS-g-MA
blend exhibited similar storage modulus. The high frequency corresponds to motion on
a small-time scale, indicating that molecular motions were not severely affected by the
addition of MWCNT [58].

2.2. Electrical Properties

Figure 3 shows the electrical behavior of the Nylon 6/ABS/ABS-g-MA/MWCNT
nanocomposites obtained through current-voltage (I-V) studies. Conductivity tests were
not performed on Nylon 6 and ABS because they are typically isolating materials. The
nanocomposites show a linear response in the evaluated –7 V to 7 V range, indicating
an ohmic behavior. The rise of the I-V curve slope suggests improvement in electrical
conductivity with the increase in MWCNT concentration. In other words, there was a
drop in the electrical resistance of the nanocomposites. Such behavior demonstrates that
small concentrations of MWCNT in insulating materials may promote a high electrical
conductivity. The nanocomposites loaded with 3–5 phr MWCNT exhibited a more severe
ohmic response. They present symmetric curves and a bias voltage lower than 0.5 V.
These nanocomposites showed a more efficient electrical percolation path (discussed in
the rheology test), which contributed to a faster electrical response and lower voltage.
In comparative terms, the Nylon 6/ABS/ABS-g-MA/MWCNT nanocomposite (5 phr)
showed a slightly higher electrical response compared with the system containing 3 phr.
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Figure 3 shows the electrical conductivity (σ) and resistivity (ρ) of the Nylon 6/ABS/
ABS-g-MA/MWCNT nanocomposites. As observed, the electrical conductivity of the Ny-
lon 6/ABS/ABS-g-MA/MWCNT nanocomposites increased continuously with increasing
MWCNT concentration. They exhibit a typical behavior associated with the electrical
percolation phenomenon [59]. Nanocomposites with 1 phr MWCNT showed electrical
conductivity and resistivity of 1.22 × 10−6 S/cm and 8.19 Ω·cm, respectively. The 3 phr
and 5 phr MWCNT concentrations promoted a more significant increase in electrical con-
ductivity, leading to values of 2.29 × 10−5 S/cm and 6.61 × 10−5 S/cm, respectively. These
results show that a higher MWCNT content promoted higher conductivities due to a perco-
lated network of nanotubes. This is supported by the rheological studies that showed a
noticeable viscosity increment at low frequencies.

From a practical perspective, the electrical properties of the materials suggest a high
potential for antistatic packaging application. Products with antistatic characteristics arouse
interest in technological applications, especially in the packaging of electronic circuits and
the dispersion of static charge to avoid damage to more sensitive electronic equipment, as
well as possible sparks arising from a potential difference when in contact with flammable
liquids [60,61]. According to Ribeiro et al. [62], materials having potential for antistatic
packaging should present electrical conductivity higher than 10−8 S/cm. In this case, the
nanocomposites developed in our work can be applied in the manufacture of products for
static charge dissipation. The 1 phr MWCNT concentration proved suitable for antistatic
applications. It improved the main properties without a high nanofiller content, enabling
production at a low cost.

Electrical resistivity indicates how much a material opposes the passage of an electric
current. The higher the electrical resistivity of a material, the more difficult it is for an elec-
tric current to pass through. As shown in Figure 3, the Nylon 6/ABS/ABS-g-MA/MWCNT
nanocomposites with 3 and 5 phr MWCNT have the lowest electrical resistivity. Further-
more, the electrical resistivity of the nanocomposites with 1, 3, and 5 phr are within the
range for antistatic application (104–1011 Ω·cm) [63].

2.3. Electromagnetic Shielding

Figure 4 presents the electromagnetic radiation shielding efficiency (EMI-SE) versus
frequency for Nylon 6, blends, and nanocomposites. Nylon 6, Nylon 6/ABS, and Ny-
lon 6/ABS/ABS-g-MA blends showed practically no attenuation of the electromagnetic
radiation given their insulating nature. The addition of 1 phr MWCNT led to a subtle
increase in the attenuation degree compared with the insulating materials. Because car-
bon nanotubes boost the electrical conductivity and, consequently, the interaction level
with electromagnetic radiation, they have been used as materials for the manufacture of
nanocomposites with a high EMI shielding effect [64]. In the 8.5 GHz to 10.5 GHz range,
the Nylon 6/ABS/ABS-g-MA/MWCNT nanocomposite (1 phr) showed stable attenuation
around –1.6 dB. Above 10.5 GHz, the Nylon 6/ABS/ABS-g-MA/MWCNT showed in-
creased electromagnetic radiation attenuation power, reaching a peak of –4.5 dB for 12 GHz.
Such behavior indicates that, depending on the analyzed frequency, the attenuation effect
can vary for Nylon 6/ABS/ABS-g-MA/MWCNT nanocomposites.



Int. J. Mol. Sci. 2022, 23, 9020 7 of 23

Int. J. Mol. Sci. 2022, 22, x FOR PEER REVIEW 7 of 24 
 

 

6/ABS/ABS-g-MA blends showed practically no attenuation of the electromagnetic radi-
ation given their insulating nature. The addition of 1 phr MWCNT led to a subtle increase 
in the attenuation degree compared with the insulating materials. Because carbon nano-
tubes boost the electrical conductivity and, consequently, the interaction level with elec-
tromagnetic radiation, they have been used as materials for the manufacture of nano-
composites with a high EMI shielding effect [64]. In the 8.5 GHz to 10.5 GHz range, the 
Nylon 6/ABS/ABS-g-MA/MWCNT nanocomposite (1 phr) showed stable attenuation 
around –1.6 dB. Above 10.5 GHz, the Nylon 6/ABS/ABS-g-MA/MWCNT showed in-
creased electromagnetic radiation attenuation power, reaching a peak of –4.5 dB for 12 
GHz. Such behavior indicates that, depending on the analyzed frequency, the attenuation 
effect can vary for Nylon 6/ABS/ABS-g-MA/MWCNT nanocomposites.  

8 9 10 11 12 13
-15

-10

-5

0

5

Sh
ie

ld
in

g 
Ef

fic
ie

nc
y 

(S
E)

 (d
B

)

Frequency  (GHz)

 Nylon 6 (N)  N/ABS  N/ABS/ABS-g-MA
 1 phr MWCNT  3 phr MWCNT  5 phr MWCNT

 
Figure 4. Shielding efficiency as a function of frequency for Nylon 6, blends, and nanocomposites. 
N = Nylon 6. 

The total attenuation of electromagnetic radiation improved as the MWCNT incre-
mented in the Nylon 6/ABS/ABS-g-MA/MWCNT systems (3 and 5 phr). This behavior 
may be ascribed to the higher amount of dispersed nanocarbons that led to higher con-
ductivities and better interaction with electromagnetic radiation. Similar behavior was 
reported in the literature [65,66], indicating that increasing the amount of conductive 
additive in a polymer matrix improves the electromagnetic shielding efficiency. A higher 
amount of conductive additive favors the electrical conductivity and, concurrently, ad-
ditive interaction with the electromagnetic radiation, tuning the shielding efficiency. 
Figure 4 shows that, in the 8 to 10 GHz range, an intense oscillation dominated the elec-
tromagnetic shielding behavior of the nanocomposite with 3 phr MWCNT. This fre-
quency range is critical given the instability of electromagnetic shielding in this region. 
However, in the 10.5 to 12 GHz range, there was higher stability near –5.5 dB. The best 
magnetic shielding efficiency was obtained for the composition containing 5 MWCNT, 
possibly due to the higher electrical conductivity, as discussed in Figure 3. The nano-
composite with 5 MWCNT presented the highest electrical conductivity (6.61 × 10–5 S.cm–

1) and, hence, a more efficient and stable electromagnetic shielding. It showed a peak 

Figure 4. Shielding efficiency as a function of frequency for Nylon 6, blends, and nanocomposites.
N = Nylon 6.

The total attenuation of electromagnetic radiation improved as the MWCNT incre-
mented in the Nylon 6/ABS/ABS-g-MA/MWCNT systems (3 and 5 phr). This behavior
may be ascribed to the higher amount of dispersed nanocarbons that led to higher conduc-
tivities and better interaction with electromagnetic radiation. Similar behavior was reported
in the literature [65,66], indicating that increasing the amount of conductive additive in a
polymer matrix improves the electromagnetic shielding efficiency. A higher amount of con-
ductive additive favors the electrical conductivity and, concurrently, additive interaction
with the electromagnetic radiation, tuning the shielding efficiency. Figure 4 shows that,
in the 8 to 10 GHz range, an intense oscillation dominated the electromagnetic shielding
behavior of the nanocomposite with 3 phr MWCNT. This frequency range is critical given
the instability of electromagnetic shielding in this region. However, in the 10.5 to 12 GHz
range, there was higher stability near –5.5 dB. The best magnetic shielding efficiency was
obtained for the composition containing 5 MWCNT, possibly due to the higher electrical
conductivity, as discussed in Figure 3. The nanocomposite with 5 MWCNT presented the
highest electrical conductivity (6.61 × 10−5 S·cm−1) and, hence, a more efficient and stable
electromagnetic shielding. It showed a peak around –10.5 dB at 9 GHz and an almost
steady value near –8.2 dB in the 11 to 12 GHz frequency range.

To understand the predominant shielding mechanism, Figure 5a,b presents the per-
centage contribution of absorption and reflection to the attenuation of electromagnetic
radiation. The absorption and reflection mechanisms were comparable for nanocomposites
with up to 1 phr MWCNT. Although the lower MWCNT amount provides an established
conductive network (Figure 3), the structure probably had spaces that could facilitate the
penetration of electromagnetic radiation. At the same time, nanotubes on the surface could
interact with the radiation. As a consequence, there was a balanced mechanism between
absorption and reflection. Meanwhile, the shielding mechanism showed a different behav-
ior for the Nylon 6/ABS/ABS-g-MA/MWCNT nanocomposites containing 3 phr and 5 phr
MWCNT, especially for 5 phr MWCNT. The contribution of the reflection mechanism was
predominant for samples with 3 phr and 5 phr MWCNT (percentages ranged from 40 to
75%). Therefore, the main attenuation phenomenon for nanocomposites with 3 phr and
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5 phr involves reflection, which is possibly due to a dense conductive network increasing
charge carrier concentration. The charge carriers interact directly with the incident wave,
contributing to the reflection mechanism. The maximum contribution of the reflection
mechanism was attained for nanocomposites with 5 phr MWCNT, probably due to the
higher electrical conductivity that directly contributed to improving the electromagnetic
shielding. Furthermore, the Nylon 6/ABS/ABS-MA/MWCNT system (5 phr) exhibited a
low absorption level associated with the low transmitted power and higher reflectivity.
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Figure 5. Contribution of reflection and absorption to electromagnetic wave attenuation for Nylon 
6, blends, and nanocomposites. (a) Percentage by reflection for Nylon 6, ABS, blends and nano-
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Figure 5. Contribution of reflection and absorption to electromagnetic wave attenuation for Nylon 6,
blends, and nanocomposites. (a) Percentage by reflection for Nylon 6, ABS, blends and nanocompos-
ites. (b) Percentage by absorption for Nylon 6, ABS, blends and nanocomposites. N = Nylon 6.

The absorption mechanism of the electromagnetic shielding efficiency can be better
understood through the permittivity (ε) vs. frequency curves. Dielectric permittivity
(ε′) represents the contribution of the polarization mechanisms of electric charges. In
general, an increase in ε′ can be attributed mainly to the polarization effect [67]. The
absorption shielding efficiency is related to high values of ε´. Figure 6 shows the behavior
of the dielectric constant (ε′) for Nylon 6, blends, and nanocomposites in the 8 to 12 GHz
frequency range. Nylon 6 and blends presented the lowest dielectric permittivity (ε′)
values due to their insulative nature. The dielectric constant (ε′) increased with MWCNT
increment in the Nylon 6/ABS/ABS-g-MA system. This was due to the presence of
conductive nanofillers (MWCNT) that improved polarization. As expected, the permittivity
(ε′) of the Nylon 6/ABS/ABS-g-MA with 5 phr MWCNT was the most expressive due to
its high electrical conductivity, which caused strong polarization and intense dissipation
of electrostatic charges. In addition, the dielectric constant (ε′) in the analyzed frequency
range was practically stable, indicating that the dominant polarization mechanism is the
dipole [68]. Figure 7 shows the behavior of the dielectric loss (ε′′) for Nylon 6, blends, and
nanocomposites. This parameter represents the contribution of the conduction mechanism
caused by the polarization of the material. Therefore, the values of ε′′ are related to
the energy dissipation of the incident electromagnetic waves. It was observed that the
increment in MWCNT content provided an increase in ε′′, especially for the 3 and 5 phr
concentrations. The nanocomposite containing 5 phr of MWCNTs showed the highest
ε′′ performance, with a practically constant value and with small fluctuations along the
studied frequency band, except around 9 GHz. The improved ε′′ can be attributed to the
high conductivity of the nanocomposites. Consequently, the incorporation of MWCNTs in
a larger amount in the Nylon 6/ABS/ABS-g-MA system was more effective at attenuating
the electromagnetic radiation. Because of this, the Nylon 6/ABS/ABS-g-MA/MWCNT
(5 phr) nanocomposite showed the highest efficiency dissipating the energy of the incident
waves, justifying the higher electromagnetic shielding.



Int. J. Mol. Sci. 2022, 23, 9020 9 of 23

Int. J. Mol. Sci. 2022, 22, x FOR PEER REVIEW 9 of 24 
 

 

tive nanofillers (MWCNT) that improved polarization. As expected, the permittivity (ε′) 
of the Nylon 6/ABS/ABS-g-MA with 5 phr MWCNT was the most expressive due to its 
high electrical conductivity, which caused strong polarization and intense dissipation of 
electrostatic charges. In addition, the dielectric constant (ε′) in the analyzed frequency 
range was practically stable, indicating that the dominant polarization mechanism is the 
dipole [68]. Figure 7 shows the behavior of the dielectric loss (ε″) for Nylon 6, blends, and 
nanocomposites. This parameter represents the contribution of the conduction mecha-
nism caused by the polarization of the material. Therefore, the values of ε″ are related to 
the energy dissipation of the incident electromagnetic waves. It was observed that the 
increment in MWCNT content provided an increase in ε″, especially for the 3 and 5 phr 
concentrations. The nanocomposite containing 5 phr of MWCNTs showed the highest ε″ 
performance, with a practically constant value and with small fluctuations along the 
studied frequency band, except around 9 GHz. The improved ε″ can be attributed to the 
high conductivity of the nanocomposites. Consequently, the incorporation of MWCNTs 
in a larger amount in the Nylon 6/ABS/ABS-g-MA system was more effective at attenu-
ating the electromagnetic radiation. Because of this, the Nylon 
6/ABS/ABS-g-MA/MWCNT (5 phr) nanocomposite showed the highest efficiency dissi-
pating the energy of the incident waves, justifying the higher electromagnetic shielding.  

8 9 10 11 12 13
0

5

10

15

20

ε'

Frequency (GHz)

 Nylon 6 (N)  N/ABS  N/ABS/ABS-g-MA
 1 phr MWCNT  3 phr MWCNT  5 phr MWCNT

 
Figure 6. Behavior of the dielectric permittivity as a function of frequency for Nylon 6, blends, and 
nanocomposites. N = Nylon 6. 

Figure 6. Behavior of the dielectric permittivity as a function of frequency for Nylon 6, blends, and
nanocomposites. N = Nylon 6.

Int. J. Mol. Sci. 2022, 22, x FOR PEER REVIEW 10 of 24 
 

 

8 9 10 11 12 13
-2

-1

0

1

2

3

4

ε''

Frequency (GHz)

 Nylon 6 (N)  N/ABS  N/ABS/ABS-g-MA
 1 phr MWCNT  3 phr MWCNT 5 phr MWCNT

 
Figure 7. Behavior of dielectric permittivity loss (ε”) as a function of frequency of Nylon 6, blends 
and nanocomposites. N = Nylon 6. 

2.4. Scanning Electron Microscopy (SEM) 
Figure 8a–c shows SEM micrographs of Nylon 6, the Nylon 6/ABS, and Nylon 

6/ABS/ABS-g-MA blends, respectively. Figure 8a shows the fracture surface of Nylon 6. 
Nylon 6 presents a ductile fracture aspect with plastic deformation. The Nylon 6/ABS 
blend (60/40%) (Figure 8b) exhibits dispersed ABS particles of various sizes and some 
holes representing pulled-out ABS particles extracted from the Nylon 6 surface during 
the impact test. Also, the degree of interfacial adhesion was low between Nylon 6 and 
ABS, indicating a low interfacial strength caused by the structural difference. There is 
morphological evidence of immiscibility between Nylon 6 and ABS, characterized by the 
poor adhesion between phases. The immiscibility reduced the mechanical properties of 
impact strength and elongation at break (presented later). 

The compatibilization of Nylon 6/ABS with 10% ABS-g-MA promoted the formation 
of a more stable morphology (see Figure 8c). Clearly, the ABS particles dispersed in the 
Nylon 6 matrix suffered a significant size reduction, improving the interfacial adhesion 
between phases. The literature [69] reported that an efficient polymer blend compatibil-
izer allows diffusion to the phase interface, reducing the interfacial energy and prevent-
ing the particles from coalescing. Such behavior is fundamental to improving the 
toughening mechanism and, consequently, the flexibility and the degree of energy dis-
sipation. Reactive compatibilization was possible because ABS-g-MA is miscible with 
ABS and the maleic anhydride group reacts with the amine end groups of Nylon 6. 
Compatibilization of the Nylon 6/ABS/ABS-g-MA system was effective, generating a re-
fined morphology with well-adhered particles and producing a synergistic effect in the 
mechanical properties. 

As shown in Figure 8d–i, the morphology of the Nylon 6/ABS/ABS-g-MA/MWCNT 
nanocomposites indicated the maintenance of a ductile behavior with the fracture sur-
face, exhibiting a characteristic plastic deformation. The dispersion and distribution of 
nanofillers improved with incremental MWCNT content. These results further endorse 
the oscillatory rheology and electrical conductivity analyses. The exception was the Ny-
lon 6/ABS/ABS-g-MA/MWCNT system (3 phr), which apparently showed a low cluster 

Figure 7. Behavior of dielectric permittivity loss (ε”) as a function of frequency of Nylon 6, blends
and nanocomposites. N = Nylon 6.

2.4. Scanning Electron Microscopy (SEM)

Figure 8a–c shows SEM micrographs of Nylon 6, the Nylon 6/ABS, and Nylon
6/ABS/ABS-g-MA blends, respectively. Figure 8a shows the fracture surface of Nylon 6.
Nylon 6 presents a ductile fracture aspect with plastic deformation. The Nylon 6/ABS
blend (60/40%) (Figure 8b) exhibits dispersed ABS particles of various sizes and some
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holes representing pulled-out ABS particles extracted from the Nylon 6 surface during
the impact test. Also, the degree of interfacial adhesion was low between Nylon 6 and
ABS, indicating a low interfacial strength caused by the structural difference. There is
morphological evidence of immiscibility between Nylon 6 and ABS, characterized by the
poor adhesion between phases. The immiscibility reduced the mechanical properties of
impact strength and elongation at break (presented later).
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presence of a rigid nanofiller dispersed in the Nylon 6/ABS/ABS-g-MA system deterio-
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posite morphology presented in Figure 8d–i led to a balance of properties and allowed 
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Figure 8. SEM micrographs of the impact test fracture surface: (a) Nylon 6 (2000×); (b) Nylon
6/ABS (2000×); (c) Nylon 6/ABS/ABS-g-MA (2000×); (d,e) Nylon 6/ABS/ABS-g-MA/MWCNT
(1 phr) (2000× and 10,000×); (f,g) Nylon 6/ABS/ABS-g-MA/MWCNT (3 phr) (2000× and 10,000×);
(h,i) Nylon 6/ABS/ABS-g-MA/MWCNT (5 phr) (2000× and 10,000×).

The compatibilization of Nylon 6/ABS with 10% ABS-g-MA promoted the formation
of a more stable morphology (see Figure 8c). Clearly, the ABS particles dispersed in the
Nylon 6 matrix suffered a significant size reduction, improving the interfacial adhesion
between phases. The literature [69] reported that an efficient polymer blend compatibilizer
allows diffusion to the phase interface, reducing the interfacial energy and preventing
the particles from coalescing. Such behavior is fundamental to improving the toughening
mechanism and, consequently, the flexibility and the degree of energy dissipation. Reactive
compatibilization was possible because ABS-g-MA is miscible with ABS and the maleic
anhydride group reacts with the amine end groups of Nylon 6. Compatibilization of the
Nylon 6/ABS/ABS-g-MA system was effective, generating a refined morphology with
well-adhered particles and producing a synergistic effect in the mechanical properties.

As shown in Figure 8d–i, the morphology of the Nylon 6/ABS/ABS-g-MA/MWCNT
nanocomposites indicated the maintenance of a ductile behavior with the fracture sur-
face, exhibiting a characteristic plastic deformation. The dispersion and distribution of
nanofillers improved with incremental MWCNT content. These results further endorse
the oscillatory rheology and electrical conductivity analyses. The exception was the Ny-
lon 6/ABS/ABS-g-MA/MWCNT system (3 phr), which apparently showed a low cluster
level (see Figure 8g). Furthermore, the Nylon 6/ABS/ABS-g-MA/MWCNT nanocompos-
ites kept their morphological characteristics stable, i.e., fine ABS particles remained with
practically no observable holes. Bose et al. [42] reported similar behavior. They noticed
the formation of a refined morphology of Nylon 6/ABS blends with carbon nanotubes,
especially in higher concentrations. It was suggested that the ABS phase refinement oc-
curred due to the preferential location of carbon nanotubes in the Nylon 6 phase. Thus, the
incorporation of carbon nanotubes can contribute to breaking the ABS phase droplets to
produce fine particles. Apparently, the Nylon 6/ABS/ABS-g-MA/MWCNT nanocompos-
ites showed refined morphologies due to the preferential migration of MWCNT into the
Nylon 6 phase, contributing to the maintenance of good mechanical properties.

Figure 9 illustrates the compatibilization mechanism of the blends and nanocomposites.
The Nylon 6/ABS mixture has no molecular interaction given their different structures. The
high concentration of ABS (40%) in the Nylon 6 matrix promoted the formation of a coarse
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morphology with large particles, which can be attributed to the ABS phase coalescence
phenomenon. This behavior has been reported by Majumdar et al. [70] for Nylon 6/ABS
mixtures, suggesting that ABS droplets can coalesce at high temperatures when Nylon 6
has a very low viscosity. For the Nylon 6/ABS/ABS-g-MA system, the average diameter
of the ABS particles was smaller due to the migration of ABS-g-MA to the Nylon 6/ABS
interface. One of the effects of the compatibilizer is to minimize the interfacial tension be-
tween the dispersed and matrix phases, facilitating mutual phase dispersion. Furthermore,
the compatibilizer can improve interaction and adhesion between the Nylon 6 and ABS
phase boundaries, enhancing phase stability and preventing coalescence [71,72]. However,
during Nylon 6/ABS compatibilization, part of the ABS-g-MA may remain dispersed as
a third phase, participating in the toughening mechanism. The Nylon 6/ABS/ABS-g-
MA/MWCNT nanocomposites have similar morphology to the Nylon 6/ABS/ABS-g-MA
base mixture, except for the dispersed carbon nanotubes. The presence of a rigid nanofiller
dispersed in the Nylon 6/ABS/ABS-g-MA system deteriorates the toughening mecha-
nism, reducing its flexibility. On the other hand, it favors the electrical conductivity and
electromagnetic shielding mechanism. The stable nanocomposite morphology presented
in Figure 8d–i led to a balance of properties and allowed the production of flexible and
conductive materials for application in the electrical industry.
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2.5. Mechanical Properties

Figure 10 shows the mechanical properties of Nylon 6, blends, and nanocomposites
as a function of MWCNT concentration. The elastic modulus, impact strength, tensile
strength, and elongation at break are summarized in Table 1. Nylon 6 presented a low
impact strength (about 43 J/m) for an engineering polymer. The presence of 40% ABS
was not able to toughen the Nylon 6 specimens, reducing the impact strength to 37.4 J/m.
SEM analysis of the Nylon 6/ABS mixture showed poor interfacial adhesion, evidencing
an inefficient energy dissipation mechanism. The ABS-g-MA compatibilizer substantially
contributed to the toughening mechanism in light of the high impact strength presented by
the Nylon 6/ABS/ABS-g-MA mixture. This system exhibited an impact strength of about
181.9 J/m, typical of toughened materials at room temperature. In quantitative terms, the
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Nylon 6/ABS/ABS-g-MA blend incremented the impact strength by around 323% and 387%
compared with Nylon 6 and the non-compatibilized system, respectively. Maleic anhydride,
present in the ABS-g-MA used to modify the Nylon 6/ABS system, reacted with the amine
end groups of Nylon 6, remaining miscible with the ABS phase and ensuring reactive
compatibilization. As a result, the energy dissipation mechanism improved, leading to
the high impact strength response. MWCNT increment in the nanocomposites caused a
continuous impact strength reduction compared with the Nylon 6/ABS/ABS-g-MA base
mixture. The literature [73] indicated that carbon nanotubes act as stress concentrators
and restrict the molecular mobility of nanocomposites, consequently reducing the impact
strength. However, the Nylon 6/ABS/ABS-g-MA/MWCNT nanocomposites showed a
significantly higher impact strength than Nylon 6. The nanocomposites containing 5 phr
MWCNT showed an impact strength of 82.4 J/m, an improvement of 91% compared
with Nylon 6. Therefore, even the higher MWCNT concentration formed toughened
nanocomposites at room temperature. As proposed (Figure 9), the mobility of the Nylon
6/ABS/ABS-g-MA system was counterbalanced by the MWCNT dispersion, producing
materials with good impact strength properties.
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Figure 10. Mechanical properties of Nylon 6, blends, and nanocomposites: (a) impact strength vs. 
elongation at break; (b) elastic modulus vs. tensile strength. N = Nylon 6. 
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load to deform (~67.4 MPa). The tensile strength of the Nylon 6/ABS blend decreased to 
47.3 MPa compared with Nylon 6. The compatibilization of Nylon 6/ABS by ABS-g-MA 
promoted a decrease in the tensile strength to 42.1 MPa. The drop in tensile strength was 
caused by the higher ductility that led to deformation at lower stresses. A slight increase 
in the tensile strength of the Nylon 6/ABS/ABS-MA/MWCNT nanocomposites was ob-
served compared with the Nylon 6/ABS/ABS-g-MA base system. The tensile strength of 
the nanocomposites reached a maximum value with 5 phr of MWCNT (43.8 MPa). Ap-
parently, carbon nanotubes (MWCNT) acted subtly as a reinforcing agent, receiving part 
of the mechanical stress. At the same time, increasing the MWCNT concentration did not 
seem to significantly influence the tensile strength of Nylon 6/ABS/ABS-MA/MWCNT 
nanocomposites, as the values are within the experimental error margin. 

The elongation at break of Nylon 6 was about 36.7%, while, with the addition of 40% 
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Table 1. Mechanical properties of Nylon 6, blends, and nanocomposites. IS = impact strength;
E = elastic modulus; TS = Tensile strength at yielding; EB = elongation at break; N = Nylon 6.

Samples IS (J/m) E (GPa) TS (MPa) EB (%)

Nylon 6 (N) 43.0 ± 2.0 2.95 ± 0.1 67.4 ± 1.1 36.7 ± 5.2
N/ABS 37.4 ± 2.2 2.21 ± 0.05 47.3 ± 0.5 4.8 ± 1.6

N/ABS/ABS-g-MA 181.9 ± 4.5 2.38 ± 0.06 42.1 ± 0.9 138.3 ± 9.8
N/ABS/ABS-g-MA/MWCNT (1 phr) 126.4 ± 5.0 2.41 ± 0.08 43.3 ± 0.7 94.1 ± 6.2
N/ABS/ABS-g-MA/MWCNT (3 phr) 96.5 ± 4.7 2.52 ± 0.04 43.4 ± 1.0 23.4 ± 2.3
N/ABS/ABS-g-MA/MWCNT (5 phr) 82.4 ± 5.0 2.63 ± 0.07 43.8 ± 0.5 5.3 ± 1.7

Table 1 shows that Nylon 6 presented the highest rigidity, suggesting a higher resis-
tance to elastic deformation. Nylon 6/ABS and Nylon 6/ABS/ABS-g-MA blends had a
lower elastic modulus than Nylon 6. This is due to the higher flexibility provided by the
ABS phase. The Nylon 6/ABS/ABS-g-MA system had a slightly increased elastic modulus
(2.38 GPa) compared with the non-compatibilized mixture. The addition of MWCNT in
the Nylon 6/ABS blend led to an incremental increase in elastic modulus, observable for
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all nanocomposites. The highest elastic modulus was obtained with 5 phr MWCNT, an
increment of 10.5% compared with the Nylon 6/ABS/ABS-g-MA base mixture. However,
the values found for Nylon 6/ABS/ABS-g-MA/MWCNT systems, regardless of MWCNT
content, are lower than those of Nylon 6.

Table 1 shows that Nylon 6 presented higher tensile strength and required a high
load to deform (~67.4 MPa). The tensile strength of the Nylon 6/ABS blend decreased to
47.3 MPa compared with Nylon 6. The compatibilization of Nylon 6/ABS by ABS-g-MA
promoted a decrease in the tensile strength to 42.1 MPa. The drop in tensile strength was
caused by the higher ductility that led to deformation at lower stresses. A slight increase
in the tensile strength of the Nylon 6/ABS/ABS-MA/MWCNT nanocomposites was ob-
served compared with the Nylon 6/ABS/ABS-g-MA base system. The tensile strength of
the nanocomposites reached a maximum value with 5 phr of MWCNT (43.8 MPa). Ap-
parently, carbon nanotubes (MWCNT) acted subtly as a reinforcing agent, receiving part
of the mechanical stress. At the same time, increasing the MWCNT concentration did not
seem to significantly influence the tensile strength of Nylon 6/ABS/ABS-MA/MWCNT
nanocomposites, as the values are within the experimental error margin.

The elongation at break of Nylon 6 was about 36.7%, while, with the addition of 40%
ABS, it decreased to 4.8%. The significant reduction in the elongation at break of the Nylon
6/ABS blend reveals the incompatibility of this system, corroborating with the SEM analy-
sis. The ABS-g-MA compatibilizer had a considerable influence on the value of elongation.
A significantly high elongation at break was reached with the Nylon 6/ABS/ABS-g-MA
blend (a strain of 138.3%), corresponding to an increase of 276.8% and 2781% compared
with Nylon 6 and the Nylon 6/ABS mixture, respectively. This is evidence that ABS-g-MA
improved the deformation mechanism and increased the ductility of Nylon 6/ABS. The
complex viscosity curves suggested that the ABS-g-MA reacted with the amine groups of
Nylon 6 while remaining miscible with the ABS phase, guaranteeing blend compatibiliza-
tion. As a result, there was a synergistic effect on the Nylon 6/ABS/ABS-g-MA system,
improving the deformation and the degree of flexibility. MWCNT addition to the Nylon
6/ABS/ABS-g-MA mixture drastically affected the elongation at break. As the MWCNT
content increased, the elongation at break decreased continuously, especially for 5 phr
MWCNT. The preparation of Nylon 6/ABS/ABS-g-MA/MWCNT nanocomposites (up
to 1 phr MWCNT) still kept a high elongation at break that was even superior to Nylon
6. However, with 3 and 5 phr MWCNT, the elongation at break was severely reduced,
suggesting loss of ductility. Therefore, the 1 phr MWCNT concentration is critical for the
nanocomposites, considering that, above it, the elongation at break was inferior to that of
Nylon 6. Similar behavior was observed in the literature [74], wherein carbon nanotube
concentrations above 1% inhibit the deformation process of the ductile matrix due to the
large difference between the elastic modulus of the nanofiller and the thermoplastic matrix.

Figure 11 shows the stress-strain curves of Nylon 6, blends, and nanocomposites as
a function of MWCNT concentration. Nylon 6 showed a ductile polymer behavior, with
plastic yielding and high elongation. The Nylon 6/ABS blend is distinctively a fragile
mixture, presenting no flow and practically no elongation at break. The Nylon 6/ABS
compatibilization with ABS-g-MA considerably improved the elongation at break, which
was evidenced by the large area under the stress-strain curve (typical of toughened ma-
terials). On the other hand, the Nylon 6/ABS/ABS-g-MA/MWCNT nanocomposites
presented a continuous reduction in strain level. The ductile and tenacious behavior
was preserved with the addition of a low nanofiller concentration (1 phr). However,
lower deformation at fracture was observed compared with the Nylon 6/ABS/ABS-g-
MA blend. The higher MWCNT content (3 and 5 phr) led to a severe reduction in strain.
Prashantha et al. [75] reported that strain reduction in carbon nanotube-reinforced nanocom-
posites is associated with the formation of agglomerates, generating stress concentration,
and reducing the tensile strain capacity. Therefore, a high concentration of nanotubes
supports polymer deformation (under tensile) at preferential locations, concentrating stress
and inhibiting an efficient deformation mechanism.
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2.6. Thermogravimetry (TG)

The weight loss curves of the pure polymers, Nylon 6/ABS Nylon 6/ABS, Nylon
6/ABS/ABS-g-MA, and the nanocomposites are shown in Figure 12. Nylon 6 showed a
decline in the TG curve between 30 and 150 ◦C, possibly due to the presence of humidity. In
this temperature range, ABS and ABS-g-MA showed better thermal stability than Nylon 6.
The Nylon 6/ABS and Nylon 6/ABS/ABS-g-MA blends and the nanocomposites preserved
the thermal stability between 30 to 150 ◦C, given that there was no material loss. ABS
addition to Nylon 6 created a barrier effect, reducing moisture absorption and directly
increasing thermal stability in the range of 30–150 ◦C. At 550 ◦C (final temperature), the
nanocomposites showed residues of carbon nanotubes, which typically do not decompose
completely at this temperature.

Figure 12 shows that Nylon 6, the blends, and nanocomposites have only one decompo-
sition stage, representing practically 100% of the entire mass loss. This weight loss is ascribed
to the depolymerization process, i.e., the degradation of the polymeric chains. Nylon 6
shows a curve shift to higher temperatures beginning at 420 ◦C, indicating superior thermal
stability at high temperatures. Blends and nanocomposites exhibit thermal decomposition
behaviors intermediate to the pure components at temperatures above 400 ◦C.

The Nylon 6/ABS/ABS-g-MA blend showed a subtle shift in the TG curve from 420 ◦C
onwards compared with the Nylon 6/ABS blend. Such behavior was probably due to the
weak interactions between phases in the Nylon 6/ABS mixture, as seen in the mechanical
results and the morphological analysis. On the other hand, the Nylon 6/ABS/ABS-g-MA
blend suggests a synergistic interaction between the components of the mixture, generating
a stabilizing effect. The thermogravimetric curves of the Nylon 6/ABS/ABS-g-MA blend
reinforced with carbon nanotubes slightly shifted to higher temperatures, indicating an
increase in thermal stability. However, the addition of carbon nanotubes to the Nylon
6/ABS/ABS-g-MA blend had little influence on the thermal decomposition behavior
compared with Nylon 6.
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Table 2 shows the temperatures for 10% (T0.1) and 50% (T0.5) mass loss obtained to
evaluate the thermal stability of Nylon 6, blends, and nanocomposites. The temperature
for 10% mass loss was higher for Nylon 6/ABS and Nylon 6/ABS/ABS-g-MA blends than
for Nylon 6 due to the additive effect of more ABS. Regarding the Nylon 6/ABS/ABS-g-
MA/MWCNT nanocomposites, T0.1 shifted to a higher temperature compared with Nylon
6 and the Nylon 6/ABS/ABS-g-MA blend. The dispersed carbon nanotubes help to delay
the onset of thermal degradation. Chiu and Kao [76] pointed out that multi-walled carbon
nanotubes increase the thermal stability of polyamide 46 by forming protective layers of
dispersed nanotubes.

Table 2. Thermal stability results for pure polymers, blends, and nanocomposites. N = Nylon 6.

Samples T0.1 (◦C) T0.5 (◦C)

Nylon 6 (N) 384.6 446.1
ABS 396.2 427.9

ABS-MA 376.1 426.1
N/ABS 394.8 436.1

N/ABS/ABS-g-MA 391.5 439.6
N/ABS/ABS-g-MA/MWCNT (1 phr) 397.3 444.9
N/ABS/ABS-g-MA/MWCNT (3 phr) 398.4 445.6
N/ABS/ABS-g-MA/MWCNT (5 phr) 399.1 445.5

3. Materials and Methods
3.1. Materials

Nylon 6 (N) pellets supplied by ThaThi polymers (market code B300®, with density
and flow rate of 1.13 g/cm3 and 2.9 g/10 min, respectively) were used as the polymer
matrix (ThaThi polymers, São Paulo, Brazil).

Acrylonitrile-butadiene-styrene (ABS) terpolymer was supplied by Innova, commer-
cial code AE8000®, density of 1.04 g/cm3, and flow rate of 5 g/10 min (Formosa Chemicals
Industries, Taipei, Taiwan).
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Maleic anhydride-grafted acrylonitrile-butadiene-styrene (ABS-g-MA), with a 3.1%
maleic anhydride grafting degree (Formosa Chemicals Industries, Taipei, Taiwan), was
used as compatibilizer. The detailed characterization of the ABS grafting process can be
consulted in the literature [77].

Multi-walled carbon nanotubes (MWCNT) were prepared by chemical vapor deposi-
tion (CVD) in the form of black powder and supplied by Advanced 2D Materials. Specifi-
cations are: inner diameter: 3–5 nm; outside diameter: 8–15 nm; length: 3–12 µm; specific
surface area: >233 m2/g; density: 0.15 g/cm3; and electrical conductivity of 100 s/cm
(Advanced 2D Materials, Shanghai, China).

3.2. Methods
3.2.1. Processing of Materials

Before blend preparation, Nylon 6 was dried in a vacuum oven at 80 ◦C for 24 h. ABS,
ABS-g-MA, and the carbon nanotubes were dried in the same vacuum oven for 24 h at 60 ◦C.
Table 3 presents the formulations of the blends and nanocomposites. The ABS content of
30 wt% was chosen to obtain toughened Nylon 6 and still maintain good stiffness. The
literature has reported ABS percentages in the order of 30–50 wt% [19,42,70]. On the other
hand, ABS-g-MA content was set at 10 wt%, considering that compatibilizer concentration
exceeding this value incurs a higher cost.

Table 3. Formulations of the processed nanocomposites. Part per hundred of resin (phr); N = Nylon 6.

Samples Nylon 6 (%) ABS (%) ABS-g-MA (%) MWCNT (phr)

Nylon 6 (N) 100 - - -
N/ABS 60 40 - -

N/ABS/ABS-g-MA 60 30 10 -
N/ABS/ABS-g-MA/MWCNT 60 30 10 1
N/ABS/ABS-g-MA/MWCNT 60 30 10 3
N/ABS/ABS-g-MA/MWCNT 60 30 10 5

The nanocomposites and blends were processed under an air atmosphere at 230 ◦C
using a Thermo Scientific Haake Rheomix 3000 internal mixer set with roller-type rotors
(Thermo Fisher Scientific, Waltham, MA, USA). The rotation speed employed during
processing was 60 rpm. Nylon 6 was processed under the same conditions as the nanocom-
posites and blends for comparative purposes. The total mass (Mt) added to the mixer was
determined using Equation (1):

Mt = 0.7 × ρ × Vn (1)

where: ρ = material density; 0.7 = volume of polymer mass in the mixing chamber (70%);
Vn = total volume of mixing chamber (310 cm3). After melt processing, all materials were
ground using a knife mill.

The nanocomposites and blends were injection molded in an Arburg injection molding
machine, Allrounder Model 207C Golden Edition (Arburg, Radevormwald, Germany), to
obtain impact, tensile, and HDT specimens, according to ASTM D256, ASTM D638, and
ASTM D648, respectively. The molding conditions of the specimens were: injection pres-
sure = 1200 bar; Temperature profile: 230, 240, 240, 240, 245 ◦C; Mold temperature = 50 ◦C;
Cooling time in the mold = 25 s; Hold pressure = 1000 bar. The specimens were stored in a
silica desiccator and characterized only after 48 h of injection molding. Figure 13 shows a
schematic representation of nanocomposite preparation.
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3.2.2. Characterization of Materials

The rheological studies were conducted in the oscillatory regime using a parallel-plate
Anton Paar Physica MCR 301 rheometer (Anton Paar, Graz, Austria). Plates with a 25 mm
diameter separated by 1 mm and angular frequency varying from 0.1 at 600 rad/s were
used throughout the tests. The experiments were performed under an air atmosphere
employing a temperature of 230 ◦C. 1% strain within the linear viscoelasticity region was
adopted. Samples from impact test specimens were taken for analysis.

The Izod impact strength test was conducted in a Ceast device, model Resil 5.5 J,
operating with a 5.5 J hammer (Ceast, Torino, Italy). Tests were performed on notched
specimens, according to ASTM D256, at room temperature (~24 ◦C). Seven specimens were
tested to obtain an average result. The samples presented dimensions of 3.3 mm, 12.8 mm,
and 64 mm in thickness, width, and length, respectively.

Tensile tests were performed on injected specimens, according to ASTM D638, using
an Oswaldo Filizola BME universal testing machine (Oswaldo Filizola, São Paulo, Brazil),
applying a loading speed of 50 mm/min and a load cell of 10 kN. The tests were conducted
at room temperature for an average of five specimens. The dimensions of the specimens
were 3.3 mm, 12.9 mm, and 165 mm in thickness, width, and length, respectively.

Thermogravimetry analysis was performed on simultaneous TA Instruments SDT-
Q600 TGA/DSC/DTA equipment (TA Instruments, New Castle, DE, USA). The analysis
was performed under a nitrogen atmosphere (gas flow of 50 mL/min) by heating 6 mg
samples from 30 to 600 ◦C with a 10 ◦C/min heating rate.

Current-voltage measurements were performed on a Keithley 2182A nanovoltmeter
with a real-time recording (Keithley Instruments, Cleveland, OH, USA). The measurements
were made in the –7 V to 7 V range. The electrical conductivity (σ) was determined by
combining Equations (2) and (3), as suggested in the literature [78]:

ρ=
RLZ

l
(2)

σ =
1
ρ

(3)

where: ρ = electrical resistivity; R = electrical resistance; L = sample width; Z = sample
thickness; l = distance between the two contact points in the sample.

Shielding effectiveness against electromagnetic interference was performed in a rect-
angular waveguide coupled to an Agilent Co model N5230C/PNA-L network analyzer
(Agilent Technologies, Santa Clara, CA, USA). The shielding effect was evaluated with radi-
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ation in the 8.2–12.4 GHz frequency range. For measurements, samples were compression
molded using 8 tons for 4 min to achieve a thickness of 1 mm.

Scanning electron microscopy (SEM) was performed on the fracture surface of impact-
tested specimens (TESCAN, Brun, Tchéquia). A VEGAN TESCAN 3 scanning electron
microscope working with 30 kV voltage and under a high vacuum was employed to
examine the fracture surfaces of gold sputtered samples.

4. Conclusions

Toughened Nylon 6/ABS nanocomposites were prepared for potential application
in antistatic and shielding against electromagnetic interference. The Nylon 6/ABS/ABS-
g-MA blend showed good impact performance, evidencing the ABS-g-MA effectiveness
as a reactive compatibilizing agent for Nylon 6/ABS systems. In light of this, the Nylon
6/ABS/ABS-g-MA system was suitable for nanocomposite preparation with MWCNT to
create new materials with tailored properties for the electrical industry. MWCNT addition
to the Nylon 6/ABS/ABS-g-MA mixture optimized the electrical conductivity and led to
conductive nanocomposites. Moreover, the nanocomposites sustained impact strength
and elastic modulus at high levels, acceptable for the production of nanocomposites with
enhanced mechanical and electrical properties. For antistatic packaging purposes, incorpo-
rating 1 phr of carbon nanotubes was enough to generate high flexibility, impact strength,
and electromagnetic radiation attenuating power. The highest electromagnetic shielding
efficiency was attained for nanocomposites with 5 phr MWCNT, reaching an attenuation
degree of about –10.5 dB at 9 GHz and –8.2 dB in the 11 to 12 GHz frequency range. The
development of Nylon 6/ABS/ABS-g-MA/MWCNT nanocomposites holds technological
potential due to their good properties and versatility. These make it possible to control the
characteristics exhibited by these nanocomposites, allowing them to be molded to meet the
required applications. Additionally, nanocomposites are lightweight, corrosion-resistant,
cheaper, and more convenient for miniaturized parts than metals. The ongoing trend is
to expand research on engineered nanocomposites using hybrid blends of nanofillers to
achieve advanced multifunctional materials.
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