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Abstract: Hydroxytyrosol (HT) is an important marker for the authenticity and quality assessment of
extra virgin olive oils (EVOO). The aim of the study was the qualitative and quantitative determination
of hydroxytyrosol in commercial extra virgin olive oils of different origins and varieties using a newly
developed biosensor based on a screen-printed electrode modified with single-layer carbon nanotubes
and tyrosinase (SPE-SWCNT-Ty). The enzyme was immobilized on a carbon-based screen-printed
electrode previously modified with single-layer carbon nanotubes (SPE-SWCNT-Ty) by the drop-
and-dry method, followed by cross-linking with glutaraldehyde. The modified electrode surface was
characterized by different methods, including electrochemical (cyclic voltammetry (CV), differential
pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS)) and spectrometric (Fourier
transform infrared (FTIR) spectroscopy) methods. Cyclic voltammetry was used for the quantitative
determination of HT, obtaining a detection limit of 3.49 × 10−8 M and a quantification limit of
1.0 × 10−7 M, with a wide linearity range (0.49–15.602 µM). The electrochemical performance of
the SPE-SWCNT-Ty biosensor was compared with that of the modified SPE-SWCNT sensor, and
the results showed increased selectivity and sensitivity of the biosensor due to the electrocatalytic
activity of tyrosinase. The results obtained from the quantitative determination of HT showed that
commercial EVOOs contain significant amounts of HT, proving the high quality of the finished
products. The determination of the antiradical activity of HT was carried out spectrophotometrically
using the free reagent galvinoxyl. The results showed that there is a very good correlation between the
antiradical capacity of EVOOs, the voltammetric response and implicitly the increased concentration
of HT. SPE-SWCNT-Ty has multiple advantages such as sensitivity, selectivity, feasibility and low
cost and could be used in routine analysis for quality control of food products such as vegetable oils.
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1. Introduction

Olea europaea L., commonly known as the olive tree, is a small tree species found
mostly in Mediterranean countries, with olive oil as its main by-product [1]. Olive oil is
present in the Mediterranean diet, and it is considered a protective factor in the prevention
of heart disease. Research has shown that the health benefits of the Mediterranean diet
are largely attributed to olive oil precisely because of its antioxidant [2,3] anti-tumour [4,5]
anti-inflammatory [6], hypolipidemic [7] and even antimicrobial [8,9] action.

Virgin olive oil (VOO) is obtained by extraction, first crushing the olive fruit in a
hammer mill to form a paste. The olive oil is then separated and centrifuged for clarification
and purification [10].

In terms of composition, VOO contains mainly triglycerides (97–99%) and an un-
saponifiable fraction (1–3%) containing mostly phenolic compounds responsible for its
biological properties but also organoleptic attributes [11,12].
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Oleuropein, hydroxytyrosol and tyrosol make up the majority of the phenolic fraction
in olive oil [13,14]. In addition to these, fat-soluble vitamins such as tocopherols, hydrocar-
bons (squalene) or pigments such as chlorophyll and carotenoids can be identified [15,16].

The main group of antioxidants in VOO are hydrophilic phenols, compounds that are
highly relevant in determining the quality of the oil in terms of the degree of bitter or spicy
taste as well as stability [17,18] but also for the specific flavour of each VOO [19]. Each
VOO has a different composition and phenolic content profile, which explains the different
quality and stability characteristics [20].

Over 30 different phenolic compounds have been identified in VOO [21,22], including
phenolic acids such as hydroxybenzoic, p-coumaric, ferulic, gallic, syringic, vanillic, caffeic,
o-coumaric acids, and synaptic acids [19]. Other types of polyphenols that can also be
found in VOO are flavonoids, lignans, hydroxyisochromans, secoiridoids and phenolic
alcohols [23].

Secoiridoids are phenolic compounds with a small percentage in the composition of
VOO, being insoluble in oil, and most of them are destroyed by the mechanical extraction
process. However, they manage to imprint important biological and organoleptic prop-
erties on VOO [17]. The most common secoiridoids are demethyloleuropein, oleuropein,
ligstrozide and their aglycones, with the latter accounting for about 90% of the phenolic
compounds in VOO [23]. The bitter taste of VOO is due to the secoiridoids present, in
particular the dialdehyde form of oleuropein aglicon [24].

Representatives of another class of compounds, the phenolic alcohols, present in
VOO are tyrosol (p-Hydroxyphenylethanol) and hydroxytyrosol (2-[3,4-dihydroxyphenyl]
ethanol). They are present in low concentrations in fresh olive oil but tend to increase
during the storage process due to the hydrolysis of secoiridoids [25].

Among all the constituent compounds of VOO, oleuropein, hydroxytyrosol and tyrosol
having an o-diphenolic structure are considered important markers for authenticity or
correct preservation of olive oil.

Studies also show that the presence of tyrosol and hydroxytyrosol has an osteoprotec-
tive effect by stimulating calcium absorption [26] and proliferation of osteoblast cells [27],
and oleuropein has a hypoglycemic [28], anti-tumour [29] and neuroprotective [30] effect.

The concentrations of these phenolic compounds depend on many aspects, such as
climate, geographical origin, ripeness of the olive fruit at harvest, production conditions,
storage conditions and storage time [31–36]. Precisely in order to ensure that VOO is of
high quality and to avoid adulteration, the European Union Commission, the International
Olive Oil Council, and the Codex Alimentarius Committee regulate and carefully monitor
the content of certain phenolic compounds, such as oleuropein or hydroxytyrosol, which
are considered specific chemical markers [37,38].

The classical analytical methods often used to evaluate these parameters are chro-
matography or spectrophotometry. They are efficient but involve long times, expensive
reagents and additional sample preparation steps [39]. Alternative methods include elec-
trochemical techniques that provide fast and accurate results [40]. Electrochemical sensors
and biosensors have become increasingly diverse both structurally and in the functionalisa-
tion of the nanomaterials used as carriers to make determinations as sensitive, selective
and easy as possible, using small amounts of samples without the need for complex pre-
preparation [41–46]. The literature provides valuable information on sensitive and selective
techniques, sensors and biosensors for the determination of oleuropein, tyrosol and hydrox-
ytyrosol from real samples of VOO [47–50]. In most papers, the electrochemical method
(e.g., DPV, CV) is combined with liquid-liquid extractive methods and compared with
spectrophotometric or chromatographic methods [51–53]. In the case of biosensors, the
most frequently immobilised were tyrosinase [54–56] and peroxidase [57] enzymes capable
of catalysing the oxidation of monophenols to form o-phenols, which in turn are oxidised
to o-quinones. Using an electrochemical technique, the quinones are reduced, and the
measured current is proportional to the concentration of the phenolic compound in the
VOO [37,58].
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The objective of the present paper is to construct a reliable, sensitive and selective
tyrosinase-based biosensor for hydroxytyrosol determination and quantification from real
olive oil samples. Tyrosinase (Ty) will be immobilized by casting and cross-linking after
prior modification of a carbon screen-printed electrode with single-walled carbon nan-
otubes. This immobilization method was chosen because the reduction of quinones on
the carbon nanomaterial particles generates o-diphenols which will in turn be reoxidized
by enzymes located around the carbon particles, thus amplifying the electrochemical
process [59]. Characterisation of the biosensor surface will be performed by both electro-
chemical (CV, DPV, EIS) and spectrometric (FTIR) methods. Calibration curves for HT will
be performed by cyclic voltammetry (CV). Quantitative determinations will be made from
different real olive oil samples using CV. In parallel, real samples will also be analysed
spectrophotometrically, determining the antiradical capacity which will be correlated with
the voltammetric data.

2. Results and Discussion
2.1. Surface Characterisation of Electrodes

In the first stage of the study, the surface characterization of the electrodes is per-
formed by cyclic voltammetry, not before optimizing the potential range. Both modified
electrodes (SPE-SWCNT and SPE-SWCNT-Ty) gave a stable signal in the potential range
−0.4 and +1.3 V. Therefore, it was maintained for all determinations in active solutions
and real samples.

Upon immersion of the three modified sensors in 10−1 M PBS electrolyte solution
(pH 7.0), cyclic voltammograms were recorded, showing the presence of single-layer carbon
nanotubes in the case of SPE-SWCNT and tyrosinase in the case of the SPE-SWCNT-Ty
biosensor. The scan rate was 0.1 V·s−1. The oxidation and reduction of tyrosinase can
be observed at Epa = 0.400 V (Ipa = 5.762 µA) and Epc = −0.165 V (Ipc = −14.514 µA),
respectively. Figure 1 shows the cyclic voltammograms recorded by the three sensors in
PBS solution 10−1 M, pH 7.0.
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Figure 1. Cyclic voltammograms recorded by the three sensors in 10−1 M PBS solution, pH 7.0, scan
rate 0.1 V·s−1.

The second stage of sensor characterization was performed using differential pulse
voltammetry. Thus, the three electrodes were immersed in 10−1 M PBS electrolyte solution
(pH 7.0), and the recorded voltammograms can be seen in Figure 2. The optimized param-
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eters were: pulse height, 7.0 mV; pulse width, 100 ms; scan rate, 0.1 V·s−1; and potential
range −0.4 and +1.3 V. From the recorded voltammograms, a significant difference can
be observed in the biosensor, which reveals the presence of immobilized tyrosinase on
the electrode surface. The oxidation of the enzyme is noted by the appearance of a faint
but obvious peak compared to the other two sensors, at Ipa = 17.859 µA and Epa = 0.563 V.
The potential was measured where the greatest difference in current intensity was noted
between the voltammograms of the three electrodes.
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Figure 2. Differential pulse voltammograms recorded by the three sensors in 10−1 M PBS solution,
pH 7.0, scan rate 0.1 V·s−1.

The next step was to investigate the electrode surface by electrochemical impedance
spectroscopy (EIS).

EIS is a technique by which the electrical properties of a wide variety of materials can
be investigated. In EIS, a sinusoidal test voltage or current is applied to a sample to measure
its impedance over a suitable frequency range. In practice, the measured impedance spectra
represent an electrical fingerprint of the sample, providing valuable information on its
properties and behaviour [60]. Through EIS, the electron transfer properties of the surface
of the modified electrodes can be characterised. The semicircle diameters of the Nyquist
diagram reflect the electron transfer resistance (Rct), and the linear part corresponds to
the Warburg diffusion process. In EIS, the Radles circuit is most often used. This is an
equivalent electrical circuit in which all the current passes through the solution, which acts
as an Ohmic resistor Rs [61]. Thus, the circuit comprises a solution resistance (Rs), a charge
transfer resistance Rct), a double layer capacitance (Cdl) and Warburg impedance (ZW) [62].

Electrodes were immersed and subjected to EIS analysis in an electrochemical cell
containing K3 [Fe(CN)6]/K4 [Fe(CN)6] 10−3 M and KCl 10−1 M in a 1:1 ratio (Figure 3).

Figure 3 shows Nyquist plots of the impedance spectroscopy of the three electrodes.
The Rct values increased in order: SPE-SWCNT < SPE-C < SPE-SWCNT-Ty. The Rct value
of SPE-SWCNT (25,129.4 Ω) was lower than that of SPE-C (39,615.4 Ω), demonstrating
that the modification with single-walled carbon nanotubes allowed a higher penetration of
the Fe(CN)6

3−/4− redox sample than in the case of carbon; therefore, it improves electron
transfer between the analyte and the electrode surface. An obvious increase in resistance
was observed when Ty was immobilized on the SPE-SWCNT (Rct = 52,992.6 Ω) surface, as
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the macromolecular structure of tyrosinase prevents electron transfer. This electrochemical
behaviour of the tyrosinase-based biosensor is also consistent with other studies [63,64].
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In order to observe the changes in the modified carbon-based sensor and biosensor,
the active surface of the three working electrodes was analysed with the FTIR method.

Figure 4 shows the FTIR spectra for SPE-C, MWCNT-SPE and MWCNT-Ty-SPE,
respectively, and the differences in peak number and background noise are evident. Several
peaks representing the presence of tyrosinase can be observed in the wavenumber range
3500–2800 cm−1 and 1200–500 cm−1 [65].
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2.2. The Voltammetric Responses of Biosensor in Hydroxytyrosol Solution

The two newly constructed electrodes, SPE-SWCNT and SPE-SWCNT-Ty, were used
for hydroxytyrosol detection studies with higher sensitivity and better selectivity. Figure 5
shows the cyclic voltammograms of the two electrodes in hydroxytyrosol (HT) 10−4 M—PBS 10−1 M
solution (pH = 7.0).
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In both cases, two anodic and one cathodic peak of different intensities and potentials
are shown, related to the oxidation or reduction of hydroxytyrosol at the sensitive element,
respectively. The cyclic voltammograms show slightly different results depending on the
changes to the working electrode used. This electrochemical behaviour is similar to that
observed in other previously published studies [66]. Table 1 shows the results obtained
from the redox peak pair analysis observed in the cyclic voltammograms.

Table 1. The values of the parameters obtained from the cyclic voltammograms of all the electrodes
immersed in 10−4 M HT solution (the electrolyte support was 10−1 M PBS of pH 7.0).

Electrode Epa
1 (V) Epc

2 (V) E1/2
3 (V) Ipa

4 (µA) Ipc
5 (µA) Ipc/Ipa

SPE−SWCNT 0.0856 −0.123 0.018 4.682 −6.725 1.436
SPE−SWCNT−Ty 0.1004 −0.003 0.048 30.419 −46.096 1.515

1 Potential of the anodic peak; 2 potential of the cathodic peak; 3 half-wave potential; 4 Current of the anodic peak;
5 Current of the cathodic peak.

In the case of SPE-SWCNT-Ty, the cathodic peak potential has a lower value, with this
shift towards negative potential values indicating that the reduction process is strongly
influenced by the presence of the enzyme [67,68]. The detection at a lower potential
indicates that the reduction process requires a lower activation energy in the case of the
biosensor [69].

The electrooxidation and electroreduction reactions of HT for the biosensor performed
in this study are shown in Figure 6 (for 3 successive scans).

The potential range was maintained according to the first experiments, and the scan
rate used was 0.1 V·s−1. At the first voltametric scan, a weakly evidenced, irreversible
anodic peak appears, which is associated with the oxidation of hydroxyl groups on the
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aromatic ring of the molecule and the formation of the corresponding ortho-quinone
(3,4-quinophenylethanol), a reaction catalysed by tyrosinase (diphenolase activity) [70]. In
the case of the biosensor, the anodic peak occurs at a potential of 0.369 V. The oxidation
reaction of hydroxytyrosol catalysed by tyrosinase is shown in Figure 7.
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On successive scans, the oxidation product of HT, being very unstable, accumulates
on the electrode surface, forming a polymer film, which explains the appearance of another
reversible oxidation peak, well evidenced at a lower potential [71].

Additionally, the low value of Epc suggests a rapid electron transfer process occurring
at the active surface of the biosensor in the case of oxidation-reduction of HT [72].

Therefore, SPE-SWCNT-Ty shows better selectivity compared to SPE-SWCNT in
HT detection, thus confirming the biocatalytic activity of tyrosinase immobilized on the
biosensor surface. The values of the parameters Ipc and Ipa prove that the biosensor shows
better sensitivity than the sensor.

The presence of tyrosinase predominantly influences the HT reduction process, which
is confirmed by a higher intensity of the cathodic peak, which is why subsequent calcula-
tions will refer to its changes. In the case of SPE-SWCNT-Ty, the signal was more stable
and the background noise lower.

Moreover, HT also has strong antioxidant activity due to its high capacity to limit both
intracellular and extracellular ROS production, being mainly effective with free molecules
or radicals, such as H2O2 and O2, acting also as a metal chelator. These properties are
due both to the presence of hydroxyl (OH) groups in the ortho position, which have an
electron-donating capacity, and to HT’s ability to bind phenoxyl radicals, forming stable
hydrogen bonds (Figure 8) [73].
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2.3. Influence of Scanning Rate on the Voltammetric Response

In the next step, the electrochemical behaviour of the two electrodes in HT 10−4 M
solution was studied by applying increasing scanning rates in the range of 0.1–1.0 V·s−1.
Remarkable differences between the intensities of the oxidation and reduction currents and
the measured potentials are observed as early as the second scan rate applied, with the
peaks progressively increasing with increasing scan rate. Since enzyme immobilization
predominantly influences the cathodic peak, the dependence of Ipc on scan rate will be
studied. Figure 9 shows the cyclic voltammograms of SPE-SWCNT and SPE-SWCNT-Ty
recorded at different scan rates.
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It was determined that there is a linear dependence between cathode peak currents
and scanning rate for both electrodes (Table 1). This indicates that the process occurring
at the electrode surface is controlled by the adsorption of the electroactive species, with
HT adsorption on the active surface being the determining step in the kinetics of the
electrochemical process [71].

Given the initial dependence equation between cathode peak current and scan rate,
the degree of electrode surface coverage with the electroactive species (Γ) was calculated
using the Laviron equation, and the results are shown in Table 2 [41].

Ipc =
n2F2ΓAv

4RT
(1)

Table 2. Linear equation (Ipc vs. v), R2 and Γ for the two electrodes used in the analysis.

Electrode Linear Equation R2 Γ (mol × cm−2)

SWCT-SPE Ipc = −20.116 × 10−6 v − 5.2438 × 10−6 0.9941 3.903 × 10−11

SPE-SWCNT-Ty Ipc = −238.77 × 10−6 v − 27.653 × 10−6 0.9951 4.618 × 10−10

Comparing the results obtained with the two electrodes, it can be stated that in all
cases, the reduction process is controlled by the HT adsorption on the active surface, which
is faster and more evident in the case of the biosensor.

Table 2 shows the equations of the Ipc vs. dependencies, the coefficients of determina-
tion (R2) and the degree of electrode surface coverage with the electroactive species (Γ).

From these results, it can be appreciated that SPE-SWCNT-Ty has superior electroana-
lytical properties for HT detection. In addition, the presence of tyrosinase ensures the selec-
tivity of the biosensor and can be used in the analysis of complex samples. Immobilization
leads to better bioselectivity and conductivity. Since SPE-SWCNT-Ty has shown superior
performance on sensitivity and selectivity, it will be used in further quantitative analyses.

2.4. Calibration Curve

From the experimental data previously obtained, it can be seen that the biosensor
shows superior performance to the sensor due to the presence of the enzyme that gives it
selectivity and sensitivity and favours the interaction with hydroxytyrosol; therefore, for
the determination of the calibration curve, cyclic voltammograms will be recorded only
with SPE-SWCNT-Ty.

For this step, varying amounts between 5 and 50 µL of HT 10−4 M stock solution were
successively added to 50 mL PBS solution 10−1 M pH 7.0 under continuous stirring. The
concentration range studied was 0.01–28.62 µM.

As can be seen in Figure 10, the cathodic peak current increases with increasing HT
concentration, demonstrating the stable and efficient catalytic capacity of the biosensor.
The response current was linear in the range of 0.49–15.602 µM.

Using the linear regression equation, LOD (3σ/m, where σ was the standard deviation
and m was the slope of the calibration curve) and LOQ (10σ/s) [74] were calculated, and
the values are shown in Table 3.

Table 3. Linear dependence equation, R2, LOD and LOQ for the two modified electrodes.

Electrode Linear Equation R2 LOD (M) LOQ (M)

SPE-SWCNT-Ty y = −0.341x − 22.245 0.9762 3.49 × 10−8 1.0 × 10−7

The newly developed biosensor is found to exhibit detection and quantification limits
in the nanomolar range, demonstrating increased sensitivity for HT detection.
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Using the calibration curve values, Imax was determined and then graphically rep-
resented as log(I/(Imax − I)) vs. log(HT). From the line equation, the Hill coefficient (h)
was extracted and represented by the slope of the line. SPE-SWCNT-Ty showed a Hill
coefficient with a value near 1, which means that the overall process at the biosensor surface
exhibits Michaelis–Menten kinetics. An obtained value of h lower than 1 reflects a negative
cooperative effect between occupied active zones on the SPE-SWCNT-Ty surface. Next, the
Lineweaver–Burk equation was used to calculate the Michaelis–Menten constant.

1
I
=

1
Imax

+
Kapp

M
Imax[HT]

(2)

where I is the cathode current, Imax is the steady state current, Kapp
M is the apparent Michaelis–

Menten constant, and [HT] is the substrate concentration. From the ordinate of the origin,
the value of Imax is calculated, and from the slope of the line, the value of Kapp

M is calculated.
The characteristic parameters of SPE-SWCNT-Ty for HT are given in Table 4.

Table 4. Characteristic parameters of SPE-SWCNT-Ty for HT.

Analyte
SPE-SWCNT-Ty

Imax/µA h Kapp
M /µM

HT −24.271 0.817 0.0723

The small value of the Michaelis–Menten constant indicates that the affinity between
tyrosinase and hydroxytyrosol is strong for SPE-SWCNT-Ty.

2.5. Stability, Reproducibility, Repeatability and Interference Studies

The stability of the biosensor was studied, and it was found that it can be used for more
than 30 measurements by cyclic voltammetry in solutions containing HT. Additionally,
to check the reproducibility of the fabrication method, we studied the response of two
identically prepared biosensors in HT solutions of concentrations of 10−4 M. There were no
differences greater than 3% between the two biosensors (Figure 11).

To analyse the variation of the biosensor response to HT determination in solutions of
the same concentration, the same biosensor was used but not before being removed from
the solution and rinsed. When repeating the cyclic voltammogram, the difference was not
more than 2.5%. Since the biosensor constructed is disposable, the result is very good.
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For interference studies, the biosensor behaviour was evaluated at additions of com-
pounds often found in olive oil, e.g., oleuropein and tyrosol. SPE-SWCNT-Ty showed good
selectivity, with the potential and cathode peak current having insubstantial changes.

The HT solution had a concentration of 10−4 M, adding the same concentration
of interferents.

The results are shown in Table 5.

Table 5. Interference of chemically related compounds on the quantitative determination of
HT 10−4 M.

Interfering Compound Ratio Recovery/%

Oleuropein 1:1 100 ± 3.4
Tyrosol 1:1 98 ± 2.5

Recovery (%) represents the percentage of the ratio between the current recorded
after adding the interfering compounds and the current recorded with the biosensor in the
absence of the interfering compounds. As can be seen in Table 5, the determination of HT
is not significantly influenced by the interfering compounds studied, the error being 3.4%
for oleuropein and 2.5% for tyrosol.

2.6. Determination of HT in Extra Virgin Olive Oils

The extra virgin olive oils (EVOO) selected for analysis were purchased from grocery
stores (supermarkets) and are of different origins and varieties (Tunisia, Greece, Italy, and
Spain). The samples to be analysed (12 commercial EVOO) were prepared in advance
by extracting oil samples (5 g) using a 4:1 methanol:ultrapure water mixture. Samples
were centrifuged, and the supernatant was recovered using a pipette and added to the
electrochemical cell in 50 mL PBS, pH = 7.0.

Figure 12 shows the cyclic voltammograms of SPE-SWCNT-Ty immersed in solutions
obtained in three of the EVOOs selected for analysis. Cyclic voltammograms recorded
with SPE-SWCNT-Ty show peaks corresponding to the presence of HT in all samples to
be analysed.
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Figure 12. Cyclic voltammograms of the SPE-SWCNT-Ty biosensor immersed in samples of (a) Min-
erva Greek Extra Virgin Olive Oil, (b) Terra Delyssa Huile D”Olive De Tunisie, and (c) Monini
Classico Olio Extra Vergine Di Oliva at a scan rate of 0.1 V×s−1.

For quantification, the cathode peak intensity, corresponding to the potential −0.003 V,
was used for each product. The results are included in Table 6.

Table 6. Concentrations of HT in commercial EVOO obtained by the voltammetric method.

No Commercial EVOO mg/kg HT (±RSD) Obtained by Voltammetric Method

1 Minerva Greek Extra Virgin Olive Oil 91.4 ± 1.4
2 Terra Delyssa Huile D”Olive De Tunisie 68.7 ± 0.6
3 Monini Classico Olio Extra Vergine Di Oliva 62.1 ± 1.0
4 Costa D’Oro L’extra olive oil 110.3 ± 1.8
5 Olitalia Extra Virgin olive 107.6 ± 1.4
6 Greek Koroneiki Extra Virgin Olive Oil 33.8 ± 0.8
7 Extra Virgin Olive Oil Mazza 76.2 ± 0.9
8 Extra Virgin Olive Oil Oliol 75.1 ± 0.5
9 Pietro Coricelli Extra Vergine di Oliva Non filtrato 74.6 ± 1.1
10 Ulei de masline extravirgin Costa d’Oro Il Grezzo 89.6 ± 0.6
11 Pietro Coricelli Olio Extra Vergine di Oliva 148.0 ± 0.7
12 Extra virgin olive oil Monastir 89.2 ± 1.5

RSD—relative standard deviation.
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The results obtained show a similar amount of HT present in the three commercial
EVOOs. It is found that the Italian product Pietro Coricelli Olio Extra Vergine di Oliva
presents a slightly higher amount of HT, which could make it superior both in taste, aroma
and stability. According to the European Food Safety Authority, an amount of 5 mg of
hydroxytyrosol and/or its derivatives should be consumed daily for the lipid-lowering
and protective effect on the cardiovascular system [75]. Analyzing the obtained results,
we can state that daily consumption of approximately 35 g of Pietro Coricelli Olio Extra
Vergine di Oliva could cover the daily requirement of HT, which would be consistent with
the amount of daily VOO recommended in other specialist studies [76].

2.7. Determination of the Antiradical Activity of Extra Virgin Olive Oils

To determine the antiradical activity, the stable radical galvinoxyl (O-centered radical)
was used, being better associated with the physiological action of oxygen radicals and more
sensitive to phenolic compounds than DPPH [77].

Galvinoxyl is reduced by scavenging hydrogen donor free radicals as shown in
reaction (3) [78]:

G· + IH→ GH + I· (3)

where G· is galvinoxyl; GH is reduced galvinoxyl; IH is a hydrogen donor free radical
scavenger, in this case, HT; and I· is the corresponding radical of IH.

For analysis of the real samples, 300 µL extract was mixed with 2.9 mL free galvinoxyl
radical solution. The radical-scavenging capacity (%RSC) was expressed as a percentage
and was calculated using the following formula (4) [79]:

% RSC = (Acontrol − Asample)/Acontrol × 100 (4)

where Acontrol and Asampl are the absorbances of the control and of the samples at 860 nm.
The %RSC results are included in Table 7.

Table 7. Determination of % RSC of HT in EVOO samples.

# Sample % RSC

1 Minerva Greek Extra Virgin Olive Oil 21.76
2 Terra Delyssa Huile D”Olive De Tunisie 13.73
3 Monini Classico Olio Extra Vergine Di Oliva 15.69
4 Costa D’Oro L’extra olive oil 21.57
5 Olitalia Extra Virgin olive 23.73
6 Greek Koroneiki Extra Virgin Olive Oil 11.76
7 Extra Virgin Olive Oil Mazza 15.73
8 Extra Virgin Olive Oil Oliol 15.76
9 Pietro Coricelli Extra Vergine di Oliva Non filtrato 15.53
10 Ulei de masline extravirgin Costa d’Oro Il Grezzo 17.69
11 Pietro Coricelli Olio Extra Vergine di Oliva 30.89
12 Extra virgin olive oil Monastir 18.65

As can be seen in the table, the higher antiradical capacity is present in the product
Pietro Coricelli Olio Extra Vergine di Oliva. This result can be correlated with a higher
intensity of the cathodic peak and a higher HT content, as shown in Figure 13.

As can be observed in Figure 13, it is a good correlation between % RSC and the
cathodic current corresponding to HT. This correlation could be useful in the estimation of
RSC from the electrochemical data obtained with the biosensors by cyclic voltammetry.
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3. Materials and Methods
3.1. Reagents and Samples

A screen-printed carbon electrode (SPE) purchased from Metrohm DropSens (Oviedo,
Spain) was used to modify the sensors. The SPE was modified in the first step with a
suspension prepared from single-walled carbon nanotube powder (Sigma-Aldrich, St Louis,
MO, USA) dispersed in a mixture of dimethylformamide (DMF) (Sigma-Aldrich, St Louis,
MO, USA) and ultrapure water (obtained with a Milli-Q system—Millipore, Bedford, MA,
USA), yielding SPE-SWCNT which was subsequently used to construct the tyrosinase
(Ty)-based biosensor.

Phosphate buffer solution 10−1 M (PBS), used as the supporting electrolyte in the
electrochemical measurements, was prepared from NaH2PO4 and Na2HPO4, reagents
purchased from Sigma-Aldrich, St Louis, MO, USA. pH was adjusted to 7.0 with the help
of a pH meter (WTW, Weilheim, Germany). Potassium chloride, potassium ferro- and ferric
cyanide (Sigma-Aldrich, St Louis, MO, USA) were used to prepare the solution used for
electrochemical characterization of the electrodes by EIS.

Analytically pure hydroxytyrosol was purchased from Sigma-Aldrich, St Louis, MO,
USA. For the preparation of the hydroxytyrosol stock solution (10−4 M), the appropriate
amounts of the substances were dissolved in PBS solution at pH 7.0. Lyophilized tyrosi-
nase powder (T3824-25KU, from mushroom) with a concentration of 8503 U/mg was
purchased from Sigma-Aldrich. For the immobilization of the enzyme, tyrosinase solution
of concentration 80 µg/µL dissolved in PBS buffer solution of pH 7.0 was used.

The compounds used for the interference studies (oleuropein and tyrosol) were pur-
chased from Sigma-Aldrich.

Samples of virgin olive oils were prepared for analysis using liquid-liquid extrac-
tion [80]. An amount of 5 g of each oil was dissolved in a methanol-water mixture
(40:10, v/v). The methanolic extracts were centrifuged, after which the supernatant was
added to 50 mL PBS solution 10−1 M, pH 7.0. Methanol was purchased from Merck
(Darmstadt, Germany).

The free galvinoxyl (2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5–cyclohexadiene-1-
ylidene)-p-tolyloxy) reagent was purchased from Sigma-Aldrich, St. Louis, MO, USA. The
ethanolic solution of galvinoxyl radical was of concentration 1 mM. For the measurement
of galvinoxyl radical scavenging activity, samples were prepared using a volume of 2.9 mL
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previously prepared free galvinoxyl reagent solution and 300 µL extract. For each pre-
pared sample, the absorbance was measured relative to the control sample at wavelength
860 nm [81,82].

3.2. Equipment
3.2.1. Electrochemistry

Electrochemical measurements were performed in an electrochemical cell (50 mL) with
three electrodes, an Ag/AgCl reference electrode (Princeton, Applied Research, Princeton,
NJ, USA), an auxiliary electrode represented by a platinum wire and a screen-printed
working electrode (DropSens, Oviedo, Spain). The modified SPE-SWCNT screen-printed
sensor was used as a working electrode first, and then the SPE-SWCNT-Ty biosensor. An
Elmasonic ultrasonic bath (Carl Roth GmbH, Karlsruhe, Germany) was used for rapid
dissolution of substances and homogenization.

Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements
were performed with an EG&G potentiostat/galvanostat, model 263 A (Princeton Applied
Research, Oak Ridge, TN, USA) controlled via Echem Software.

Surface characterization measurements of the modified electrode surfaces were performed
by electrochemical impedance spectroscopy (EIS) using an SP 150 potentiostat/galvanostat
controlled by EC-Lab Express software, to which an electrochemical cell (50 mL) with
these three electrodes (reference electrode, auxiliary electrode and working electrode)
was connected.

3.2.2. Spectrophotometry

The galvinoxyl radical scavenging activity of each real sample extract was evaluated
using the Rayleigh UV2601 UV/Vis double beam spectrophotometer (Beijing Beifen-Ruili
Analytical Instrument, Beijing, China) at 860 nm wavelength. The instrument is controlled
by UVSoftware.

3.2.3. Spectrometry

A Bruker ALPHA-E FTIR spectrometer (BrukerOptik GmbH, Ettlingen, Germany)
connected to OPUS software (BrukerOptik GmbH, Ettlingen, Germany) was used for the
infrared spectrometric method. The FTIR spectrometric method was used to characterize
the active surface of modified electrodes. The spectra were recorded in the range of
4000–500 cm−1 with 32 scans and a resolution of 4 cm−1 in attenuated total reflectance
(ATR) mode. The ATR ZnSe crystal was rinsed with ultrapure water and isopropanol after
each measurement. The background used was the spectrum obtained in air.

3.3. Procedures

Cyclic voltammetry (potential range studied was −0.4 V and 1.3 V), electrochemical
impedance spectroscopy (potential range−1 V to 1 V) and FTIR method (wavelength range
4000–500 cm−1) were used to characterize the electrode surface. Cyclic voltammetry at the
same potential range was used to evaluate the electrochemical behaviour of the modified
sensors in HT solution and their detection and quantification in real samples.

The free radical galvinoxyl was used to determine the antiradical capacity of the
samples by recording the absorbance variation by UV-Vis spectrophotometry.

3.4. SPE-SWCNT Manufacturing

The modification procedure is consistent with the literature and similar to that used in
another previous work [83,84], using carbon-based screen-printed electrodes (SPE-C) as
the substrate. The diameter of the working electrode was 0.4 cm, resulting in a geometric
area of 0.1257 cm2.

The single-layer carbon nanotubes (SWCNT) suspension was prepared by adding
10 mg single-layer carbon nanotube powder to 10 mL of solvent (a mixture of dimethylfor-
mamide: water (1:1)) followed by sonication for 60 min at 59 kHz.
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The drop-and-dry method was used to disperse the nanomaterial suspension on the
surface of the carbon-based screen-printed (SPE-C) sensors. A total of 10 µL of the sus-
pension was poured onto the SPE-C surface, adding 5 µL at each step using an Eppendorf
micropipette, thus constructing the single-layer carbon nanotube-based screen-printed (SPE-
SWCNT) sensor. Solvent evaporation was carried out at room temperature in a desiccator.

3.5. Tyrosinase Immobilisation

The biosensor was prepared using the SPE-SWCNT electrode as a support. A volume
of 10 µL was added by the pouring technique in two successive steps, leaving a drying
time of 2 h.

After drying, the enzyme was cross-linked by exposing the electrodes to 2% glu-
taraldehyde vapour for 1 min. By cross-linking, tyrosinase immobilization on the active
electrode surface is ensured. Glutaraldehyde has been used in several research studies for
enzyme cross-linking in various biosensitive systems [85,86]. Biosensors were stored at
4 ◦C until use, for a maximum of 72 h [87]. Figure 14 shows the preparation process of
the tyrosinase-based biosensor supported on a previously constructed single-layer carbon
nanotube-based screen-printed electrode. Glutaraldehyde binds by cross-linking with the
reactive -NH2 groups in the structure of tyrosinase, thus ensuring the activity and stability
of the enzyme.
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4. Conclusions

The experimental study demonstrated the feasibility of the modified single-layer
carbon nanotube and tyrosinase-based biosensor for the determination of hydroxytyrosol
in commercial extra virgin olive oils. From the results obtained, it can be concluded that
tyrosinase is a sensitive element favouring selectivity for HT detection.

The voltammetric method used in the detection but also for the study of the electro-
chemical behaviour of the biosensor in the chosen concentration range was cyclic voltam-
metry. The enzyme biosensor shows high sensitivity and selectivity for amperometric
detection of HT. The concentrations of HT obtained by SPE-SWCNT-Ty in commercial extra
virgin oils were close, proving their superior quality.

The newly developed biosensor based on single-layer carbon nanotubes and tyrosinase
has multiple advantages, such as sensitivity, selectivity, feasibility and low cost. SPE-
SWCNT-Ty could also be used in routine analyses for quality control of food products
such as vegetable oils. However, further studies are needed to validate the results with a
reference method (spectrophotometric, spectrometric or chromatographic).

Furthermore, future research could focus on the development of miniaturised and
portable arrays combined in the same device sensors for colour, taste and odour analysis or
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even enzymatic biosensors capable of selectively, accurately and quickly determining the
different phenolic compounds present in EVOO. Another research perspective would be
the development of a lab-on-a-chip device useful in the routine analysis of olive oil or at
different stages of production, from harvesting to commercialisation.
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54. Hammami, A.; Kuliček, J.; Raouafi, N. A Naphthoquinone/SAM-Mediated Biosensor for Olive Oil Polyphenol Content. Food
Chem. 2016, 209, 274–278. [CrossRef]

55. Wu, L.; Yan, H.; Wang, J.; Liu, G.; Xie, W. Tyrosinase Incorporated with Au-Pt@SiO2 Nanospheres for Electrochemical Detection
of Bisphenol A. J. Electrochem. Soc. 2019, 166, B562. [CrossRef]

56. Sánchez-Paniagua López, M.; López-Ruiz, B. Electrochemical Biosensor Based on Ionic Liquid Polymeric Microparticles. An
Analytical Platform for Catechol. Microchem. J. 2018, 138, 173–179. [CrossRef]

57. Busch, J.L.H.C.; Hrncirik, K.; Bulukin, E.; Boucon, C.; Mascini, M. Biosensor Measurements of Polar Phenolics for the Assessment
of the Bitterness and Pungency of Virgin Olive Oil. J. Agric. Food Chem. 2006, 54, 4371–4377. [CrossRef]

58. Pavinatto, F.J.; Paschoal, C.W.A.; Arias, A.C. Printed and Flexible Biosensor for Antioxidants Using Interdigitated Ink-Jetted
Electrodes and Gravure-Deposited Active Layer. Biosens. Bioelectron. 2015, 67, 553–559. [CrossRef]

59. Yildiz, H.B.; Castillo, J.; Guschin, D.A.; Toppare, L.; Schuhmann, W. Phenol Biosensor Based on Electrochemically Controlled
Integration of Tyrosinase in a Redox Polymer. Microchim. Acta 2007, 159, 27–34. [CrossRef]

60. Grossi, M.; Riccò, B. Electrical Impedance Spectroscopy (EIS) for Biological Analysis and Food Characterization: A Review. J.
Sens. Sens. Syst. 2017, 6, 303–325. [CrossRef]

61. Randles Circuit. Available online: https://www.palmsens.com/knowledgebase-topic/randles-circuit/ (accessed on
27 July 2022).

62. Gonzalez-Rivera, J.C.; Osma, J.F. Fabrication of an Amperometric Flow-Injection Microfluidic Biosensor Based on Laccase for In
Situ Determination of Phenolic Compounds. BioMed Res. Int. 2015, 2015, 845261. [CrossRef]

63. Han, E.; Yang, Y.; He, Z.; Cai, J.; Zhang, X.; Dong, X. Development of Tyrosinase Biosensor Based on Quantum Dots/Chitosan
Nanocomposite for Detection of Phenolic Compounds. Anal. Biochem. 2015, 486, 102–106. [CrossRef] [PubMed]

64. Rather, J.A.; Pilehvar, S.; Wael, K.D. A Biosensor Fabricated by Incorporation of a Redox Mediator into a Carbon Nanotube/Nafion
Composite for Tyrosinase Immobilization: Detection of Matairesinol, an Endocrine Disruptor. Analyst 2012, 138, 204–210.
[CrossRef]

65. Perna, V.; Baum, A.; Ernst, H.A.; Agger, J.W.; Meyer, A.S. Laccase Activity Measurement by FTIR Spectral Fingerprinting. Enzym.
Microb. Technol. 2019, 122, 64–73. [CrossRef]

66. Tomac, I.; Šeruga, M. Electrochemical Properties of Chlorogenic Acids and Determination of Their Content in Coffee Using
Differential Pulse Voltammetry. Int. J. Electrochem. Sci. 2016, 11, 2854–2876. [CrossRef]

67. Centeno, D.A.; Solano, X.H.; Castillo, J.J. A New Peroxidase from Leaves of Guinea Grass (Panicum maximum): A Potential
Biocatalyst to Build Amperometric Biosensors. Bioelectrochemistry 2017, 116, 33–38. [CrossRef]

http://doi.org/10.3390/chemosensors8040113
http://doi.org/10.3390/inventions6030057
http://doi.org/10.3390/ijms22147315
http://doi.org/10.3390/s21186301
http://doi.org/10.3390/ijms22168897
http://doi.org/10.3390/ijms22179302
http://doi.org/10.1016/j.talanta.2016.06.021
http://doi.org/10.1016/j.apmt.2017.04.012
http://doi.org/10.1016/j.talanta.2017.12.075
http://doi.org/10.1002/elan.201100603
http://doi.org/10.1016/j.foodchem.2014.06.042
http://www.ncbi.nlm.nih.gov/pubmed/25053063
http://doi.org/10.1007/s00604-019-3418-5
http://www.ncbi.nlm.nih.gov/pubmed/31104163
http://doi.org/10.1002/elan.201600067
http://doi.org/10.1016/j.foodchem.2016.04.073
http://doi.org/10.1149/2.0141908jes
http://doi.org/10.1016/j.microc.2018.01.011
http://doi.org/10.1021/jf060103m
http://doi.org/10.1016/j.bios.2014.09.039
http://doi.org/10.1007/s00604-007-0768-1
http://doi.org/10.5194/jsss-6-303-2017
https://www.palmsens.com/knowledgebase-topic/randles-circuit/
http://doi.org/10.1155/2015/845261
http://doi.org/10.1016/j.ab.2015.07.001
http://www.ncbi.nlm.nih.gov/pubmed/26159737
http://doi.org/10.1039/C2AN35959F
http://doi.org/10.1016/j.enzmictec.2018.12.009
http://doi.org/10.20964/110402854
http://doi.org/10.1016/j.bioelechem.2017.03.005


Int. J. Mol. Sci. 2022, 23, 9132 20 of 20

68. Apetrei, I.; Apetrei, C. Amperometric Biosensor Based on Diamine Oxidase/Platinum Nanoparticles/Graphene/Chitosan
Modified Screen-Printed Carbon Electrode for Histamine Detection. Sensors 2016, 16, 422. [CrossRef]

69. Apetrei, R.-M.; Cârâc, G.; Bahrim, G.; Camurlu, P. Sensitivity Enhancement for Microbial Biosensors through Cell Self-Coating
with Polypyrrole. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 1058–1067. [CrossRef]

70. Espín, J.C.; Soler-Rivas, C.; Cantos, E.; Tomás-Barberán, F.A.; Wichers, H.J. Synthesis of the Antioxidant Hydroxytyrosol Using
Tyrosinase as Biocatalyst. J. Agric. Food Chem. 2001, 49, 1187–1193. [CrossRef] [PubMed]

71. Janeiro, P.; Novak, I.; Seruga, M.; Maria Oliveira-Brett, A. Electroanalytical Oxidation of p-Coumaric Acid. Analytical Letters 2007,
40, 3309–3321. [CrossRef]

72. Vilian, A.T.E.; Chen, S.-M. Preparation of Carbon Nanotubes Decorated with Manganese Dioxide Nanoparticles for Electrochemi-
cal Determination of Ferulic Acid. Microchim. Acta 2015, 182, 1103–1111. [CrossRef]

73. D’Angelo, C.; Franceschelli, S.; Quiles, J.L.; Speranza, L. Wide Biological Role of Hydroxytyrosol: Possible Therapeutic and
Preventive Properties in Cardiovascular Diseases. Cells 2020, 9, 1932. [CrossRef]

74. Zheng, L.; Song, J. Curcumin Multi-Wall Carbon Nanotubes Modified Glassy Carbon Electrode and Its Electrocatalytic Activity
towards Oxidation of Hydrazine. Sens. Actuators B Chem. 2009, 135, 650–655. [CrossRef]

75. Vilaplana-Pérez, C.; Auñón, D.; García-Flores, L.A.; Gil-Izquierdo, A. Hydroxytyrosol and Potential Uses in Cardiovascular
Diseases, Cancer, and AIDS. Front. Nutr. 2014, 1, 18. [CrossRef] [PubMed]

76. Aviram, M.; Eias, K. Dietary Olive Oil Reduces Low-Density Lipoprotein Uptake by Macrophages and Decreases the Susceptibility
of the Lipoprotein to Undergo Lipid Peroxidation. Ann. Nutr. Metab. 1993, 37, 75–84. [CrossRef]

77. Tirzitis, G.; Bartosz, G. Determination of Antiradical and Antioxidant Activity: Basic Principles and New Insights. Acta Biochim.
Pol. 2010, 57, 139–142. [CrossRef]

78. Munteanu, I.G.; Apetrei, C. Assessment of the Antioxidant Activity of Catechin in Nutraceuticals: Comparison between a Newly
Developed Electrochemical Method and Spectrophotometric Methods. Int. J. Mol. Sci. 2022, 23, 8110. [CrossRef]
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