17 pages, 3386 KiB  
Article
Maternal Resveratrol Supplementation Prevents Cognitive Decline in Senescent Mice Offspring
by Vanesa Izquierdo, Verónica Palomera-Ávalos, Sergio López-Ruiz, Anna-Maria Canudas, Mercè Pallàs and Christian Griñán-Ferré
Int. J. Mol. Sci. 2019, 20(5), 1134; https://doi.org/10.3390/ijms20051134 - 6 Mar 2019
Cited by 42 | Viewed by 5291
Abstract
A variety of environmental factors contribute significantly to age-related cognitive decline and memory impairment in Alzheimer’s Disease (AD) and other neurodegenerative diseases. Nutrition can alter epigenetics, improving health outcomes, which can be transmitted across generations; this process is called epigenetic inheritance. We investigate [...] Read more.
A variety of environmental factors contribute significantly to age-related cognitive decline and memory impairment in Alzheimer’s Disease (AD) and other neurodegenerative diseases. Nutrition can alter epigenetics, improving health outcomes, which can be transmitted across generations; this process is called epigenetic inheritance. We investigate the beneficial effects of maternal resveratrol supplementation in the direct exposed F1 generation and the transgenerational F2 generation. The offspring was generated from females Senescence Accelerated Mouse-Prone (SAMP8) fed a resveratrol-enriched diet for two months prior to mating. Object novel recognition and Morris Water Maze (MWM) demonstrated improvements in cognition in the 6-month-old F1 and F2 generations from resveratrol fed mothers. A significant increase in global DNA methylation with a decrease in hydroxymethylation in F1 and F2 were found. Accordingly, Dnmt3a/b and Tet2 gene expression changed. Methylation levels of Nrf2 and NF-kβ genes promoters raised in offspring, inducing changes in target genes expression, as well as hydrogen peroxide levels. Offspring that resulted from a resveratrol fed mother showed increase AMPKα activation, mTOR inhibition, and an increase in Pgc-1α gene expression and Beclin-1 protein levels. Endoplasmic reticulum stress sensors were found changed both in F1 and F2 generations. Overall, our results demonstrated that maternal resveratrol supplementation could prevent cognitive impairment in the SAMP8 mice offspring through epigenetic changes and cell signaling pathways. Full article
(This article belongs to the Special Issue Health Benefits of Resveratrol)
Show Figures

Graphical abstract

15 pages, 2482 KiB  
Article
Expression of Transcripts in Marmoset Oocytes Retrieved during Follicle Isolation Without Gonadotropin Induction
by Yoon Young Kim, Byeong-Cheol Kang, Jun Won Yun, Jae Hun Ahn, Yong Jin Kim, Hoon Kim, Zev Rosenwaks and Seung-Yup Ku
Int. J. Mol. Sci. 2019, 20(5), 1133; https://doi.org/10.3390/ijms20051133 - 6 Mar 2019
Cited by 11 | Viewed by 4385
Abstract
The in vitro maturation of oocytes is frequently used as an assisted reproductive technique (ART), and has been successfully established in humans and rodents. To overcome the limitations of ART, novel procedures for the in vitro maturation of early follicles are emerging. During [...] Read more.
The in vitro maturation of oocytes is frequently used as an assisted reproductive technique (ART), and has been successfully established in humans and rodents. To overcome the limitations of ART, novel procedures for the in vitro maturation of early follicles are emerging. During the follicle isolation procedure, the unintended rupture of each follicle leads to a release of extra oocytes. Such oocytes, which are obtained during follicle isolation from marmosets, can be used for early maturation studies. Marmoset (Callithrix jacchus), which is classified as a new-world monkey, is a novel model that has been employed in reproductive biomedical research, as its reproductive physiology is similar to that of humans in several aspects. The ovaries of female marmosets were collected, and the excess oocytes present during follicle isolation were retrieved without pre-gonadotropin induction. Each oocyte was matured in vitro for 48 h in the presence of various concentrations of human chorionic gonadotropin (hCG) and epidermal growth factor (EGF), and the maturity of oocytes and optimal maturation conditions were evaluated. Each oocyte was individually reverse-transcribed, and the expression of mRNAs and microRNAs (miRs) were analyzed. Concentrations of hCG significantly affected the maturation rate of oocytes [the number of metaphase II (MII) oocytes]. The expression of BMP15 and ZP1 was highest when the oocytes were matured using 100 IU/L of hCG without pre-treatment with gonadotropins, and that of Cja-mir-27a was highest when cultured with follicle stimulating hormone. These results suggest that these up-regulated miRs affect the maturation of oocytes. Interactions with other protein networks were analyzed, and a strong association of BMP15 and ZP1 with sperm binding receptor (ACR), anti-Müllerian hormone (AMH), and AMH receptor was demonstrated, which is related to the proliferation of granulosa cells. Collectively, on the basis of these results, the authors propose optimal maturation conditions of excess oocytes of marmoset without in vivo gonadotropin treatment, and demonstrated the roles of miRs in early oocyte maturation at the single-cell level in marmosets. Full article
Show Figures

Figure 1

17 pages, 961 KiB  
Review
Clinical Potential and Current Progress of Dental Pulp Stem Cells for Various Systemic Diseases in Regenerative Medicine: A Concise Review
by Yoichi Yamada, Sayaka Nakamura-Yamada, Kaoru Kusano and Shunsuke Baba
Int. J. Mol. Sci. 2019, 20(5), 1132; https://doi.org/10.3390/ijms20051132 - 6 Mar 2019
Cited by 189 | Viewed by 14525
Abstract
Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) that have multipotent differentiation and a self-renewal ability. They have been useful not only for dental diseases, but also for systemic diseases. Extensive studies have suggested that DPSCs are effective for various diseases, [...] Read more.
Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) that have multipotent differentiation and a self-renewal ability. They have been useful not only for dental diseases, but also for systemic diseases. Extensive studies have suggested that DPSCs are effective for various diseases, such as spinal cord injuries, Parkinson’s disease, Alzheimer’s disease, cerebral ischemia, myocardial infarction, muscular dystrophy, diabetes, liver diseases, eye diseases, immune diseases, and oral diseases. DPSCs have the potential for use in a cell-therapeutic paradigm shift to treat these diseases. It has also been reported that DPSCs have higher regenerative potential than the bone marrow-derived mesenchymal stem cells known as representative MSCs. Therefore, DPSCs have recently gathered much attention. In this review, the therapeutic potential of DPSCs, the latest progress in the pre-clinical study for treatment of these various systemic diseases, and the clinical applications of DPSCs in regenerative medicine, are all summarized. Although challenges, including mechanisms of the effects and establishment of cell processing and transplantation methods for clinical use, still remain, DPSCs could be promising stem cells sources for various clinical applications, because of their easy isolation by a noninvasive procedure without ethical concerns. Full article
(This article belongs to the Special Issue Role and Application of Stem Cells in Regenerative Medicine)
Show Figures

Figure 1

19 pages, 5925 KiB  
Article
Photobiomodulation Enhances the Angiogenic Effect of Mesenchymal Stem Cells to Mitigate Radiation-Induced Enteropathy
by Kyuchang Kim, Janet Lee, Hyosun Jang, Sunhoo Park, Jiyoung Na, Jae Kyung Myung, Min-Jung Kim, Won-Suk Jang, Sun-Joo Lee, Hyewon Kim, Hyunwook Myung, JiHoon Kang and Sehwan Shim
Int. J. Mol. Sci. 2019, 20(5), 1131; https://doi.org/10.3390/ijms20051131 - 5 Mar 2019
Cited by 34 | Viewed by 5689
Abstract
Radiation-induced enteropathy remains a major complication after accidental or therapeutic exposure to ionizing radiation. Recent evidence suggests that intestinal microvascular damage significantly affects the development of radiation enteropathy. Mesenchymal stem cell (MSC) therapy is a promising tool to regenerate various tissues, including skin [...] Read more.
Radiation-induced enteropathy remains a major complication after accidental or therapeutic exposure to ionizing radiation. Recent evidence suggests that intestinal microvascular damage significantly affects the development of radiation enteropathy. Mesenchymal stem cell (MSC) therapy is a promising tool to regenerate various tissues, including skin and intestine. Further, photobiomodulation (PBM), or low-level light therapy, can accelerate wound healing, especially by stimulating angiogenesis, and stem cells are particularly susceptible to PBM. Here, we explored the effect of PBM on the therapeutic potential of MSCs for the management of radiation enteropathy. In vitro, using human umbilical cord blood-derived MSCs, PBM increased proliferation and self-renewal. Intriguingly, the conditioned medium from MSCs treated with PBM attenuated irradiation-induced apoptosis and impaired tube formation in vascular endothelial cells, and these protective effects were associated with the upregulation of several angiogenic factors. In a mouse model of radiation-induced enteropathy, treatment with PBM-preconditioned MSCs alleviated mucosal destruction, improved crypt cell proliferation and epithelial barrier functions, and significantly attenuated the loss of microvascular endothelial cells in the irradiated intestinal mucosa. This treatment also significantly increased angiogenesis in the lamina propria. Together, we suggest that PBM enhances the angiogenic potential of MSCs, leading to improved therapeutic efficacy for the treatment of radiation-induced enteropathy. Full article
(This article belongs to the Special Issue Endothelial Dysfunction: Pathophysiology and Molecular Mechanisms)
Show Figures

Figure 1

32 pages, 7263 KiB  
Article
On a Cold Night: Transcriptomics of Grapevine Flower Unveils Signal Transduction and Impacted Metabolism
by Mélodie Sawicki, Marine Rondeau, Barbara Courteaux, Fanja Rabenoelina, Gea Guerriero, Eric Gomès, Ludivine Soubigou-Taconnat, Sandrine Balzergue, Christophe Clément, Essaïd Ait Barka, Nathalie Vaillant-Gaveau and Cédric Jacquard
Int. J. Mol. Sci. 2019, 20(5), 1130; https://doi.org/10.3390/ijms20051130 - 5 Mar 2019
Cited by 9 | Viewed by 5304
Abstract
Low temperature is a critical environmental factor limiting plant productivity, especially in northern vineyards. To clarify the impact of this stress on grapevine flower, we used the Vitis array based on Roche-NimbleGen technology to investigate the gene expression of flowers submitted to a [...] Read more.
Low temperature is a critical environmental factor limiting plant productivity, especially in northern vineyards. To clarify the impact of this stress on grapevine flower, we used the Vitis array based on Roche-NimbleGen technology to investigate the gene expression of flowers submitted to a cold night. Our objectives were to identify modifications in the transcript levels after stress and during recovery. Consequently, our results confirmed some mechanisms known in grapes or other plants in response to cold stress, notably, (1) the pivotal role of calcium/calmodulin-mediated signaling; (2) the over-expression of sugar transporters and some genes involved in plant defense (especially in carbon metabolism), and (3) the down-regulation of genes encoding galactinol synthase (GOLS), pectate lyases, or polygalacturonases. We also identified some mechanisms not yet known to be involved in the response to cold stress, i.e., (1) the up-regulation of genes encoding G-type lectin S-receptor-like serine threonine-protein kinase, pathogen recognition receptor (PRR5), or heat-shock factors among others; (2) the down-regulation of Myeloblastosis (MYB)-related transcription factors and the Constans-like zinc finger family; and (3) the down-regulation of some genes encoding Pathogen-Related (PR)-proteins. Taken together, our results revealed interesting features and potentially valuable traits associated with stress responses in the grapevine flower. From a long-term perspective, our study provides useful starting points for future investigation. Full article
(This article belongs to the Special Issue Plant Metabolism in Crops: A Systems Biology Perspective)
Show Figures

Graphical abstract

19 pages, 2619 KiB  
Article
Evolutionary Toxicogenomics of the Striped Killifish (Fundulus majalis) in the New Bedford Harbor (Massachusetts, USA)
by Paolo Ruggeri, Xiao Du, Douglas L. Crawford and Marjorie F. Oleksiak
Int. J. Mol. Sci. 2019, 20(5), 1129; https://doi.org/10.3390/ijms20051129 - 5 Mar 2019
Cited by 6 | Viewed by 3608
Abstract
In this paper, we used a Genotyping-by-Sequencing (GBS) approach to find and genotype more than 4000 genome-wide SNPs (Single Nucleotide Polymorphisms) from striped killifish exposed to a variety of polychlorinated biphenyls (PCBs) and other aromatic pollutants in New Bedford Harbor (NBH, Massachusetts, USA). [...] Read more.
In this paper, we used a Genotyping-by-Sequencing (GBS) approach to find and genotype more than 4000 genome-wide SNPs (Single Nucleotide Polymorphisms) from striped killifish exposed to a variety of polychlorinated biphenyls (PCBs) and other aromatic pollutants in New Bedford Harbor (NBH, Massachusetts, USA). The aims of this study were to identify the genetic consequences of exposure to aquatic pollutants and detect genes that may be under selection. Low genetic diversity (HE and π) was found in the site exposed to the highest pollution level, but the pattern of genetic diversity did not match the pollution levels. Extensive connectivity was detected among sampling sites, which suggests that balanced gene flow may explain the lack of genetic variation in response to pollution levels. Tests for selection identified 539 candidate outliers, but many of the candidate outliers were not shared among tests. Differences among test results likely reflect different test assumptions and the complex pollutant mixture. Potentially, selectively important loci are associated with 151 SNPs, and enrichment analysis suggests a likely involvement of these genes with pollutants that occur in NBH. This result suggests that selective processes at genes targeted by pollutants may be occurring, even at a small geographical scale, and may allow the local striped killifish to resist the high pollution levels. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 1004 KiB  
Review
Chemerin Isoforms and Activity in Obesity
by Christa Buechler, Susanne Feder, Elisabeth M. Haberl and Charalampos Aslanidis
Int. J. Mol. Sci. 2019, 20(5), 1128; https://doi.org/10.3390/ijms20051128 - 5 Mar 2019
Cited by 132 | Viewed by 9860
Abstract
Overweight and adiposity are risk factors for several diseases, like type 2 diabetes and cancer. White adipose tissue is a major source for adipokines, comprising a diverse group of proteins exerting various functions. Chemerin is one of these proteins whose systemic levels are [...] Read more.
Overweight and adiposity are risk factors for several diseases, like type 2 diabetes and cancer. White adipose tissue is a major source for adipokines, comprising a diverse group of proteins exerting various functions. Chemerin is one of these proteins whose systemic levels are increased in obesity. Chemerin is involved in different physiological and pathophysiological processes and it regulates adipogenesis, insulin sensitivity, and immune response, suggesting a vital role in metabolic health. The majority of serum chemerin is biologically inert. Different proteases are involved in the C-terminal processing of chemerin and generate diverse isoforms that vary in their activity. Distribution of chemerin variants was analyzed in adipose tissues and plasma of lean and obese humans and mice. The Tango bioassay, which is suitable to monitor the activation of the beta-arrestin 2 pathway, was used to determine the ex-vivo activation of chemerin receptors by systemic chemerin. Further, the expression of the chemerin receptors was analyzed in adipose tissue, liver, and skeletal muscle. Present investigations assume that increased systemic chemerin in human obesity is not accompanied by higher biologic activity. More research is needed to fully understand the pathways that control chemerin processing and chemerin signaling. Full article
(This article belongs to the Special Issue Adipokines 2.0)
Show Figures

Graphical abstract

15 pages, 9792 KiB  
Article
Optimized Surface Characteristics and Enhanced in Vivo Osseointegration of Alkali-Treated Titanium with Nanonetwork Structures
by Yuhao Zeng, Yuanyuan Yang, Luyuan Chen, Derong Yin, Honghao Zhang, Yuichiro Tashiro, Shihoko Inui, Tetsuji Kusumoto, Hiroshi Nishizaki, Tohru Sekino, Joji Okazaki and Satoshi Komasa
Int. J. Mol. Sci. 2019, 20(5), 1127; https://doi.org/10.3390/ijms20051127 - 5 Mar 2019
Cited by 20 | Viewed by 4030
Abstract
Alkali-treated titanium (Ti) with a porous, homogeneous, and uniform nanonetwork structure (TNS) that enables establishment of a more rapid and firmer osteointegration than titanium has recently been reported. However, the mechanisms underlying the enhanced osteogenic activity on TNS remains to be elucidated. This [...] Read more.
Alkali-treated titanium (Ti) with a porous, homogeneous, and uniform nanonetwork structure (TNS) that enables establishment of a more rapid and firmer osteointegration than titanium has recently been reported. However, the mechanisms underlying the enhanced osteogenic activity on TNS remains to be elucidated. This study aimed to evaluate the surface physicochemical properties of Ti and TNS, and investigate osteoinduction and osteointegration in vivo. Surface characteristics were evaluated using scanning electron microscopy (SEM), scanning probe microscopy (SPM), and X-ray photoelectron spectrometry (XPS), and the surface electrostatic force of TNS was determined using solid zeta potential. This study also evaluated the adsorption of bovine serum albumin (BSA) and human plasma fibronectin (HFN) on Ti and TNS surfaces using quartz crystal microbalance (QCM) sensors, and apatite formation on Ti and TNS surfaces was examined using a simulated body fluid (SBF) test. Compared with Ti, the newly developed TNS enhanced BSA and HFN absorbance capacity and promoted apatite formation. Furthermore, TNS held less negative charge than Ti. Notably, sequential fluorescence labeling and microcomputed tomography assessment indicated that TNS screws implanted into rat femurs exhibited remarkably enhanced osteointegration compared with Ti screws. These results indicate that alkali-treated titanium implant with a nanonetwork structure has considerable potential for future clinical applications in dentistry and orthopedics. Full article
(This article belongs to the Special Issue Functional Materials for Bone Regeneration: Biomaterials and Cells)
Show Figures

Figure 1

16 pages, 2097 KiB  
Article
Effects of 2,4-Dichlorophenoxyacetic Acid on Cucumber Fruit Development and Metabolism
by Chaoyang Hu, Huiyu Zhao, Jianxin Shi, Jian Li, Xiangbo Nie and Guiling Yang
Int. J. Mol. Sci. 2019, 20(5), 1126; https://doi.org/10.3390/ijms20051126 - 5 Mar 2019
Cited by 14 | Viewed by 4924
Abstract
The auxin-like compound 2,4-dichlorophenoxyacetic acid (2,4-D) has been widely used as a plant growth regulator in cucumber fruit production; however, its influence on fruit development and metabolism has not been evaluated. In this study, the phenotype of cucumber fruits in both 2,4-D treatment [...] Read more.
The auxin-like compound 2,4-dichlorophenoxyacetic acid (2,4-D) has been widely used as a plant growth regulator in cucumber fruit production; however, its influence on fruit development and metabolism has not been evaluated. In this study, the phenotype of cucumber fruits in both 2,4-D treatment and non-treatment control groups were recorded, and the metabolome of different segments of cucumber fruit at various sampling time points were profiled by a standardized non-targeted metabolomics method based on UPLC-qTOF-MS. The application of 2,4-D increased the early growth rate of the fruit length but had no significant effect on the final fruit length, and produced cucumber fruits with fresh flowers at the top. The 2,4-D treatment also affected the cucumber fruit metabolome, causing significant changes in the stylar end at 4 days after flowering (DAF). The significantly changed metabolites were mainly involved in methionine metabolism, the citric acid cycle and flavonoid metabolism pathways. At the harvest stage, 2,4–D treatment significantly decreased the levels of flavonoids and cinnamic acid derivatives while increased the levels of some of the amino acids. In summary, exogenous application of 2,4-D can greatly alter the phenotype and metabolism of cucumber fruit. These findings will assist in exploring the mechanisms of how 2,4-D treatment changes the fruit phenotype and evaluating the influence of 2,4-D treatment on the nutritional qualities of cucumber fruit. Full article
(This article belongs to the Special Issue Plant Metabolism in Crops: A Systems Biology Perspective)
Show Figures

Figure 1

16 pages, 5373 KiB  
Article
Cisplatin Synergistically Enhances Antitumor Potency of Conditionally Replicating Adenovirus via p53 Dependent or Independent Pathways in Human Lung Carcinoma
by Sakhawat Ali, Muhammad Tahir, Aamir Ali Khan, Xue Chai Chen, Ma Ling and Yinghui Huang
Int. J. Mol. Sci. 2019, 20(5), 1125; https://doi.org/10.3390/ijms20051125 - 5 Mar 2019
Cited by 17 | Viewed by 5882
Abstract
Cisplatin is ranked as one of the most powerful and commonly prescribed anti-tumor chemotherapeutic agents which improve survival in many solid tumors including non-small cell lung cancer. However, the treatment of advanced lung cancer is restricted due to chemotherapy resistance. Here, we developed [...] Read more.
Cisplatin is ranked as one of the most powerful and commonly prescribed anti-tumor chemotherapeutic agents which improve survival in many solid tumors including non-small cell lung cancer. However, the treatment of advanced lung cancer is restricted due to chemotherapy resistance. Here, we developed and investigated survivin promoter regulating conditionally replicating adenovirus (CRAd) for its anti-tumor potential alone or in combination with cisplatin in two lung cancer cells, H23, H2126, and their resistant cells, H23/CPR, H2126/CPR. To measure the expression of genes which regulate resistance, adenoviral transduction, metastasis, and apoptosis in cancer cells, RT-PCR and Western blotting were performed. The anti-tumor efficacy of the treatments was evaluated through flow cytometry, MTT and transwell assays. This study demonstrated that co-treatment with cisplatin and CRAd exerts synergistic anti-tumor effects on chemotherapy sensitive lung cancer cells and monotherapy of CRAd could be a practical approach to deal with chemotherapy resistance. Combined treatment induced stronger apoptosis by suppressing the anti-apoptotic molecule Bcl-2, and reversed epithelial to mesenchymal transition. In conclusion, cisplatin synergistically increased the tumor-killing of CRAd by (1) increasing CRAd transduction via enhanced CAR expression and (2) increasing p53 dependent or independent apoptosis of lung cancer cell lines. Also, CRAd alone proved to be a very efficient anti-tumor agent in cancer cells resistant to cisplatin owing to upregulated CAR levels. In an exciting outcome, we have revealed novel therapeutic opportunities to exploit intrinsic and acquired resistance to enhance the therapeutic index of anti-tumor treatment in lung cancer. Full article
(This article belongs to the Special Issue Cisplatin in Cancer Therapy: Molecular Mechanisms of Action)
Show Figures

Graphical abstract

18 pages, 638 KiB  
Review
Osmotic Demyelination: From an Oligodendrocyte to an Astrocyte Perspective
by Charles Nicaise, Catherine Marneffe, Joanna Bouchat and Jacques Gilloteaux
Int. J. Mol. Sci. 2019, 20(5), 1124; https://doi.org/10.3390/ijms20051124 - 5 Mar 2019
Cited by 34 | Viewed by 8242
Abstract
Osmotic demyelination syndrome (ODS) is a disorder of the central myelin that is often associated with a precipitous rise of serum sodium. Remarkably, while the myelin and oligodendrocytes of specific brain areas degenerate during the disease, neighboring neurons and axons appear unspoiled, and [...] Read more.
Osmotic demyelination syndrome (ODS) is a disorder of the central myelin that is often associated with a precipitous rise of serum sodium. Remarkably, while the myelin and oligodendrocytes of specific brain areas degenerate during the disease, neighboring neurons and axons appear unspoiled, and neuroinflammation appears only once demyelination is well established. In addition to blood‒brain barrier breakdown and microglia activation, astrocyte death is among one of the earliest events during ODS pathology. This review will focus on various aspects of biochemical, molecular and cellular aspects of oligodendrocyte and astrocyte changes in ODS-susceptible brain regions, with an emphasis on the crosstalk between those two glial cells. Emerging evidence pointing to the initiating role of astrocytes in region-specific degeneration are discussed. Full article
Show Figures

Figure 1

14 pages, 2976 KiB  
Article
Mechanisms of Iodide–Triiodide Exchange Reactions in Ionic Liquids: A Reactive Molecular-Dynamics Exploration
by Aaron Byrne, Eduardo M. Bringa, Mario G. Del Pópolo, Jorge J. Kohanoff, Vanesa Galassi and Niall J. English
Int. J. Mol. Sci. 2019, 20(5), 1123; https://doi.org/10.3390/ijms20051123 - 5 Mar 2019
Cited by 9 | Viewed by 5557
Abstract
Efficient charge transport has been observed in iodine-doped, iodide-based room-temperature ionic liquids, yielding high ionic conductivity. To elucidate preferred mechanistic pathways for the iodide ( I )-to-triiodide ( I 3 ) exchange reactions, we have performed 10 ns reactive molecular-dynamics calculations [...] Read more.
Efficient charge transport has been observed in iodine-doped, iodide-based room-temperature ionic liquids, yielding high ionic conductivity. To elucidate preferred mechanistic pathways for the iodide ( I )-to-triiodide ( I 3 ) exchange reactions, we have performed 10 ns reactive molecular-dynamics calculations in the liquid state for 1-butyl-3-methylimidazolium iodide ([BMIM][I]) at 450 to 750 K. Energy-barrier distributions for the iodine-swapping process were determined as a function of temperature, employing a charge-reassignment scheme drawn in part from electronic-structure calculations. Bond-exchange events were observed with rate-determining energy barriers ranging from ~0.19 to 0.23 ± 0.06 eV at 750 and 450 K, respectively, with an approximately Arrhenius temperature dependence for iodine self-diffusivity and reaction kinetics, although diffusion dominates/limits the bond-exchange events. This charge transfer is not dissimilar in energetics to those in solid-state superionic conductors. Full article
(This article belongs to the Special Issue Solution Chemical Kinetics 2.0)
Show Figures

Figure 1

17 pages, 833 KiB  
Review
The Potential Beneficial Effects of Resveratrol on Cardiovascular Complications in Marfan Syndrome Patients–Insights from Rodent-Based Animal Studies
by Mitzi M. van Andel, Maarten Groenink, Aeilko H. Zwinderman, Barbara J.M. Mulder and Vivian de Waard
Int. J. Mol. Sci. 2019, 20(5), 1122; https://doi.org/10.3390/ijms20051122 - 5 Mar 2019
Cited by 26 | Viewed by 6834
Abstract
Marfan syndrome (MFS) patients are at risk for cardiovascular disease. In particular, for aortic aneurysm formation, which ultimately can result in a life-threatening aortic dissection or rupture. Over the years, research into a sufficient pharmacological treatment option against aortopathy has expanded, mostly due [...] Read more.
Marfan syndrome (MFS) patients are at risk for cardiovascular disease. In particular, for aortic aneurysm formation, which ultimately can result in a life-threatening aortic dissection or rupture. Over the years, research into a sufficient pharmacological treatment option against aortopathy has expanded, mostly due to the development of rodent disease models for aneurysm formation and dissections. Unfortunately, no optimal treatment strategy has yet been identified for MFS. The biologically-potent polyphenol resveratrol (RES), that occurs in nuts, plants, and the skin of grapes, was shown to have a positive effect on aortic repair in various rodent aneurysm models. RES demonstrated to affect aortic integrity and aortic dilatation. The beneficial processes relevant for MFS included the improvement of endothelial dysfunction, extracellular matrix degradation, and smooth muscle cell death. For the wide range of beneficial effects on these mechanisms, evidence was found for the following involved pathways; alleviating oxidative stress (change in eNOS/iNOS balance and decrease in NOX4), reducing protease activity to preserve the extracellular matrix (decrease in MMP2), and improving smooth muscle cell survival affecting aortic aging (changing the miR21/miR29 balance). Besides aortic features, MFS patients may also suffer from manifestations concerning the heart, such as mitral valve prolapse and left ventricular impairment, where evidence from rodent models shows that RES may aid in promoting cardiomyocyte survival directly (SIRT1 activation) or by reducing oxidative stress (increasing superoxide dismutase) and increasing autophagy (AMPK activation). This overview discusses recent RES studies in animal models of aortic aneurysm formation and heart failure, where different advantageous effects have been reported that may collectively improve the aortic and cardiac pathology in patients with MFS. Therefore, a clinical study with RES in MFS patients seems justified, to validate RES effectiveness, and to judge its suitability as potential new treatment strategy. Full article
(This article belongs to the Special Issue Health Benefits of Resveratrol)
Show Figures

Graphical abstract

14 pages, 471 KiB  
Article
Intake of Red and Processed Meat, Use of Non-Steroid Anti-Inflammatory Drugs, Genetic Variants and Risk of Colorectal Cancer: A Prospective Study of the Danish “Diet, Cancer and Health” Cohort
by Vibeke Andersen, Ulrich Halekoh, Anne Tjønneland, Ulla Vogel and Tine Iskov Kopp
Int. J. Mol. Sci. 2019, 20(5), 1121; https://doi.org/10.3390/ijms20051121 - 5 Mar 2019
Cited by 20 | Viewed by 4334
Abstract
Red and processed meat have been associated with increased risk of colorectal cancer (CRC), whereas long-term use of non-steroid anti-inflammatory drugs (NSAIDs) may reduce the risk. The aim was to investigate potential interactions between meat intake, NSAID use, and gene variants in fatty [...] Read more.
Red and processed meat have been associated with increased risk of colorectal cancer (CRC), whereas long-term use of non-steroid anti-inflammatory drugs (NSAIDs) may reduce the risk. The aim was to investigate potential interactions between meat intake, NSAID use, and gene variants in fatty acid metabolism and NSAID pathways in relation to the risk of CRC. A nested case-cohort study of 1038 CRC cases and 1857 randomly selected participants from the Danish prospective “Diet, Cancer and Health” study encompassing 57,053 persons was performed using the Cox proportional hazard model. Gene variants in SLC25A20, PRKAB1, LPCAT1, PLA2G4A, ALOX5, PTGER3, TP53, CCAT2, TCF7L2, and BCL2 were investigated. CCAT2 rs6983267 was associated with the risk of CRC per se (p < 0.01). Statistically significant interactions were found between intake of red and processed meat and CCAT2 rs6983267, TP53 rs1042522, LPCAT1 rs7737692, SLC25A20 rs7623023 (pinteraction = 0.04, 0.04, 0.02, 0.03, respectively), and the use of NSAID and alcohol intake and TP53 rs1042522 (pinteraction = 0.04, 0.04, respectively) in relation to the risk of CRC. No other consistent associations or interactions were found. This study replicated an association of CCAT2 rs6983267 with CRC and an interaction between TP53 rs1042522 and NSAID in relation to CRC. Interactions between genetic variants in fatty acid metabolism and NSAID pathways and the intake of red and processed meat were found. Our results suggest that meat intake and NSAID use affect the same carcinogenic mechanisms. All new findings should be sought replicated in independent prospective studies. Future studies on the cancer-protective effects of aspirin/NSAID should include gene and meat assessments. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 6215 KiB  
Article
Bone Marrow Aspirate Concentrate for the Treatment of Avascular Meniscus Tears in a One-Step Procedure—Evaluation of an In Vivo Model
by Matthias Koch, Selma Hammer, Julian Fuellerer, Siegmund Lang, Christian G. Pfeifer, Girish Pattappa, Johannes Weber, Markus Loibl, Michael Nerlich, Peter Angele and Johannes Zellner
Int. J. Mol. Sci. 2019, 20(5), 1120; https://doi.org/10.3390/ijms20051120 - 5 Mar 2019
Cited by 42 | Viewed by 5517
Abstract
Avascular meniscus tears show poor intrinsic regenerative potential. Thus, lesions within this area predispose the patient to developing knee osteoarthritis. Current research focuses on regenerative approaches using growth factors or mesenchymal stem cells (MSCs) to enhance healing capacity within the avascular meniscus zone. [...] Read more.
Avascular meniscus tears show poor intrinsic regenerative potential. Thus, lesions within this area predispose the patient to developing knee osteoarthritis. Current research focuses on regenerative approaches using growth factors or mesenchymal stem cells (MSCs) to enhance healing capacity within the avascular meniscus zone. The use of MSCs especially as progenitor cells and a source of growth factors has shown promising results. However, present studies use bone-marrow-derived BMSCs in a two-step procedure, which is limiting the transfer in clinical praxis. So, the aim of this study was to evaluate a one-step procedure using bone marrow aspirate concentrate (BMAC), containing BMSCs, for inducing the regeneration of avascular meniscus lesions. Longitudinal meniscus tears of 4 mm in size of the lateral New Zealand White rabbit meniscus were treated with clotted autologous PRP (platelet-rich plasma) or BMAC and a meniscus suture or a meniscus suture alone. Menisci were harvested at 6 and 12 weeks after initial surgery. Macroscopical and histological evaluation was performed according to an established Meniscus Scoring System. BMAC significantly enhanced regeneration of the meniscus lesions in a time-dependent manner and in comparison to the PRP and control groups, where no healing could be observed. Treatment of avascular meniscus lesions with BMAC and meniscus suturing seems to be a promising approach to promote meniscus regeneration in the avascular zone using a one-step procedure. Full article
(This article belongs to the Special Issue Biomaterials for Musculoskeletal System)
Show Figures

Figure 1