Display options:
Normal
Show Abstracts
Compact
Select/unselect all
Displaying article 1-7
p. 524-540
Received: 6 July 2011 / Accepted: 17 July 2011 / Published: 27 July 2011
Show/Hide Abstract
| Cited by 3 | PDF Full-text (322 KB)
Abstract: An analysis of the path integral approach to quantum theory motivates the hypothesis that two experiments with the same classical action should have dual ontological descriptions. If correct, this hypothesis would not only constrain realistic interpretations of quantum theory, but would also act as a constructive principle, allowing any realistic model of one experiment to generate a corresponding model for its action-dual. Two pairs of action-dual experiments are presented, including one experiment that violates the Bell inequality and yet is action-dual to a single particle. The implications generally support retrodictive and retrocausal interpretations.
p. 389-401
Received: 11 June 2011 / Accepted: 21 June 2011 / Published: 29 June 2011
Show/Hide Abstract
| PDF Full-text (266 KB)
Abstract: From the physics point of view, time is now best described through General Relativity as part of space-time, which is a dynamical object encoding gravity. Time possesses also some intrinsic irreversibility due to thermodynamics and quantum mechanical effects. This irreversibility can look puzzling since time-like loops (and hence time machines) can appear in General Relativity (for example in the Gödel universe, a solution of Einstein’s equations). We take this apparent discrepancy as a warning bell, pointing out that time as we understand it might not be fundamental and that whatever theory lying beyond General Relativity may not include time as we know it as a fundamental structure. We propose therefore, following the philosophy of analog models of gravity, that time and gravity might not be fundamental per se, but only emergent features. We illustrate our proposal using a toy-model where we show how the Lorentzian signature and Nordström gravity (a diffeomorphisms invariant scalar gravity theory) can emerge from a timeless non-dynamical space. This article received the fourth prize at the essay competition of the Foundational Questions Institute on the nature of time.
p. 171-206
Received: 9 March 2011 / Revised: 6 April 2011 / Accepted: 12 April 2011 / Published: 27 April 2011
Show/Hide Abstract
| Cited by 8 | PDF Full-text (658 KB)
Abstract: Quantum theory is a probabilistic calculus that enables the calculation of the probabilities of the possible outcomes of a measurement performed on a physical system. But what is the relationship between this probabilistic calculus and probability theory itself? Is quantum theory compatible with probability theory? If so, does it extend or generalize probability theory? In this paper, we answer these questions, and precisely determine the relationship between quantum theory and probability theory, by explicitly deriving both theories from first principles. In both cases, the derivation depends upon identifying and harnessing the appropriate symmetries that are operative in each domain. We prove, for example, that quantum theory is compatible with probability theory by explicitly deriving quantum theory on the assumption that probability theory is generally valid.
p. 134-154
Received: 21 February 2011 / Revised: 21 March 2011 / Accepted: 28 March 2011 / Published: 31 March 2011
Show/Hide Abstract
| Cited by 3 | PDF Full-text (391 KB)
Abstract: Hamiltonian constraints feature in the canonical formulation of general relativity. Unlike typical constraints they cannot be associated with a reduction procedure leading to a non-trivial reduced phase space and this means the physical interpretation of their quantum analogues is ambiguous. In particular, can we assume that “quantisation commutes with reduction” and treat the promotion of these constraints to operators annihilating the wave function, according to a Dirac type procedure, as leading to a Hilbert space equivalent to that reached by quantisation of the problematic reduced space? If not, how should we interpret Hamiltonian constraints quantum mechanically? And on what basis do we assert that quantisation and reduction commute anyway? These questions will be refined and explored in the context of modern approaches to the quantisation of canonical general relativity.
p. 16-36
Received: 6 January 2011 / Revised: 7 February 2011 / Accepted: 11 February 2011 / Published: 14 February 2011
Show/Hide Abstract
| PDF Full-text (251 KB)
Abstract: Among the symmetries in physics, the rotation symmetry is most familiar to us. It is known that the spherical harmonics serve useful purposes when the world is rotated. Squeeze transformations are also becoming more prominent in physics, particularly in optical sciences and in high-energy physics. As can be seen from Dirac’s light-cone coordinate system, Lorentz boosts are squeeze transformations. Thus the squeeze transformation is one of the fundamental transformations in Einstein’s Lorentz-covariant world. It is possible to define a complete set of orthonormal functions defined for one Lorentz frame. It is shown that the same set can be used for other Lorentz frames. Transformation properties are discussed. Physical applications are discussed in both optics and high-energy physics. It is shown that the Lorentz harmonics provide the mathematical basis for squeezed states of light. It is shown also that the same set of harmonics can be used for understanding Lorentz-boosted hadrons in high-energy physics. It is thus possible to transmit physics from one branch of physics to the other branch using the mathematical basis common to them.
p. 1945-1980
Received: 20 September 2010 / Revised: 26 October 2010 / Accepted: 11 November 2010 / Published: 19 November 2010
Show/Hide Abstract
| Cited by 2 | PDF Full-text (418 KB)
Abstract: We argue that quantum theory should proceed not from a spacetime background but from a Lie algebra, which is treated as a symmetry algebra. Then the fact that the cosmological constant is positive means not that the spacetime background is curved but that the de Sitter (dS) algebra as the symmetry algebra is more relevant than the Poincare or anti de Sitter ones. The physical interpretation of irreducible representations (IRs) of the dS algebra is considerably different from that for the other two algebras. One IR of the dS algebra splits into independent IRs for a particle and its antiparticle only when Poincare approximation works with a high accuracy. Only in this case additive quantum numbers such as electric, baryon and lepton charges are conserved, while at early stages of the Universe they could not be conserved. Another property of IRs of the dS algebra is that only fermions can be elementary and there can be no neutral elementary particles. The cosmological repulsion is a simple kinematical consequence of dS symmetry on quantum level when quasiclassical approximation is valid. Therefore the cosmological constant problem does not exist and there is no need to involve dark energy or other fields for explaining this phenomenon (in agreement with a similar conclusion by Bianchi and Rovelli).
p. 1810-1845
Received: 18 August 2010 / Revised: 14 September 2010 / Accepted: 8 October 2010 / Published: 1 November 2010
Show/Hide Abstract
| Cited by 1 | PDF Full-text (286 KB)
Abstract: We consider a quantum theory based on a Galois field. In this approach infinities cannot exist, the cosmological constant problem does not arise, and one irreducible representation (IR) of the symmetry algebra splits into independent IRs describing a particle an its antiparticle only in the approximation when de Sitter energies are much less than the characteristic of the field. As a consequence, the very notions of particles and antiparticles are only approximate and such additive quantum numbers as the electric, baryon and lepton charges are conserved only in this approximation. There can be no neutral elementary particles and the spin-statistics theorem can be treated simply as a requirement that standard quantum theory should be based on complex numbers.
Select/unselect all
Displaying article 1-7
Export citation of selected articles as:
Plain Text
BibTeX
BibTeX (without abstracts)
Endnote
Endnote (without abstracts)
Tab-delimited
PubMed XML
DOAJ XML
AGRIS XML