Special Issue "Advances in Biomimetic Robotics"


A special issue of Robotics (ISSN 2218-6581).

Deadline for manuscript submissions: closed (31 March 2014)

Special Issue Editor

Guest Editor
Prof. Dr. Ikuo Yamamoto
Department of Mechanical Science, Graduate School of Engineering, Nagasaki University, 1-14 Bunkyomachi, Nagasaki 852-8521, Japan
E-Mail: iyamamoto@nagasaki-u.ac.jp
Interests: robotics (marine, aviation, space, medicine, welfare, etc.); system engineering (dynamics and control)

Special Issue Information

Dear Colleagues,

Living organisms’ mechanisms have evolved in order to adapt to their natural environment. The evolved mechanisms have excellent maneuvering capacities, and new robotics and machinery have often been created by implementation of biomimetic approaches. This special issue, therefore, focuses on technologies of modern biomimetic robotics, such as robotic fish, insects, birds, mammalians, reptiles, etc., to provide fruitful ideas for the creation of the next generation of machinery in society.

Prof. Dr. Ikuo Yamamoto
Guest Editor


Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (N.B. Conference papers may only be submitted if the paper was not originally copyrighted and if it has been extended substantially and completely re-written). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Robotics is an international peer-reviewed Open Access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. For the first couple of issues the Article Processing Charge (APC) will be waived for well-prepared manuscripts. English correction and/or formatting fees of 250 CHF (Swiss Francs) will be charged in certain cases for those articles accepted for publication that require extensive additional formatting and/or English corrections.


  • biomimetic robots (fish, insect, bird, mammalian, reptile)

Published Papers (5 papers)

Download All Papers
Sort by:
Display options:
Select articles Export citation of selected articles as:
Select/unselect all
Displaying article 1-5
p. 330-348
by ,  and
Robotics 2014, 3(4), 330-348; doi:10.3390/robotics3040330
Received: 31 May 2014; in revised form: 22 July 2014 / Accepted: 15 August 2014 / Published: 26 September 2014
Show/Hide Abstract | PDF Full-text (483 KB)
(This article belongs to the Special Issue Advances in Biomimetic Robotics)
p. 235-246
by , , , , , , ,  and
Robotics 2014, 3(3), 235-246; doi:10.3390/robotics3030235
Received: 31 March 2014; in revised form: 23 May 2014 / Accepted: 18 June 2014 / Published: 25 June 2014
Show/Hide Abstract | PDF Full-text (1544 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Advances in Biomimetic Robotics)
p. 181-206
by  and
Robotics 2014, 3(2), 181-206; doi:10.3390/robotics3020181
Received: 31 March 2014; in revised form: 7 May 2014 / Accepted: 15 May 2014 / Published: 10 June 2014
Show/Hide Abstract | PDF Full-text (1548 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Advances in Biomimetic Robotics)
abstract graphic
p. 163-180
by , , ,  and
Robotics 2014, 3(2), 163-180; doi:10.3390/robotics3020163
Received: 13 March 2014; in revised form: 24 April 2014 / Accepted: 16 May 2014 / Published: 27 May 2014
Show/Hide Abstract | PDF Full-text (2842 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Advances in Biomimetic Robotics)
p. 149-162
by ,  and
Robotics 2014, 3(2), 149-162; doi:10.3390/robotics3020149
Received: 25 February 2014; in revised form: 27 March 2014 / Accepted: 3 April 2014 / Published: 17 April 2014
Show/Hide Abstract | PDF Full-text (3870 KB) | HTML Full-text | XML Full-text
(This article belongs to the Special Issue Advances in Biomimetic Robotics)
Select/unselect all
Displaying article 1-5
Select articles Export citation of selected articles as:

Planned Papers

The below list represents only planned manuscripts. Some of these manuscripts have not been received by the Editorial Office yet. Papers submitted to MDPI journals are subject to peer-review.

Type of Paper: Article
Design Considerations for Hexapod Walking Robots
Franco Tedeschi and Giuseppe Carbone
Laboratory of Robotics and Mechatronics, University of Cassino and South Latium, Via Di Biasio 43, 03043 Cassino (Fr), Italy
Hexapod walking robots have attracted considerable attention in recent decades. Many studies have been implemented for hexapod walking robots, but only in the recent past, efficient walking machines have been conceived designed and built with performances that are suitable for practical applications. This paper gives an overview of the state of the art on six legs walking robots. Carefully attention is given to main design issue and constraints. A design procedure is also outlined in order to systematically design a six legs walking robots. Cases of study are described as referring to previous experiences at LARM in Cassino.

Type of Paper: Article
: Self-position Estimation of Small Robotic Fish Based on Camera Information and Gyro Sensors
: Yogo Takada
Department of Mechanical and Physical Engineering; Graduate School of Engineering; Osaka City University;-3-138 Sugimoto, Sumiyoshi-ku, Osaka-shi, Osaka, Japan
: Robotic fish are ideal for surveys of fish resources and underwater structural inspections. Fish are not easily surprised at externals and the noise of the robot because the robot looks like fish and does not have a screw propeller. Incidentally, it is comparatively difficult to know the self-position in water. Radio signals, such as GPS, cannot be received. Moreover, sound ranging cannot be used easily because there are many rocks and much seaweed in the place where fish live a lot. For practical usage such as taking pictures of fish in water, the robotic fish needs to follow the target fish and estimate its self-position to swim autonomously in water. We have developed a robotic fish named FOCUS (FPGA Offline Control Underwater Searcher) which has some micro CMOS cameras and a FPGA circuit board for data processing. Red object can be detected with the CMOS camera. Besides, using visual information from images taken from the other bottom facing camera, self-position estimation becomes possible. The self-position estimation has been conducted utilizing the real-time digital image correlation (DIC) method by using a FPGA. However, the accuracy of the self-position estimation has been bad under the influence of the yaw and roll motion of the robotic fish. In this study, the self-position estimation method has been greatly improved by using the value of the yaw and roll measured with gyro sensors.
: robotic fish; swimming; self-position estimation; digital image correlation; gyro sensor

Last update: 18 March 2014

Robotics EISSN 2218-6581 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert