Production and Biomedical Applications of Bioactive Compounds

A special issue of Processes (ISSN 2227-9717). This special issue belongs to the section "Pharmaceutical Processes".

Deadline for manuscript submissions: closed (20 May 2020) | Viewed by 62680

Special Issue Editor

Special Issue Information

Dear Colleagues,

Bioactive compounds are those produced by natural sources, such as plants, microorganisms, and animals. Many of these compounds, including phenylpropanoids, isoprenoids, alkaloids, sulfated compounds, peptides, polysaccharides, resveratrol, curcumin, and bilirubin, have proven effective against various human diseases due to their pharmacological or biological activities, such as anticancer, antioxidant, antifungal, antibacterial, antidysenteric, anti-inflammatory, antiulcer, antihypertensive, and anticoagulative activities. The use of nanotechnology can improve the biological delivery of natural compounds that have documented therapeutic potential. In particular, the incorporation of natural compounds into nanoparticles can increase their bioavailability, improve targeting to the desired tissues or receptors, and enable the controlled release of compounds over extended times.

The Special Issue will focus on bioactive compounds and their biomedical applications, including following aspects:

  1. Bioactive compound identification using metabolomics tools (chromatographic and mass spectroscopic).
  2. Bioactive compounds against pharmacological activities (antioxidant, antibacterial, antifungal, anticancer, antidiabetic activity, and antiviral, etc.).
  3. Use of nanotechnology to improve the biological delivery of natural compounds.
  4. Biomedical applications of nanoparticles.

Dr. Muthu Thiruvengadam
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Processes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioactive compounds
  • biomedical applications
  • natural products
  • food chemistry
  • chromatography
  • mass spectrometry
  • sample extraction
  • pharmacology
  • nanotechnology
  • biomedical applications of nanoparticles

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

4 pages, 205 KiB  
Editorial
Production and Biomedical Applications of Bioactive Compounds
by Kaliaperumal Rekha and Muthu Thiruvengadam
Processes 2022, 10(9), 1830; https://doi.org/10.3390/pr10091830 - 10 Sep 2022
Viewed by 1025
Abstract
The development of drug resistance to presently available synthetic medicines leads us to investigate naturally produced small bioactive molecules to treat drug-resistant diseases, such as cancer and other diseases [...] Full article
(This article belongs to the Special Issue Production and Biomedical Applications of Bioactive Compounds)

Research

Jump to: Editorial, Review

11 pages, 782 KiB  
Communication
Phytochemical Composition and Enzyme Inhibition Studies of Buxus papillosa C.K. Schneid
by Hammad Saleem, Thet Thet Htar, Rakesh Naidu, Gokhan Zengin, Marcello Locatelli, Angela Tartaglia, Syafiq Asnawi Zainal Abidin and Nafees Ahemad
Processes 2020, 8(7), 757; https://doi.org/10.3390/pr8070757 - 29 Jun 2020
Cited by 4 | Viewed by 2423
Abstract
The current research work is an endeavor to study the chemical profiling and enzyme-inhibition potential of different polarity solvent (n-hexane, dichloromethane—DCM and methanol—MeOH) extracts from the aerial and stem parts of Buxus papillosa C.K. Schneid. All the extracts were analyzed for [...] Read more.
The current research work is an endeavor to study the chemical profiling and enzyme-inhibition potential of different polarity solvent (n-hexane, dichloromethane—DCM and methanol—MeOH) extracts from the aerial and stem parts of Buxus papillosa C.K. Schneid. All the extracts were analyzed for HPLC-PDA phenolic quantification, while both (aerial and stem) DCM extracts were studied for UHPLC-MS phytochemical composition. The inhibitory activity against the clinically important enzymes having crucial role in different pathologies like skin diseases (tyrosinase), inflammatory problems (lipoxygenase—LOX) and diabetes mellitus (α-amylase) were studied using standard in vitro bioassays. The DCM extracts upon UHPLC-MS analysis conducted in both negative and positive ionization modes has led to the tentative identification of 52 important secondary metabolites. Most of these belonged to the alkaloid, flavonoid, phenolic and triterpenoid classes. The HPLC-PDA polyphenolic quantification identified the presence of 10 phenolic compounds. Catechin was present in significant amounts in aerial-MeOH (7.62 ± 0.45 μg/g extract) and aerial-DCM (2.39 ± 0.51-μg/g extract) extracts. Similarly, higher amounts of epicatechin (2.76 ± 0.32-μg/g extract) and p-hydroxybenzoic acid (1.06 ± 0.21 μg/g extract) were quantified in aerial-DCM and stem-MeOH extracts, respectively. Likewise, all the extracts exhibited moderate inhibition against all the tested enzymes. These findings explain the wide usage of this plant in folklore medicine and suggest that it could be further studied as an origin of novel bioactive phytocompounds and for the designing of new pharmaceuticals. Full article
(This article belongs to the Special Issue Production and Biomedical Applications of Bioactive Compounds)
Show Figures

Figure 1

14 pages, 1907 KiB  
Communication
Covalently Cross-Linked Nanoparticles Based on Ferulated Arabinoxylans Recovered from a Distiller’s Dried Grains Byproduct
by Yubia De Anda-Flores, Elizabeth Carvajal-Millan, Jaime Lizardi-Mendoza, Agustin Rascon-Chu, Ana Luisa Martínez-López, Jorge Marquez-Escalante, Francisco Brown-Bojorquez and Judith Tanori-Cordova
Processes 2020, 8(6), 691; https://doi.org/10.3390/pr8060691 - 13 Jun 2020
Cited by 12 | Viewed by 3488
Abstract
The purpose of this investigation was to extract ferulated arabinoxylans (AX) from dried distillers’ grains with solubles (DDGS) plus to investigate their capability to form covalently cross-linked nanoparticles. AX registered 7.3 µg of ferulic acid/mg polysaccharide and molecular weight and intrinsic viscosity of [...] Read more.
The purpose of this investigation was to extract ferulated arabinoxylans (AX) from dried distillers’ grains with solubles (DDGS) plus to investigate their capability to form covalently cross-linked nanoparticles. AX registered 7.3 µg of ferulic acid/mg polysaccharide and molecular weight and intrinsic viscosity of 661 kDa and 149 mL/g, correspondingly. Fourier transform infrared spectroscopy (FTIR) was used to confirm the identity of this polysaccharide. AX formed laccase induced covalent gels at 1% (w/v), which registered an elastic modulus of 224 Pa and a content of FA dimers of 1.5 µg/mg polysaccharide. Scanning electron microscopy pictures of AX gels exhibited a microstructure resembling a rough honeycomb. AX formed covalently cross-linked nanoparticles (NAX) by coaxial electrospray. The average hydrodynamic diameter of NAX determined by dynamic light scattering was 328 nm. NAX presented a spherical and regular shape by transmission electron microscopy analysis. NAX may be an attractive material for pharmaceutical and biomedical applications and an option in sustainable DDGS use. Full article
(This article belongs to the Special Issue Production and Biomedical Applications of Bioactive Compounds)
Show Figures

Figure 1

12 pages, 2352 KiB  
Article
Metabolic Regulation Analysis of Ajmalicine Biosynthesis Pathway in Catharanthus roseus (L.) G. Don Suspension Culture Using Nanosensor
by Ghazala Ambrin, Hayssam M. Ali and Altaf Ahmad
Processes 2020, 8(5), 589; https://doi.org/10.3390/pr8050589 - 15 May 2020
Cited by 4 | Viewed by 3290
Abstract
Ajmalicine is one of the most popular antihypertensive drugs obtained from the root barks of Cathranthus roseus (L.) G. Don and Rauvolfia serpentine (L.) Benth. ex Kurz. It has also potential antimicrobial, cytotoxic, central depressant and antioxidant activities. As the demand for the [...] Read more.
Ajmalicine is one of the most popular antihypertensive drugs obtained from the root barks of Cathranthus roseus (L.) G. Don and Rauvolfia serpentine (L.) Benth. ex Kurz. It has also potential antimicrobial, cytotoxic, central depressant and antioxidant activities. As the demand for the alkaloid is significantly high, metabolic engineering approaches are being tried to increase its production in both homologous and heterologous systems. The metabolic engineering approach requires knowledge of the metabolic regulation of the alkaloid. For understanding the metabolic regulation, fluxomic analysis is important as it helps in understanding the flux of the alkaloid through the complicated metabolic pathway. The present study was conducted to analyse the flux analysis of the ajmalicine biosynthesis, using a genetically encoded Fluorescent Resonance Energy Transfer FRET-based nanosensor for ajmalicine (FLIP-Ajn). Here, we have silenced six important genes of terpenoid indole alkaloid (TIA), namely G10H, 10HGO, TDC, SLS, STR and SDG, through RNA-mediated gene silencing in different batches of C. roseus suspension cells, generating six silenced cell lines. Monitoring of the ajmalicine level was carried out using FLIP-Ajn in these silenced cell lines, with high spatial and temporal resolution. The study offers the rapid, high throughput real-time measurement of ajmalicine flux in response to the silenced TIA genes, thereby identifying the regulatory gene controlling the alkaloid flux in C. roseus suspension cells. We have reported that the STR gene encoding strictosidine synthase of the TIA pathway could be the regulatory gene of the ajmalicine biosynthesis. Full article
(This article belongs to the Special Issue Production and Biomedical Applications of Bioactive Compounds)
Show Figures

Graphical abstract

12 pages, 2313 KiB  
Article
Pollen Bee Aqueous Extract-Based Synthesis of Silver Nanoparticles and Evaluation of Their Anti-Cancer and Anti-Bacterial Activities
by Hanan M. Al-Yousef, Musarat Amina, Ali S. Alqahtani, Mohammed S. Alqahtani, Abdul Malik, Mohammad Rafe Hatshan, Mohammed Rafiq H. Siddiqui, Mujeeb Khan, Mohammed Rafi Shaik, Mohammad Shamsul Ola and Rabbani Syed
Processes 2020, 8(5), 524; https://doi.org/10.3390/pr8050524 - 29 Apr 2020
Cited by 25 | Viewed by 4739
Abstract
Bee pollens are rich source of essential amino acids and are often considered as complete food for human beings. Herein, we exploited the potential reducing abilities of Bee pollens extract for the eco-friendly preparation of silver nanoparticles (AgNPs-G). The resulting NPs were characterized [...] Read more.
Bee pollens are rich source of essential amino acids and are often considered as complete food for human beings. Herein, we exploited the potential reducing abilities of Bee pollens extract for the eco-friendly preparation of silver nanoparticles (AgNPs-G). The resulting NPs were characterized using a combination of microscopic and spectroscopic techniques. The analyses confirm the formation of spherical Ag NPs. AgNPs-G obtained from the aqueous extract of bee pollens was used to study their antibacterial properties against Gram-positive and Gram-negative microbes using the Minimum Inhibitory Concentration 50 (MIC50) method. The antibacterial properties of AgNPs-G were compared to the properties of chemically synthesized Ag NPs (AgNPs-C) using sodium borohydride as a reducing agent. The green synthesized nanoparticles (AgNPs-G) exhibited a better antibacterial activity against most of the studied strains when compared to the chemically synthesized Ag NPs (AgNPs-C). In addition, the anti-cancer activity of Ag NPs was also studied against human liver and breast carcinoma cell lines by applying MTT-assay. The Ag NPs demonstrated considerable anticancer activity against the studied cell lines and exhibited high IC50 values in both MCF-7 and HepG2 cell lines. Full article
(This article belongs to the Special Issue Production and Biomedical Applications of Bioactive Compounds)
Show Figures

Figure 1

17 pages, 4075 KiB  
Article
Facile Synthesis of Silver Nanoparticles Using Asian Spider Flower and Its In Vitro Cytotoxic Activity Against Human Breast Carcinoma Cells
by Balashanmugam Pannerselvam, Prabhu Durai, Devasena Thiyagarajan, Hak Jin Song, Kwang Jin Kim, Yun Seok Jung, Hyung Joo Kim and Senthil Kumaran Rangarajulu
Processes 2020, 8(4), 430; https://doi.org/10.3390/pr8040430 - 4 Apr 2020
Cited by 15 | Viewed by 3691
Abstract
Cancer is one of the most dangerous threats to human health and possibly the utmost task for current medicine. Currently, bio-based synthesis of nanoparticles from plants has gained much interest due to its potential medicinal applications. In the present study, a biological approach [...] Read more.
Cancer is one of the most dangerous threats to human health and possibly the utmost task for current medicine. Currently, bio-based synthesis of nanoparticles from plants has gained much interest due to its potential medicinal applications. In the present study, a biological approach was employed for biogenic (green) synthesis of silver nanoparticles (AgNPs) using dried leaf extract of Asian spider flower (Asf). The biogenic synthesis of Asf-AgNPs (Asian spider flower-Silver nanoparticles) was established using ultra violet-visible (UV-vis) spectra which exhibited a wide superficial plasmon resonance of AgNPs at 445 nm. These nanoparticles clearly showed the formation of poly-disperse crystalline solids (spherical shape) with particle size range of <50 nm based on observation under a transmission electron microscope (TEM). Infrared spectroscopy (FTIR) revealed carboxylic acids (C = O stretch) known to act as a capping agent and a reductant in plant extracts. Elemental silver signal peak was observed in the graph obtained from energy-dispersive X-ray (EDX) analysis. Biocompatibility tests for Asf-AgNPs at different doses were evaluated against human breast cancer cells (MCF7) for cell viability and apoptotic analysis. According to the evaluation, biosynthesized Asf-AgNPs could prevent the explosion of human breast tumor cells (MCF7) in IC50 at a dose of 40 μg/mL after 48 h of treatment. The results obtained in the IC50 dosage treatments were statistically significant (p < 0.05) when compared with control. Nuclear damage of cells was further investigated using annexin V-FITC/PI dual staining and DAPI (4′,6-diamidino-2-phenylindole) staining method. Bright blue fluorescence with condensed and fragmented chromatin was observed. Western blot analysis showed increased expression levels of caspases-3 and 9 (apoptotic proteins). These results indicate that bio-approached AgNPs synthesized through Asf plant extract could be used as potential therapeutic medications for human cancer cells. Full article
(This article belongs to the Special Issue Production and Biomedical Applications of Bioactive Compounds)
Show Figures

Graphical abstract

14 pages, 3001 KiB  
Article
Antibacterial, Antibiofilm and Anticancer Activity of Biologically Synthesized Silver Nanoparticles Using Seed Extract of Nigella sativa
by Ahmad Almatroudi, Habeeb Khadri, Mohd Azam, Arshad Husain Rahmani, Fahd Khaleefah Al Khaleefah, Riazunnisa Khateef, Mohammad Azam Ansari and Khaled S. Allemailem
Processes 2020, 8(4), 388; https://doi.org/10.3390/pr8040388 - 26 Mar 2020
Cited by 33 | Viewed by 5308
Abstract
Silver nanoparticle (AgNP) based approaches using plant materials have been accepted as biomedical applications. The current study aimed to test the antibacterial, antibiofilm, and anticancer activity of silver nanoparticles synthesized by seed extract of Nigella sativa (Ns) as stabilizing and reducing agents. Characterization [...] Read more.
Silver nanoparticle (AgNP) based approaches using plant materials have been accepted as biomedical applications. The current study aimed to test the antibacterial, antibiofilm, and anticancer activity of silver nanoparticles synthesized by seed extract of Nigella sativa (Ns) as stabilizing and reducing agents. Characterization was done through UV–visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electronic microscopy (SEM), and transmission electronic microscopy (TEM) analyses. UV-Vis spectroscopy showed a specific silver plasmon peak at 400 nm and a quick color change was observed in the bio-reaction medium. Electron microscopic images of Ns-AgNPs identified as spherical in shape with varied size ranged between 8 and 80 nm and zeta potential analysis evidenced the particles stability and polydisperity. Antibiofilm activity of Ns-AgNPs was evident as at 12.5 µg/mL Ns-AgNps restricted the biofilm formation by 88.42% for Enterococcus faecalis, 84.92% for E. coli, 81.86% for Klebsiella pneumonia, 82.84% for Staphylococcus aureus, and 49.9% for Pseudomonas aeruginosa, respectively. Furthermore, biologically synthesized AgNPs showed the significant bacteriostatic and bactericidal activity. Even the lowest concentration of Ns-AgNps restricted the highest rate of inhibition against S. aureus (6.5 and 15 µg/mL) and E. faecalis (6.5 and 15 µg/mL). Antimicrobial activity of S. aureus and E. fecalis was more prominent than E. coli (15 and 30 µg/mL), K. pneumonia (15 and 30 µg/mL) and P. aeruginosa (30 and 60 µg/mL) respectively. Moreover, Ns-AgNPs revealed significant cytotoxic ability and substantially killed human breast cancer cell (HCC-712) viability. The results of current study advocate that Ns-AgNps may be considered as a potential option in biomedical applications, alternative therapy, designing anti-biofilm agents, treating multi drug resistance bacterial infection, and anti-cancer therapy. Full article
(This article belongs to the Special Issue Production and Biomedical Applications of Bioactive Compounds)
Show Figures

Figure 1

13 pages, 831 KiB  
Article
Secondary Metabolites Profiling, Biological Activities and Computational Studies of Abutilon figarianum Webb (Malvaceae)
by Hammad Saleem, Muhammad Sarfraz, Hafiz Muhammad Ahsan, Umair Khurshid, Syed Asif Jahanzeb Kazmi, Gokhan Zengin, Marcello Locatelli, Irshad Ahmad, Hassan H. Abdallah, Mohamad Fawzi Mahomoodally, Kannan RR Rengasamy and Nafees Ahemad
Processes 2020, 8(3), 336; https://doi.org/10.3390/pr8030336 - 13 Mar 2020
Cited by 10 | Viewed by 3869
Abstract
This research endeavors to inspect the chemical and biological profiling of methanol and dichloromethane (DCM) extracts prepared from Abutilon figarianum Webb. Total bioactive constituents and secondary metabolites were assessed via ultra-high performance liquid chromatography (UHPLC-MS). Biological effects were evaluated via antioxidant and enzymes [...] Read more.
This research endeavors to inspect the chemical and biological profiling of methanol and dichloromethane (DCM) extracts prepared from Abutilon figarianum Webb. Total bioactive constituents and secondary metabolites were assessed via ultra-high performance liquid chromatography (UHPLC-MS). Biological effects were evaluated via antioxidant and enzymes inhibitory assays. The methanol extract was able to give the highest phenolic (51.92 mg GAE/g extract) and flavonoid (72.59 mg QE/g extract) contents and was found to contain 11 bioactive metabolites, including flavonoid, alkaloid, phenolic and fatty acid derivatives, as accessed by UHPLC-MS analysis. Similarly, the phytochemical profiling of the DCM extract tentatively identified the 12 different secondary metabolites, most of these were fatty acid derivatives. The methanol extract was most active in the radical scavenging, reducing power and total antioxidant power assays, while dichloromethane extract showed the highest metal chelating activity. For enzyme inhibition, the DCM extract showed the highest activity against cholinesterases, glucosidase and amylase, whereas methanol extract was most active against tyrosinase. Docking studies have supported the observed biological activity, where isobergapten showed higher activity against tyrosinase (−7.63 kcal/mol) with inhibition constant (2.55 µM), as opposed to other enzymes. The observed antioxidant and inhibitory potentials of A. figarianum against the studied enzymes tend to endorse this plant as a prospective source of bioactive phytochemicals. Full article
(This article belongs to the Special Issue Production and Biomedical Applications of Bioactive Compounds)
Show Figures

Figure 1

19 pages, 4025 KiB  
Article
Okra-Thioglycolic Acid Conjugate—Synthesis, Characterization, and Evaluation as a Mucoadhesive Polymer
by N. Raghavendra Naveen, Chakka Gopinath and Mallesh Kurakula
Processes 2020, 8(3), 316; https://doi.org/10.3390/pr8030316 - 9 Mar 2020
Cited by 29 | Viewed by 4152
Abstract
The success of mucoadhesive drug delivery systems relies on the type of polymer used, which becomes adhesive naturally upon hydration. Intended polymers should be able to maintain prolonged contact with biological membranes, and to protect or cater the drug to a prolonged period. [...] Read more.
The success of mucoadhesive drug delivery systems relies on the type of polymer used, which becomes adhesive naturally upon hydration. Intended polymers should be able to maintain prolonged contact with biological membranes, and to protect or cater the drug to a prolonged period. Most of the hydro polymers form weak non-covalent bonds, that hinder localization of dosage forms at specific sites resulting in therapeutic inefficiency. This can be overcome by the thiol functionalization of natural polymers. In the present study, natural okra gum (OG) was extracted, followed by thiolation (TOG) and evaluated for mucoadhesion property and its role in enhancing the efficacy of repaglinide as a model drug (short-acting Type II antidiabetic drug). The thiol functionalization of OG (TOG) was confirmed by a Fourier-transform infrared spectroscopy (FTIR) study that showed a polyhedral to a spherical shape that had a rougher surface. Differential scanning calorimetry (DSC) and X-Ray Diffraction (XRD) studies of TOG indicated a decline in endothermic transition temperature and high crystallinity, respectively, in comparison to OG. CSFR (Crushing Strength: Friability Ratio), weight and thickness variations of repaglinidetablets formulated using TOG were >80% and <2.5% respectively. The highest swelling index (107.89 ± 1.99%) and strong mucoadhesion due to high disulfide bonds were observed for repaglinide TOG tablets in comparison to RG OG tablets. In-vitro release studies indicated a controlled drug release from thiolated formulations proportional to the concentration of thiomers that have a good correlation with in-vivo studies. Pharmacokinetic studies indicated higher AUC (area under the curve), longer t1/2 with thiomers. and Level A IVIV (in vitro in vivo) correlation was established from the bioavailability and dissolution data. Consequently, all the obtained results suggest that thiomers based formulations can be promising drug delivery systems, even in targeting onerous mucosal surfaces like nasal, ocular or vaginal. Full article
(This article belongs to the Special Issue Production and Biomedical Applications of Bioactive Compounds)
Show Figures

Figure 1

12 pages, 1203 KiB  
Article
Ultrasound-Assisted Extraction of GAC Peel: An Optimization of Extraction Conditions for Recovering Carotenoids and Antioxidant Capacity
by Hoang V. Chuyen, Paul D. Roach, John B. Golding, Sophie E. Parks and Minh H. Nguyen
Processes 2020, 8(1), 8; https://doi.org/10.3390/pr8010008 - 18 Dec 2019
Cited by 12 | Viewed by 4040
Abstract
The peel of Gac fruit (Momordica cochinchinensis Spreng.), which is considered as waste of Gac processing, has been found to possess high levels of carotenoids and other antioxidants. This study aimed at determining the optimal conditions of an ultrasound-assisted extraction for recovering [...] Read more.
The peel of Gac fruit (Momordica cochinchinensis Spreng.), which is considered as waste of Gac processing, has been found to possess high levels of carotenoids and other antioxidants. This study aimed at determining the optimal conditions of an ultrasound-assisted extraction for recovering carotenoids and antioxidant capacity from Gac peel. A response surface methodology using the Box–Behnken design was employed to investigate the impact of extraction time, temperature and ultrasonic power on the recovery of total carotenoid and antioxidant capacity. The results showed that an extraction time of 76 min, temperature of 50 °C and ultrasonic power of 250 W were the optimal conditions for the extraction. The experimental carotenoid yield and antioxidant capacity obtained under the optimal extraction conditions were validated as 269 mg/100 g DW (dry weight) and 822 µM TE (Trolox equivalent)/100 g DW, respectively. These values were not significantly different from the values predicted by the models. The HPLC analysis for carotenoid composition showed that β-carotene, lycopene and lutein were the principal carotenoids of the extract, which constitute 86% of the total carotenoid content. Based on the obtained results, the ultrasound-assisted extraction using ethyl acetate under the above optimal conditions is suggested for the simultaneous recovery of carotenoids and antioxidant capacity from Gac peel. Full article
(This article belongs to the Special Issue Production and Biomedical Applications of Bioactive Compounds)
Show Figures

Graphical abstract

13 pages, 2775 KiB  
Article
Green Synthesized Silver Nanoparticles of Myrtus communis L (AgMC) Extract Inhibits Cancer Hallmarks via Targeting Aldose Reductase (AR) and Associated Signaling Network
by Abdulwahab Ali Abuderman, Rabbani Syed, Abdullah A. Alyousef, Mohammed S. Alqahtani, Mohammad Shamsul Ola and Abdul Malik
Processes 2019, 7(11), 860; https://doi.org/10.3390/pr7110860 - 18 Nov 2019
Cited by 10 | Viewed by 3679
Abstract
In this current study, we demonstrated the green synthesis and characterization of silver nanoparticles using Myrtus communis L. plant extract (Ag-MC) and its evaluation of anticancer and antimicrobial activities. The green synthesis of (Ag-MC), was assessed by numerous characterization techniques such as ultraviolet-visible [...] Read more.
In this current study, we demonstrated the green synthesis and characterization of silver nanoparticles using Myrtus communis L. plant extract (Ag-MC) and its evaluation of anticancer and antimicrobial activities. The green synthesis of (Ag-MC), was assessed by numerous characterization techniques such as ultraviolet-visible spectroscopy (UV-VIS), Fourier-transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD) transmission electron microscopy (TEM) and energy dispersive x-ray spectroscopy (EDX). The anti-cancer activity of the green synthesized silver nanoparticles was evaluated by the median inhibitory dose (IC50) on human liver carcinoma cell lines (HepG2). These results suggested that SN-NPs can be used as effective anticancer cell lines, as well as antibacterial and antiseptic agents in the medical field. This study showed that overexpression of aldose reductase (AR) in the human liver carcinoma cell line, HepG2, was down regulated by administration of SN-MC. The down regulation of AR was associated with abrogation of Pl3k/Akt, ERK and NF-kB pathways and the inhibition of cancer hallmarks, however, the target molecule for Ag-MC was not practically established. Thus it is still unknown if the consequences were due to AR inhibition or direct Ag-MC interaction with AR. Full article
(This article belongs to the Special Issue Production and Biomedical Applications of Bioactive Compounds)
Show Figures

Figure 1

13 pages, 6354 KiB  
Article
Antibacterial and Antifungal Activity of Novel Synthesized Neodymium-Substituted Cobalt Ferrite Nanoparticles for Biomedical Application
by Suriya Rehman, Mohammad Azam Ansari, Mohammad A. Alzohairy, Mohammad N. Alomary, B. Rabindran Jermy, Raheem Shahzad, Neda Tashkandi and Zainab Hassan Alsalem
Processes 2019, 7(10), 714; https://doi.org/10.3390/pr7100714 - 8 Oct 2019
Cited by 40 | Viewed by 5308
Abstract
Neodymium (Nd)-substituted cobalt ferrite nanoparticles (NPs), i.e., CoNdxFe2−xO4 (0.0 ≤ x ≤ 0.2) NPs, were synthesized by the sonochemical method. The compositional characterization was done by scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) and transmission [...] Read more.
Neodymium (Nd)-substituted cobalt ferrite nanoparticles (NPs), i.e., CoNdxFe2−xO4 (0.0 ≤ x ≤ 0.2) NPs, were synthesized by the sonochemical method. The compositional characterization was done by scanning electron microscopy (SEM) equipped with energy-dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). Antistaphylococcal activity was found to be enhanced, i.e., survival rate was 50%, 45%, 40%, and 30% with the increase in the ratio of Nd (0.0 ≤ x ≤ 0.2), whereas anticandidal activity was found efficient, i.e., 9%, 20%, 22%, and 40% survival rate at all the four ratios. The morphogenesis studies indicated that the synthesized metal–ligand, improves the antimicrobial capacity by binding them strongly to the microbial walls. To the best of our knowledge, this is the first report which demonstrates the series of CoNdxFe2−xO4 (0.0 ≤ x ≤ 0.2) NPs being active towards Staphylococcus aureus and Candida albicans and encourages its potential candidature for pharmaceutical and biomedical purposes. Full article
(This article belongs to the Special Issue Production and Biomedical Applications of Bioactive Compounds)
Show Figures

Figure 1

Review

Jump to: Editorial, Research

30 pages, 412 KiB  
Review
Resveratrol Nanoparticles: A Promising Therapeutic Advancement over Native Resveratrol
by Ill-Min Chung, Umadevi Subramanian, Prabhu Thirupathi, Baskar Venkidasamy, Ramkumar Samynathan, Baniekal Hiremath Gangadhar, Govindasamy Rajakumar and Muthu Thiruvengadam
Processes 2020, 8(4), 458; https://doi.org/10.3390/pr8040458 - 13 Apr 2020
Cited by 23 | Viewed by 5416
Abstract
The importance of fruit-derived resveratrol (RES) in the treatment of various diseases has been discussed in various research publications. Those research findings have indicated the ability of the molecule as therapeutic in the context of in vitro and in vivo conditions. Mostly, the [...] Read more.
The importance of fruit-derived resveratrol (RES) in the treatment of various diseases has been discussed in various research publications. Those research findings have indicated the ability of the molecule as therapeutic in the context of in vitro and in vivo conditions. Mostly, the application of RES in in vivo conditions, encapsulation processes have been carried out using various nanoparticles that are made of biocompatible biomaterials, which are easily digested or metabolized, and RES is absorbed effectively. These biomaterials are non-toxic and are safe to be used as components in the biotherapeutics. They are made from naturally available by-products of food materials like zein or corn or components of the physiological system as with lipids. The versatility of the RES nanoparticles in their different materials, working range sizes, specificity in their targeting in various human diseases, and the mechanisms associated with them are discussed in this review. Full article
(This article belongs to the Special Issue Production and Biomedical Applications of Bioactive Compounds)
16 pages, 3115 KiB  
Review
Current Use of Carbon-Based Materials for Biomedical Applications—A Prospective and Review
by Govindasamy Rajakumar, Xiu-Hua Zhang, Thandapani Gomathi, Sheng-Fu Wang, Mohammad Azam Ansari, Govindarasu Mydhili, Gnanasundaram Nirmala, Mohammad A. Alzohairy and Ill-Min Chung
Processes 2020, 8(3), 355; https://doi.org/10.3390/pr8030355 - 20 Mar 2020
Cited by 42 | Viewed by 6416
Abstract
Among a large number of current biomedical applications in the use of medical devices, carbon-based nanomaterials such as graphene (G), graphene oxides (GO), reduced graphene oxide (rGO), and carbon nanotube (CNT) are frontline materials that are suitable for developing medical devices. Carbon Based [...] Read more.
Among a large number of current biomedical applications in the use of medical devices, carbon-based nanomaterials such as graphene (G), graphene oxides (GO), reduced graphene oxide (rGO), and carbon nanotube (CNT) are frontline materials that are suitable for developing medical devices. Carbon Based Nanomaterials (CBNs) are becoming promising materials due to the existence of both inorganic semiconducting properties and organic π-π stacking characteristics. Hence, it could effectively simultaneously interact with biomolecules and response to the light. By taking advantage of such aspects in a single entity, CBNs could be used for developing biomedical applications in the future. The recent studies in developing carbon-based nanomaterials and its applications in targeting drug delivery, cancer therapy, and biosensors. The development of conjugated and modified carbon-based nanomaterials contributes to positive outcomes in various therapies and achieved emerging challenges in preclinical biomedical applications. Subsequently, diverse biomedical applications of carbon nanotube were also deliberately discussed in the light of various therapeutic advantages. Full article
(This article belongs to the Special Issue Production and Biomedical Applications of Bioactive Compounds)
Show Figures

Figure 1

18 pages, 1339 KiB  
Review
Marine Algae: A Potential Resource of Anti-HSV Molecules
by Mohamad Fawzi Mahomoodally, Devina Lobine, Kannan R. R. Rengasamy, Shanmugaraj Gowrishankar, Devesh Tewari, Gokhan Zengin, Doo Hwan Kim and Iyyakkannu Sivanesan
Processes 2019, 7(12), 887; https://doi.org/10.3390/pr7120887 - 29 Nov 2019
Cited by 14 | Viewed by 4931
Abstract
Herpes simplex viruses (HSVs) are common human pathogens belonging to the subfamily alpha-herpesvirinae that trigger severe infections in neonates and immunocompromised patients. After primary infection, the HSVs establish a lifelong latent infection in the vegetative neural ganglia of their hosts. HSV infections contribute [...] Read more.
Herpes simplex viruses (HSVs) are common human pathogens belonging to the subfamily alpha-herpesvirinae that trigger severe infections in neonates and immunocompromised patients. After primary infection, the HSVs establish a lifelong latent infection in the vegetative neural ganglia of their hosts. HSV infections contribute to substantial disease burden in humans as well as in newborns. Despite a fair number of drugs being available for the treatment of HSV infections, new, effective, and safe antiviral agents, exerting different mechanisms of action, are urgently required, mainly due to the increasing number of resistant strains. Accumulating pieces of evidence have suggested that structurally diverse compounds from marine algae possess promising anti-HSV potentials. Several studies have documented a variety of algal polysaccharides possessing anti-HSV activity, including carrageenan and fucan. This review aimed to compile previous anti-HSV studies on marine algae–derived compounds, especially sulfated polysaccharides, along with their mode of action, toward their development as novel natural anti-HSV agents for future investigations. Full article
(This article belongs to the Special Issue Production and Biomedical Applications of Bioactive Compounds)
Show Figures

Figure 1

Back to TopTop