E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Topical Collection "Bioactive Compounds"

A topical collection in Molecules (ISSN 1420-3049). This collection belongs to the section "Natural Products".

Editors

Collection Editor
Prof. Dr. Nancy D. Turner

Director, TAMU Space Life Sciences Mentored Research Program, Nutrition & Food Science Department, Texas A&M University, 2253 TAMU, 214C Cater Mattil, College Station, TX 77843-2253, USA
Website | E-Mail
Interests: Nutrition, colon cancer, polyphenols, intestinal microbiota, apoptosis
Collection Editor
Prof. Dr. Isabel C. F. R. Ferreira

Mountain Research Center, School of Agriculture, Polytechnic Institute of Bragança, Campus de Santa Apolónia, apartado 1172, 5301-855 Bragança, Portugal
Website | E-Mail
Interests: Chemistry of Natural Products: Extraction, identification, fractionation and isolation of chemical compounds in natural matrices; Nutraceuticals and functional foods: development of nutraceuticals and innovative food formulations with functional properties; Technology of Natural Products: Emerging technologies for conservation of food matrices

Topical Collection Information

Dear Colleagues,

Consumers increasingly believe that foods contribute directly to their health and well-being. In this context, extranutritional constituents that typically occur in small quantities in foods, "Bioactive compounds", play a very significant role. Bioactive compounds are being intensively studied to evaluate their effects on health, including antioxidant, antiallergic, antimicrobial, antithrombotic, antiatherogenic, hypoglycaemic, anti-inflammatory, antitumor, cytostatic, immunosuppressive properties, and hepatoprotective activities. Contributions for this issue, both in form of original research and review articles, may cover all aspects of bioactive compounds with proven activities in various biological screenings and pharmacological models, e.g. quantification, variability and efficacy of bioactive compounds; development of new protocols and methods based on chemical or biological systems for the evaluation of in vivo and in vitro bioactivity; clinical and nutritional trials focused on the bioactive properties of bioactive compounds synthesized or isolated; elucidation of bioactive compounds mechanisms; innovative techniques of bioactive compounds delivery and protocols for the extraction, isolation, structural characterization of new bioactive compounds will be welcomed, on condition that an adequate evaluation of their efficacy is provided. Papers regarding the development of pharmaceuticals from bioactive compounds will be also taken into consideration.

Dr. Nancy D. Turner
Dr. Isabel C.F.R. Ferreira
Collection Editors

Manuscript Submission Information

Manuscripts for the topical collection can be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on this website. The topical collection considers regular research articles, short communications and review articles. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page.

Please visit the Instructions for Authors page before submitting a manuscript. The article processing charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs).

Keywords

  • bioactivity
  • natural products
  • synthesised compounds
  • isolation techniques
  • structure elucidation
  • mechanism of action

Related Special Issue

Published Papers (312 papers)

2018

Jump to: 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010

Open AccessArticle Formation of Sulforaphane and Iberin Products from Thai Cabbage Fermented by Myrosinase-Positive Bacteria
Molecules 2018, 23(4), 955; doi:10.3390/molecules23040955
Received: 6 March 2018 / Revised: 11 April 2018 / Accepted: 18 April 2018 / Published: 19 April 2018
PDF Full-text (3231 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Myrosinase-positive bacteria from local fermented foods and beverages in Thailand with the capacity to metabolize glucosinolate and produce isothiocyanates (ITCs) were isolated and used as selected strains for Thai cabbage fermentation. Enterobacter xiangfangensis 4A-2A3.1 (EX) from fermented fish and Enterococcus casseliflavus SB2X2 (EC)
[...] Read more.
Myrosinase-positive bacteria from local fermented foods and beverages in Thailand with the capacity to metabolize glucosinolate and produce isothiocyanates (ITCs) were isolated and used as selected strains for Thai cabbage fermentation. Enterobacter xiangfangensis 4A-2A3.1 (EX) from fermented fish and Enterococcus casseliflavus SB2X2 (EC) from fermented cabbage were the two highest ITC producers among seventeen strains identified by 16S rRNA technique. EC and EX were used to ferment Thai cabbage (Brassica oleracea L. var. capitata) containing glucoiberin, glucoraphanin and 4-hydroxyglucobrassicin at 430.5, 615.1 and 108.5 µmol/100 g DW, respectively for 3 days at 25 °C. Different amounts of iberin nitrile, iberin, sulforaphane and indole 3-acetonitrile were produced by spontaneous, EX- and EC-induced cabbage fermentations, and significantly higher ITCs were detected (p < 0.01) with increased antioxidant activities. Iberin and sulforaphane production in EX-induced treatment peaked on day 2 at 117.4 and 294.1 µmol/100 g DW, respectively, significantly higher than iberin at 51.7 µmol/100 g DW but not significantly higher than sulforaphane at 242.6 µmol/100 g DW in EC-induced treatment at day 2. Maximum health-promoting benefits from this functional food can be obtained from consumption of a liquid portion of the fermented cabbage with higher ITC level along with a solid portion. Full article
Figures

Figure 1

Open AccessArticle Biflavonoids Isolated from Selaginella tamariscina and Their Anti-Inflammatory Activities via ERK 1/2 Signaling
Molecules 2018, 23(4), 926; doi:10.3390/molecules23040926
Received: 9 March 2018 / Revised: 11 April 2018 / Accepted: 13 April 2018 / Published: 17 April 2018
PDF Full-text (8215 KB) | HTML Full-text | XML Full-text
Abstract
Selaginella tamariscina (S. tamariscina) (Beauv.) Spring (Selaginellaceae) has been used in oriental medicine for the treatment of dysmenorrhea, chronic hepatitis, hyperglycemia, amenorrhea, hematuria, prolapse of the anus and metrorrhagia. In the present study, we isolated two strong anti-inflammatory compounds, the biflavonoids
[...] Read more.
Selaginella tamariscina (S. tamariscina) (Beauv.) Spring (Selaginellaceae) has been used in oriental medicine for the treatment of dysmenorrhea, chronic hepatitis, hyperglycemia, amenorrhea, hematuria, prolapse of the anus and metrorrhagia. In the present study, we isolated two strong anti-inflammatory compounds, the biflavonoids hinokiflavone (H) and 7′-O-methyl hinokiflavone (mH), from S. tamariscina and examined their anti-inflammatory activities in lipopolysaccharide (LPS)-mediated murine macrophages (RAW 264.7) and colon epithelial cells (HT-29). H and mH suppressed the production of the inflammatory mediators nitric oxide (NO), interleukin (IL)-6, IL-8, and tumor-necrosis factor (TNF)-α, which are most highly activated in inflammatory bowel disease (IBD). In addition, Western blot analysis revealed that H and mH suppressed the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, and the activation of nuclear factor-κB (NF-κB) and extracellular regulated kinases (ERK) 1/2. These results suggest that H and mH are compounds having potent anti-inflammatory effects that could be used to treat such diseases as IBD. Full article
Figures

Open AccessArticle Flavonoid 8-O-Glucuronides from the Aerial Parts of Malva verticillata and Their Recovery Effects on Alloxan-Induced Pancreatic Islets in Zebrafish
Molecules 2018, 23(4), 833; doi:10.3390/molecules23040833
Received: 20 February 2018 / Revised: 3 April 2018 / Accepted: 4 April 2018 / Published: 4 April 2018
PDF Full-text (12997 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Malva verticillata (Cluster mallow), a leafy vegetable that has been popular in East Asia for a long time, has also been used in herbal teas and medicines. The aqueous fraction of the aerial parts of Malva verticillata, exhibiting a very high quantity
[...] Read more.
Malva verticillata (Cluster mallow), a leafy vegetable that has been popular in East Asia for a long time, has also been used in herbal teas and medicines. The aqueous fraction of the aerial parts of Malva verticillata, exhibiting a very high quantity of flavonoids compared to the EtOAc and n-BuOH fractions, exhibited significant recovery effects on pancreatic islets damaged by alloxan in zebrafish larvae. Thus, the bioactive components responsible for this anti-diabetic activity were investigated. A new flavonoid glucuronide (1) and five known flavonoids were isolated from the aqueous fraction. Based on several spectroscopic methods, compound 1 was identified to be nortangeretin-8-O-β-d-glucuronide, and was named malvaflavone A. The A-ring of compound 1 had a 5,6,7,8-tetrahydroxy moiety, which rarely occurs in plant systems. Also 8-O-glucuronide attached to the flavonoid moiety was rarely occurred in plant system. Compounds 1, 3, 4, and 6 significantly improved the pancreatic islet size in zebrafish at 0.1 μM, and compounds 1 and 6 were found to block β-cell K+ channels in experiments with diazoxide. In ABTS, ORAC, and SOD assays, compounds 15 exhibited high anti-oxidant activities compared with quercetin and BHA (positive controls), indicating that the 8-O-glucuronide attached to the flavonoid moiety is a key structure for the expression of anti-oxidant activity. This is the first report of the isolation of compounds 16 from M. verticillata as well evaluated for anti-diabetic and anti-oxidant ativities. Full article
Figures

Open AccessReview Occurrence of Functional Molecules in the Flowers of Tea (Camellia sinensis) Plants: Evidence for a Second Resource
Molecules 2018, 23(4), 790; doi:10.3390/molecules23040790
Received: 19 March 2018 / Revised: 27 March 2018 / Accepted: 27 March 2018 / Published: 29 March 2018
PDF Full-text (12488 KB) | HTML Full-text | XML Full-text
Abstract
Tea (Camellia sinensis) is an important crop, and its leaves are used to make the most widely consumed beverage, aside from water. People have been using leaves from tea plants to make teas for a long time. However, less attention has
[...] Read more.
Tea (Camellia sinensis) is an important crop, and its leaves are used to make the most widely consumed beverage, aside from water. People have been using leaves from tea plants to make teas for a long time. However, less attention has been paid to the flowers of tea plants, which is a waste of an abundant resource. In the past 15 years, researchers have attempted to discover, identify, and evaluate functional molecules from tea flowers, and have made insightful and useful discoveries. Here, we summarize the recent investigations into these functional molecules in tea flowers, including functional molecules similar to those in tea leaves, as well as the preponderant functional molecules in tea flowers. Tea flowers contain representative metabolites similar to those of tea leaves, such as catechins, flavonols, caffeine, and amino acids. The preponderant functional molecules in tea flowers include saponins, polysaccharides, aromatic compounds, spermidine derivatives, and functional proteins. We also review the safety and biological functions of tea flowers. Tea flower extracts are proposed to be of no toxicological concern based on evidence from the evaluation of mutagenicity, and acute and subchronic toxicity in rats. The presence of many functional metabolites in tea flowers indicates that tea flowers possess diverse biological functions, which are mostly related to catechins, polysaccharides, and saponins. Finally, we discuss the potential for, and challenges facing, future applications of tea flowers as a second resource from tea plants. Full article
Figures

Figure 1

Open AccessArticle Intraconversion of Polar Ginsenosides, Their Transformation into Less-Polar Ginsenosides, and Ginsenoside Acetylation in Ginseng Flowers upon Baking and Steaming
Molecules 2018, 23(4), 759; doi:10.3390/molecules23040759
Received: 25 February 2018 / Revised: 17 March 2018 / Accepted: 20 March 2018 / Published: 26 March 2018
PDF Full-text (20750 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Heating is a traditional method used in ginseng root processing, however, there aren’t reports on differences resulting from baking and steaming. Moreover, ginseng flowers, with 5.06 times more total saponins than ginseng root, are not fully taken advantage of for their ginsenosides. Transformation
[...] Read more.
Heating is a traditional method used in ginseng root processing, however, there aren’t reports on differences resulting from baking and steaming. Moreover, ginseng flowers, with 5.06 times more total saponins than ginseng root, are not fully taken advantage of for their ginsenosides. Transformation mechanisms of ginsenosides in ginseng flowers upon baking and steaming were thus explored. HPLC using authentic standards of 20 ginsenosides and UPLC-QTOF-MS/MS were used to quantify and identify ginsenosides, respectively, in ginseng flowers baked or steamed at different temperatures and durations. Results show that baking and steaming caused a 3.2-fold increase in ginsenoside species existed in unheated ginseng flowers (20/64 ginsenosides) and transformation of a certain amount of polar ginsenosides into numerous less polar ginsenosides. Among the 20 ginsenosides with standards, polar ginsenosides were abundant in ginseng flowers baked or steamed at lower temperatures, whereas less polar ginsenosides occurred and were enriched at higher temperatures. Furthermore, the two types of heating treatments could generate mostly similar ginsenosides, but steaming was much efficient than baking in transforming polar- into less polar ginsenosides, with steaming at 120 °C being comparably equivalent to baking at 150 °C. Moreover, both the two heating methods triggered ginsenoside acetylation and thus caused formation of 16 acetylginsenosides. Finally, a new transformation mechanism concerning acetyl-ginsenosides formation was proposed. Full article
Figures

Open AccessArticle Amaryllidaceae Alkaloids as Potential Glycogen Synthase Kinase-3β Inhibitors
Molecules 2018, 23(4), 719; doi:10.3390/molecules23040719
Received: 15 February 2018 / Revised: 19 March 2018 / Accepted: 19 March 2018 / Published: 21 March 2018
PDF Full-text (1021 KB) | HTML Full-text | XML Full-text
Abstract
Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine protein kinase that was originally identified as an enzyme involved in the control of glycogen metabolism. It plays a key role in diverse physiological processes including metabolism, the cell cycle, and gene expression by regulating
[...] Read more.
Glycogen synthase kinase-3β (GSK-3β) is a multifunctional serine/threonine protein kinase that was originally identified as an enzyme involved in the control of glycogen metabolism. It plays a key role in diverse physiological processes including metabolism, the cell cycle, and gene expression by regulating a wide variety of well-known substances like glycogen synthase, tau-protein, and β-catenin. Recent studies have identified GSK-3β as a potential therapeutic target in Alzheimer´s disease, bipolar disorder, stroke, more than 15 types of cancer, and diabetes. GSK-3β is one of the most attractive targets for medicinal chemists in the discovery, design, and synthesis of new selective potent inhibitors. In the current study, twenty-eight Amaryllidaceae alkaloids of various structural types were studied for their potency to inhibit GSK-3β. Promising results have been demonstrated by alkaloids of the homolycorine-{9-O-demethylhomolycorine (IC50 = 30.00 ± 0.71 µM), masonine (IC50 = 27.81 ± 0.01 μM)}, and lycorine-types {caranine (IC50 = 30.75 ± 0.04 μM)}. Full article
Figures

Open AccessArticle Hyperjaponol H, A New Bioactive Filicinic Acid-Based Meroterpenoid from Hypericum japonicum Thunb. ex Murray
Molecules 2018, 23(3), 683; doi:10.3390/molecules23030683
Received: 18 February 2018 / Revised: 13 March 2018 / Accepted: 16 March 2018 / Published: 18 March 2018
PDF Full-text (1186 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Hyperjaponol H (1), a new filicinic acid-based meroterpenoid, with a 6/6/10 ring system trans-fused by hetero-Diels–Alder cycloaddition between a germacrane sesquiterpenoid and a filicinic acid moiety, was isolated from aerial parts of Hypericum japonicum. The elucidation of its structure
[...] Read more.
Hyperjaponol H (1), a new filicinic acid-based meroterpenoid, with a 6/6/10 ring system trans-fused by hetero-Diels–Alder cycloaddition between a germacrane sesquiterpenoid and a filicinic acid moiety, was isolated from aerial parts of Hypericum japonicum. The elucidation of its structure and absolute configuration were accomplished by the analyses of extensive spectroscopic data and the comparison of Cotton effects of electron circular dichroism (ECD) with previously reported ones. The bioactivity assay showed that hyperjaponol H exhibited a moderate inhibitory efficacy on lytic Epstein-Barr virus (EBV) DNA replication in B95-8 cells. Full article
Figures

Figure 1

Open AccessReview Structural Diversity and Biological Activities of Novel Secondary Metabolites from Endophytes
Molecules 2018, 23(3), 646; doi:10.3390/molecules23030646
Received: 23 February 2018 / Revised: 10 March 2018 / Accepted: 11 March 2018 / Published: 13 March 2018
PDF Full-text (5373 KB) | HTML Full-text | XML Full-text
Abstract
Exploration of structurally novel natural products greatly facilitates the discovery of biologically active pharmacophores that are biologically validated starting points for the development of new drugs. Endophytes that colonize the internal tissues of plant species, have been proven to produce a large number
[...] Read more.
Exploration of structurally novel natural products greatly facilitates the discovery of biologically active pharmacophores that are biologically validated starting points for the development of new drugs. Endophytes that colonize the internal tissues of plant species, have been proven to produce a large number of structurally diverse secondary metabolites. These molecules exhibit remarkable biological activities, including antimicrobial, anticancer, anti-inflammatory and antiviral properties, to name but a few. This review surveys the structurally diverse natural products with new carbon skeletons, unusual ring systems, or rare structural moieties that have been isolated from endophytes between 1996 and 2016. It covers their structures and bioactivities. Biosynthesis and/or total syntheses of some important compounds are also highlighted. Some novel secondary metabolites with marked biological activities might deserve more attention from chemists and biologists in further studies. Full article
Figures

Open AccessCommunication Prenylated Polyphenols from Broussonetia kazinoki as Inhibitors of Nitric Oxide Production
Molecules 2018, 23(3), 639; doi:10.3390/molecules23030639
Received: 20 February 2018 / Revised: 7 March 2018 / Accepted: 9 March 2018 / Published: 12 March 2018
PDF Full-text (1315 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Excessive nitric oxide (NO) production by macrophages has been involved in inflammatory diseases. Seven polyphenols (17) were isolated from Broussonetia kazinoki (B. kazinoki) and investigated as potential inhibitors of NO overproduction in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Among them,
[...] Read more.
Excessive nitric oxide (NO) production by macrophages has been involved in inflammatory diseases. Seven polyphenols (17) were isolated from Broussonetia kazinoki (B. kazinoki) and investigated as potential inhibitors of NO overproduction in lipopolysaccharide (LPS)-activated RAW 264.7 cells. Among them, four prenylated polyphenols (24 and 6) with a catechol moiety efficiently suppressed the LPS-induced high level of NO with IC50 values of less than 6 µM. The compounds 24 and 6 also attenuated protein and mRNA levels of inducible nitric oxide synthase (iNOS). Moreover, they suppressed the nuclear factor κB (NF-κB) activity by inhibiting the degradation of inhibitory-κB-α (I-κB-α) and the translocation of NF-κB into the nucleus in LPS-activated macrophages. Taken together, these findings suggest that polyphenols from B. kazinoki might be beneficial for treatment of inflammatory diseases. Full article
Figures

Open AccessArticle Multi-Target Anti-Alzheimer Activities of Four Prenylated Compounds from Psoralea Fructus
Molecules 2018, 23(3), 614; doi:10.3390/molecules23030614
Received: 14 February 2018 / Revised: 7 March 2018 / Accepted: 7 March 2018 / Published: 8 March 2018
PDF Full-text (2684 KB) | HTML Full-text | XML Full-text
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disease that is mediated by multiple signaling pathways. In recent years, the components of Psoralea Fructus (PF) have demonstrated some anti-Alzheimer effects both in vitro and in vivo. To further reveal the active compounds of PF
[...] Read more.
Alzheimer’s disease (AD) is an age-related neurodegenerative disease that is mediated by multiple signaling pathways. In recent years, the components of Psoralea Fructus (PF) have demonstrated some anti-Alzheimer effects both in vitro and in vivo. To further reveal the active compounds of PF and their mechanisms regulating key targets of AD, in this study, we identified four prenylated compounds from the 70% ethanolic aqueous extract of PF, namely bavachin, bavachinin, bavachalcone, and isobavachalcone. Multi-target bioactivity analysis showed that these compounds could differentially inhibit neuroinflammation, oxidative damage, and key AD-related protein targets, such as amyloid β-peptide 42, β-secretase, glycogen synthase kinase 3β, and acetylcholinesterase. These compounds may generate beneficial effects in AD prevention and treatment. Full article
Figures

Open AccessArticle New Terpenoids from Chamaecyparis formosensis (Cupressaceae) Leaves with Modulatory Activity on Matrix Metalloproteases 2 and 9
Molecules 2018, 23(3), 604; doi:10.3390/molecules23030604
Received: 6 February 2018 / Revised: 4 March 2018 / Accepted: 5 March 2018 / Published: 7 March 2018
PDF Full-text (557 KB) | HTML Full-text | XML Full-text
Abstract
Chamaecyparis formosensis is Taiwan’s most representative tree, and has high economic value. To date, only a few active chemical constituents have been reported for C. formosensis. In this study, 37 secondary metabolites, including three new compounds (13), were
[...] Read more.
Chamaecyparis formosensis is Taiwan’s most representative tree, and has high economic value. To date, only a few active chemical constituents have been reported for C. formosensis. In this study, 37 secondary metabolites, including three new compounds (13), were extracted from the leaves of C. formosensis. The compounds isolated from the ethyl acetate layer were used at different concentrations to treat HT-1080 human fibrosarcoma cells and to evaluate their effects on matrix metalloprotease 2 (MMP-2) and 9 (MMP-9) expression. Based on extensive analysis of data from high-resolution mass spectrometry (HR-MS) as well as nuclear magnetic resonance (NMR), infrared (IR), and ultraviolet (UV) spectroscopy, the new compounds were identified as 11,12-dihydroxyisodaucenoic acid (1), 12-hydroxyisodaucenoic acid (2), and 1-oxo-2α,3β-dihydroxytotarol (3). Known compounds 437 were identified by comparing their spectroscopic data with data reported in the literature. Biological activity tests by gelatin zymographic analysis revealed that seven compounds, including new compound 2, have no cytotoxic effect on HT-1080 cells and were found to increase MMP-2 or MMP-9 expression by 1.25- to 1.59-fold at lower concentrations of 10–50 µM. These naturally derived regulatory compounds could potentially serve as a novel pharmaceutical basis for medical purposes. Full article
Figures

Open AccessArticle Wedelolactone Enhances Osteoblastogenesis through ERK- and JNK-mediated BMP2 Expression and Smad/1/5/8 Phosphorylation
Molecules 2018, 23(3), 561; doi:10.3390/molecules23030561
Received: 2 February 2018 / Revised: 16 February 2018 / Accepted: 28 February 2018 / Published: 2 March 2018
PDF Full-text (7297 KB) | HTML Full-text | XML Full-text
Abstract
Our previous study showed that wedelolactone, a compound isolated from Ecliptae herba, has the potential to enhance osteoblastogenesis. However, the molecular mechanisms by which wedelolactone promoted osteoblastogenesis from bone marrow mesenchymal stem cells (BMSCs) remain largely unknown. In this study, treatment with
[...] Read more.
Our previous study showed that wedelolactone, a compound isolated from Ecliptae herba, has the potential to enhance osteoblastogenesis. However, the molecular mechanisms by which wedelolactone promoted osteoblastogenesis from bone marrow mesenchymal stem cells (BMSCs) remain largely unknown. In this study, treatment with wedelolactone (2 μg/mL) for 3, 6, and 9 days resulted in an increase in phosphorylation of extracellular signal-regulated kinases (ERKs), c-Jun N-terminal protein kinase (JNK), and p38. Phosphorylation of mitogen-activated protein kinases (MAPKs), ERK and JNK started to increase on day 3 of treatment, and p38 phosphorylation was increased by day 6 of treatment. Expression of bone morphogenetic protein (BMP2) mRNA and phosphorylation of Smad1/5/8 was enhanced after treatment of cells with wedelolactone for 6 and 9 days. The addition of the JNK inhibitor SP600125, ERK inhibitor PD98059, and p38 inhibitor SB203580 suppressed wedelolactone-induced alkaline-phosphatase activity, bone mineralization, and osteoblastogenesis-related marker genes including Runx2, Bglap, and Sp7. Increased expression of BMP2 mRNA and Smad1/5/8 phosphorylation was blocked by SP600125 and PD98059, but not by SB203580. These results suggested that wedelolactone enhanced osteoblastogenesis through induction of JNK- and ERK-mediated BMP2 expression and Smad1/5/8 phosphorylation. Full article
Figures

Open AccessArticle Persicaline, A New Antioxidant Sulphur-Containing Imidazoline Alkaloid from Salvadora persica Roots
Molecules 2018, 23(2), 483; doi:10.3390/molecules23020483
Received: 10 January 2018 / Revised: 15 February 2018 / Accepted: 17 February 2018 / Published: 23 February 2018
PDF Full-text (1232 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Salvadora persica L. is a popular chewing stick commonly known as “miswak”. During our ongoing research activities on the chemical constituents of Salvadora persica roots, which is a new sulphur-containing imidazoline alkaloid 1,3-Dibenzyl-4-(1,2,3,4-tetrahydroxy-butyl)-1,3-dihydro-imidazole-2-thione, persicaline, (1) along with five known compounds (
[...] Read more.
Salvadora persica L. is a popular chewing stick commonly known as “miswak”. During our ongoing research activities on the chemical constituents of Salvadora persica roots, which is a new sulphur-containing imidazoline alkaloid 1,3-Dibenzyl-4-(1,2,3,4-tetrahydroxy-butyl)-1,3-dihydro-imidazole-2-thione, persicaline, (1) along with five known compounds (26) are identified. Compounds (2, 3) were reported for the first time from the family Salvadoraeceae. The structure of the new compound was established by extensive spectroscopic data and HR-MS. The antioxidant activities of the fractions and isolates were evaluated using different in vitro methods, such as DPPH, superoxide anion and nitric oxide radicals scavenging assays. Compound (1) showed a promising antioxidant activity with IC50 0.1, 0.08, and 0.09 µM in the three assays, respectively, comparable to ascorbic acid. Full article
Figures

Open AccessArticle Bioactive Phenolic and Isocoumarin Glycosides from the Stems of Homalium paniculiflorum
Molecules 2018, 23(2), 472; doi:10.3390/molecules23020472
Received: 2 January 2018 / Revised: 6 February 2018 / Accepted: 11 February 2018 / Published: 22 February 2018
PDF Full-text (589 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Two new phenolic glycosides (1 and 2) and two new isocoumarin glycosides (3 and 4), along with 14 known compounds (518), were isolated from the stems of Homalium paniculiflorum. Their structures were established on
[...] Read more.
Two new phenolic glycosides (1 and 2) and two new isocoumarin glycosides (3 and 4), along with 14 known compounds (518), were isolated from the stems of Homalium paniculiflorum. Their structures were established on the basis of extensive spectroscopic analyses and chemical methods. All new compounds were evaluated for their anti-inflammatory activities via examining the inhibitory activity on nitric oxide (NO) production induced by lipopolysaccharide (LPS) in mouse macrophage RAW 264.7 cells in vitro. Compounds 1 and 4 exhibited inhibitory activities with IC50 values of 30.23 ± 1.23 μM and 19.36 ± 0.19 μM, respectively. Full article
Figures

Open AccessArticle Comparative Analysis of Chemical Composition, Antioxidant Activity and Quantitative Characterization of Some Phenolic Compounds in Selected Herbs and Spices in Different Solvent Extraction Systems
Molecules 2018, 23(2), 402; doi:10.3390/molecules23020402
Received: 23 November 2017 / Revised: 9 January 2018 / Accepted: 10 January 2018 / Published: 13 February 2018
PDF Full-text (2377 KB) | HTML Full-text | XML Full-text
Abstract
This study evaluated the efficacy of various organic solvents (80% acetone, 80% ethanol, 80% methanol) and distilled water for extracting antioxidant phenolic compounds from turmeric, curry leaf, torch ginger and lemon grass extracts. They were analyzed regarding the total phenol and flavonoid contents,
[...] Read more.
This study evaluated the efficacy of various organic solvents (80% acetone, 80% ethanol, 80% methanol) and distilled water for extracting antioxidant phenolic compounds from turmeric, curry leaf, torch ginger and lemon grass extracts. They were analyzed regarding the total phenol and flavonoid contents, antioxidant activity and concentration of some phenolic compounds. Antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay and the ferric reducing antioxidant power (FRAP) assay. Quantification of phenolic compounds was carried out using high-performance liquid chromatography (HPLC). All the extracts possessed antioxidant activity, however, the different solvents showed different efficiencies in the extraction of phenolic compounds. Turmeric showed the highest DPPH values (67.83–13.78%) and FRAP (84.9–2.3 mg quercetin/g freeze-dried crude extract), followed by curry leaf, torch ginger and lemon grass. While 80% acetone was shown to be the most efficient solvent for the extraction of total phenolic compounds from turmeric, torch ginger and lemon grass (221.68, 98.10 and 28.19 mg GA/g freeze dried crude extract, respectively), for the recovery of phenolic compounds from curry leaf (92.23 mg GA/g freeze-dried crude extract), 80% ethanol was the most appropriate solvent. Results of HPLC revealed that the amount of phenolic compounds varied depending on the types of solvents used. Full article
Figures

Figure 1

Open AccessArticle Bioactive Compounds in Cornelian Cherry Vinegars
Molecules 2018, 23(2), 379; doi:10.3390/molecules23020379
Received: 18 January 2018 / Revised: 6 February 2018 / Accepted: 7 February 2018 / Published: 10 February 2018
PDF Full-text (908 KB) | HTML Full-text | XML Full-text
Abstract
We analyzed the effect of Cornelian cherry varieties differing in fruit color (‘Yantaryi’—yellow fruits, ‘Koralovyi’—coral fruits, ‘Podolski’—red fruits) and the production method on the physicochemical and antioxidative properties of Cornelian cherry vinegars, and on their content of iridoids and polyphenols. Acetic fermentation was
[...] Read more.
We analyzed the effect of Cornelian cherry varieties differing in fruit color (‘Yantaryi’—yellow fruits, ‘Koralovyi’—coral fruits, ‘Podolski’—red fruits) and the production method on the physicochemical and antioxidative properties of Cornelian cherry vinegars, and on their content of iridoids and polyphenols. Acetic fermentation was conducted by two methods: I) single-stage (spontaneous) acetic fermentation, without inoculation with microorganisms, and II) two-stage fermentation in which the first stage involved the use of Saccharomyces bayanus—Safspirit fruit yeast for alcoholic fermentation, and the second one included spontaneous acetic fermentation. Acetic acid, glycerol, individual iridoids, phenolic acids, flavonols, and anthocyanins were quantified by a high-performance liquid chromatography (HPLC) method. The antioxidative activity was determined based on the following tests: 2,2-Diphenyl-2-picryl-hydrazyl (DPPH), 2,2′-Azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid (ABTS•+), and ferric reducing antioxidant power (FRAP), while the total polyphenols content was determined using the Folin-Ciocialteu (F-C) reagent test. Both the Cornelian cherry variety and vinegar production method affected the antioxidative properties as well as concentrations of iridoids and polyphenols in the finished product. The concentration of total polyphenols (F-C) in vinegars ranged from 326.60 to 757.27 mg gallic acids equivalents (GAE)/100 mL vinegar, whereas the antioxidative activity assayed with the DPPH and FRAP methods was the highest in the vinegars produced from the coral and red varieties of Cornelian cherry with the two-stage method. Loganic acid predominated among the identified iridoids, reaching a concentration of 185.07 mg loganic acid (LA)/100 mL in the vinegar produced in the two-stage fermentation from the coral-fruit variety. Caffeoylquinic acid derivatives were the main representatives among the identified phenolic compounds. The results of this study demonstrate Cornelian cherry vinegars to be rich sources of biologically-active iridoids and phenolic compounds with antioxidative properties. Full article
Figures

Open AccessArticle Inhibitory Effect of Flavonolignans on the P2Y12 Pathway in Blood Platelets
Molecules 2018, 23(2), 374; doi:10.3390/molecules23020374
Received: 9 January 2018 / Revised: 5 February 2018 / Accepted: 7 February 2018 / Published: 10 February 2018
PDF Full-text (2614 KB) | HTML Full-text | XML Full-text
Abstract
Adenosine diphosphate (ADP) is the major platelet agonist, which is important in the shape changes, stability, and growth of the thrombus. Platelet activation by ADP is associated with the G protein-coupled receptors P2Y1 and P2Y12. The pharmacologic blockade of the P2Y12 receptor significantly
[...] Read more.
Adenosine diphosphate (ADP) is the major platelet agonist, which is important in the shape changes, stability, and growth of the thrombus. Platelet activation by ADP is associated with the G protein-coupled receptors P2Y1 and P2Y12. The pharmacologic blockade of the P2Y12 receptor significantly reduces the risk of peripheral artery disease, myocardial infarction, ischemic stroke, and vascular death. Recent studies demonstrated the inhibition of ADP-induced blood platelet activation by three major compounds of the flavonolignans group: silybin, silychristin, and silydianin. For this reason, the aim of the current work was to verify the effects of silybin, silychristin, and silydianin on ADP-induced physiological platelets responses, as well as mechanisms of P2Y12-dependent intracellular signal transduction. We evaluated the effect of tested flavonolignans on ADP-induced blood platelets’ aggregation in platelet-rich plasma (PRP) (using light transmission aggregometry), adhesion to fibrinogen (using the static method), and the secretion of PF-4 (using the ELISA method). Additionally, using the double labeled flow cytometry method, we estimated platelet vasodilator-stimulated phosphoprotein (VASP) phosphorylation. We demonstrated a dose-dependent reduction of blood platelets’ ability to perform ADP-induced aggregation, adhere to fibrinogen, and secrete PF-4 in samples treated with flavonolignans. Additionally, we observed that all of the tested flavonolignans were able to increase VASP phosphorylation in blood platelets samples, which is correlated with P2Y12 receptor inhibition. All of these analyses show that silychristin and silybin have the strongest inhibitory effect on blood platelet activation by ADP, while silydianin also inhibits the ADP pathway, but to a lesser extent. The results obtained in this study clearly demonstrate that silybin, silychristin, and silydianin have inhibitory properties against the P2Y12 receptor and block ADP-induced blood platelet activation. Full article
Figures

Figure 1

Open AccessArticle Weed Suppressing Potential and Isolation of Potent Plant Growth Inhibitors from Castanea crenata Sieb. et Zucc
Molecules 2018, 23(2), 345; doi:10.3390/molecules23020345
Received: 4 January 2018 / Revised: 2 February 2018 / Accepted: 5 February 2018 / Published: 7 February 2018
PDF Full-text (453 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
This study isolated, determined, and quantified plant growth inhibitors in Japanese chestnut (Castanea crenata Sieb. et Zucc), a deciduous species native to Japan and Korea. In laboratory assays, C. crenata leaves showed strong inhibition on germination and seedling growth of Echinochloa crus-galli
[...] Read more.
This study isolated, determined, and quantified plant growth inhibitors in Japanese chestnut (Castanea crenata Sieb. et Zucc), a deciduous species native to Japan and Korea. In laboratory assays, C. crenata leaves showed strong inhibition on germination and seedling growth of Echinochloa crus-galli (barnyardgrass), Lactuca sativa (lettuce), and Raphanus sativus (radish). Laboratory and greenhouse trials showed that leaves of C. crenata appeared as a promising material to manage weeds, especially the dicot weeds. By GC-MS and HPLC analyses, gallic, protocatechuic, p-hydroxybenzoic, caffeic, ferulic, ellagic, and cinnamic acids were identified and quantified, of which ellagic acid was present in the highest quantity (2.36 mg/g dried leaves). By column chromatography and spectral data (1H- and 13C-NMR, IR, and LC-MS) analysis, a compound identified as 2α,3β,7β,23-tetrahydroxyurs-12-ene-28-oic acid (1) was purified from the methanolic leaf extract of C. crenata (0.93 mg/g dried leaves). This constituent showed potent inhibition on growth of E. crus-galli, a problematic weed in agricultural practice. The inhibition of the compound 1 (IC50 = 2.62 and 0.41 mM) was >5 fold greater than that of p-hydroxybenzoic acid (IC50 = 15.33 and 2.11 mM) on shoot and root growth of E. crus-galli, respectively. Results suggest that the isolated the compound 1 has potential to develop natural herbicides to manage E. crus-galli. This study is the first to isolate and identify 2α,3β,7β,23-tetrahydroxyurs-12-ene-28-oic acid in a plant and report its plant growth inhibitory potential. Full article
Figures

Figure 1

Open AccessArticle Nutritional Value, Chemical Characterization and Bulb Morphology of Greek Garlic Landraces
Molecules 2018, 23(2), 319; doi:10.3390/molecules23020319
Received: 5 January 2018 / Revised: 26 January 2018 / Accepted: 1 February 2018 / Published: 2 February 2018
PDF Full-text (2029 KB) | HTML Full-text | XML Full-text
Abstract
Garlic (Allium sativum L.) is an important vegetable crop throughout the world. In Greece there are many areas which have specialized in garlic cultivation through the last decades, considered the main production areas. However, despite the significance of garlic as a food
[...] Read more.
Garlic (Allium sativum L.) is an important vegetable crop throughout the world. In Greece there are many areas which have specialized in garlic cultivation through the last decades, considered the main production areas. However, despite the significance of garlic as a food product and the high annual income of this crop, there is a decreasing trend in total cultivated area in Greece, and the local landraces are gradually neglected in favor of new imported genotypes. In the present study, garlic genotypes (local landraces/varieties, imported genotypes, commercial cultivars) from the main production regions of Greece were assessed for their chemical composition and quality (total soluble solids, dry matter content, nutritional value, mineral composition, organic acids, fatty acids content and free sugars content), and bulb morphology. The results of the present study showed significant diversity in quality features and bulb morphology, not only between the genotypes from different growing regions, but also between those of the same region. This result is interesting since it could be implemented for further improvement and valorization of this important vegetable crop through extensive breeding programs within the framework of sustainability and genetic, material conservation. Full article
Figures

Open AccessArticle Estrogenic Effects of the Extracts from the Chinese Yam (Dioscorea opposite Thunb.) and Its Effective Compounds in Vitro and in Vivo
Molecules 2018, 23(2), 11; doi:10.3390/molecules23020011
Received: 15 December 2017 / Revised: 16 January 2018 / Accepted: 16 January 2018 / Published: 23 January 2018
PDF Full-text (2280 KB) | HTML Full-text | XML Full-text
Abstract
Background: The aim of this study was to explore the estrogenic effects of the extracts from Chinese yam and its effective compounds. Methods: The activity of the yam was investigated by the uterine weight gain of mice and a proliferation assay of breast
[...] Read more.
Background: The aim of this study was to explore the estrogenic effects of the extracts from Chinese yam and its effective compounds. Methods: The activity of the yam was investigated by the uterine weight gain of mice and a proliferation assay of breast cancer cell lines (MCF-7 cell); the estrogenic activity was comprehensively evaluated by a serum pharmacology experiment. The levels of estradiol (E2), follicle stimulating hormone (FSH), and luteinizing hormone (LH) were also measured. Western blot analysis and antagonist assays with faslodex (ICI182,780), methylpiperidino-pyrazole (MPP), Delta (9) –tetrahydrocannabinol (THC), and G-15 were used to explore the mechanism of the effects of the yam. To find the effective compounds of the yam which play a role in its estrogen-like effects, we used the same methods to study the effects of adenosine and arbutin. Results: The Chinese yam and two main compounds, adenosine and arbutin, have estrogen-like effects. The mechanism of the yam which plays a role in its estrogen-like effects was mainly mediated by the estrogen receptors ERα, ERβ, and GPR30; that of adenosine was mainly mediated by estrogen receptors ERα and ERβ, and that of arbutin was mainly mediated by estrogen receptors ERβ and GPR30. Conclusions: The Chinese yam has estrogen-like effects; adenosine and arbutin are two of the effective compounds in the yam which play a role in its estrogen-like effects. Full article
Figures

Open AccessArticle Bioactivity-Guided Screening of Wound-Healing Active Constituents from American Cockroach (Periplaneta americana)
Molecules 2018, 23(1), 101; doi:10.3390/molecules23010101
Received: 12 December 2017 / Revised: 30 December 2017 / Accepted: 31 December 2017 / Published: 20 January 2018
PDF Full-text (2783 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Ethanol extract (EE) from Periplaneta americana (PA) is the main ingredient of Kangfuxin, which is a popular traditional chinese medicine (TCM) and has long been used for the clinical treatment of burns, wounds and ulcers. We compared the wound-healing activities of three extracts
[...] Read more.
Ethanol extract (EE) from Periplaneta americana (PA) is the main ingredient of Kangfuxin, which is a popular traditional chinese medicine (TCM) and has long been used for the clinical treatment of burns, wounds and ulcers. We compared the wound-healing activities of three extracts of PA using cutaneous wound-healing in mice as the bioactivity model. These three extracts were EE, total polysaccharide and total protein. We also tracked bioactive fractions in the EE by organic reagent extraction, column chromatography and HPLC. Seven compounds were successfully identified from the water elution fraction of the EE of PA using UPLC-MS. Among these compounds, four compounds (P2, P3, P4, P5(1)) were first reported in PA. Some of these compounds have been previously reported to have various pharmacological activities that could contribute to the high wound-healing activity of PA. Full article
Figures

Figure 1

Open AccessCommunication Modulation of Inducible Nitric Oxide Synthase Expression in LPS-Stimulated BV-2 Microglia by Prenylated Chalcones from Cullen corylifolium (L.) Medik. through Inhibition of I-κBα Degradation
Molecules 2018, 23(1), 109; doi:10.3390/molecules23010109
Received: 8 November 2017 / Revised: 22 December 2017 / Accepted: 28 December 2017 / Published: 4 January 2018
PDF Full-text (918 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The overproduction of nitric oxide (NO) and prostaglandin E2 (PGE2) by microglia may cause neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. From the activity-guided purification of Cullen corylifolium (L.) Medik. (syn. Psoralea corylifolia L.), three prenylated chalcones were
[...] Read more.
The overproduction of nitric oxide (NO) and prostaglandin E2 (PGE2) by microglia may cause neurodegenerative diseases, such as Alzheimer’s disease and Parkinson’s disease. From the activity-guided purification of Cullen corylifolium (L.) Medik. (syn. Psoralea corylifolia L.), three prenylated chalcones were identified: isobavachalcone (1), bavachromene (2), and kanzonol B (3). These prenylated chalcones showed concentration-dependent inhibitory effects on NO and PGE2 production in lipopolysaccharide (LPS)-activated microglia. Western blotting and RT-PCR analysis demonstrated that these prenylchalcones reduced the expression of protein and mRNA of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-activated microglia. Furthermore, three prenylated chalcones blocked the inhibitory-κBα (I-κBα) degradation and down-regulated nuclear factor κB (NF-κB) level of nucleus in LPS-stimulated BV-2 microglia. Therefore, these prenylated chalcones from Psoralea corylifolia may be beneficial for the treatment of neuro-inflammatory diseases by modulating iNOS and COX-2 expressions in activated microglial cells. Full article
Figures

2017

Jump to: 2018, 2016, 2015, 2014, 2013, 2012, 2011, 2010

Open AccessArticle Antrodia cinnamomea Oligosaccharides Suppress Lipopolysaccharide-Induced Inflammation through Promoting O-GlcNAcylation and Repressing p38/Akt Phosphorylation
Molecules 2018, 23(1), 51; doi:10.3390/molecules23010051
Received: 17 November 2017 / Revised: 19 December 2017 / Accepted: 22 December 2017 / Published: 26 December 2017
PDF Full-text (18140 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Antrodia cinnamomea (AC), an edible fungus growing in Taiwan, has various health benefits. This study was designed to examine the potential inhibitory effects of AC oligosaccharides on lipopolysaccharide (LPS)-induced inflammatory responses in vitro and in vivo. By trifluoroacetic acid degradation, two oligosaccharide products
[...] Read more.
Antrodia cinnamomea (AC), an edible fungus growing in Taiwan, has various health benefits. This study was designed to examine the potential inhibitory effects of AC oligosaccharides on lipopolysaccharide (LPS)-induced inflammatory responses in vitro and in vivo. By trifluoroacetic acid degradation, two oligosaccharide products were prepared from AC polysaccharides at 90 °C (ACHO) or 25 °C (ACCO), which showed different oligosaccharide identities. Compared to ACCO, ACHO displayed better inhibitory effects on LPS-induced mRNA expression of pro-inflammatory cytokines including IL-6, IL-8, IL-1β, TNF-α and MCP-1 in macrophage cells. Further, ACHO significantly suppressed the inflammation in lung tissues of LPS-injected C57BL/6 mice. The potential anti-inflammatory molecular mechanism may be associated with the promotion of protein O-GlcNAcylation, which further skewed toward the marked suppression of p38 and Akt phosphorylation. Our results suggest that the suppressive effect of AC oligosaccharides on inflammation may be an effective approach for the prevention of inflammation-related diseases. Full article
Figures

Figure 1

Open AccessArticle Antimicrobial Furoquinoline Alkaloids from Vepris lecomteana (Pierre) Cheek & T. Heller (Rutaceae)
Molecules 2018, 23(1), 13; doi:10.3390/molecules23010013
Received: 25 November 2017 / Revised: 19 December 2017 / Accepted: 21 December 2017 / Published: 21 December 2017
PDF Full-text (420 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Three new prenylated furoquinoline alkaloids named lecomtequinoline A (1), B (2), and C (3), together with the known compounds anhydroevoxine (4), evoxine (5), dictamnine (6), N-methylflindersine (7), evoxanthine
[...] Read more.
Three new prenylated furoquinoline alkaloids named lecomtequinoline A (1), B (2), and C (3), together with the known compounds anhydroevoxine (4), evoxine (5), dictamnine (6), N-methylflindersine (7), evoxanthine (8), hesperidin, lupeol, β-sitosterol, stigmasterol, β-sitosterol-3-O-β-d-glucopyranoside, stearic acid, and myristyl alcohol, were isolated by bioassay-guided fractionation of the methanolic extracts of leaves and stem of Vepris lecomteana. The structures of compounds were determined by spectroscopic methods (NMR, MS, UV, and IR) and by comparison with previously reported data. Crude extracts of leaves and stem displayed high antimicrobial activity, with Minimum Inhibitory Concentration (MIC) (values of 10.1–16.5 and 10.2–20.5 µg/mL, respectively, against Escherichia coli, Bacillus subtilis, Pseudomonas agarici, Micrococcus luteus, and Staphylococcus warneri, while compounds 16 showed values ranging from 11.1 to 18.7 µg/mL or were inactive, suggesting synergistic effect. The extracts may find application in crude drug preparations in Western Africa where Vepris lecomteana is endemic, subject to negative toxicity results in vivo. Full article
Figures

Open AccessArticle Bioactive Compounds from the Stems of Clausena lansium
Molecules 2017, 22(12), 2226; doi:10.3390/molecules22122226
Received: 9 November 2017 / Revised: 9 December 2017 / Accepted: 11 December 2017 / Published: 14 December 2017
PDF Full-text (3388 KB) | HTML Full-text | XML Full-text
Abstract
In view of the significant neuroprotective effect of Clausena lansium, we continued to separate the n-butanol and the water extracts from the stems of C. lansium in order to find the leading compounds with significant activity. Two new phenolic glycosides, Clausenolside
[...] Read more.
In view of the significant neuroprotective effect of Clausena lansium, we continued to separate the n-butanol and the water extracts from the stems of C. lansium in order to find the leading compounds with significant activity. Two new phenolic glycosides, Clausenolside A–B (12), one new pair of phenolic enantiomers (3a, 3b), and two new monoterpenoids, clausenapene A–B (45), together with twelve known analogues (617) were isolated from the stems of C. lansium. Compounds 117 were obtained from C. lansium for the first time. Compounds 3a, 3b, 4, 16, and 17 showed strong or moderate potential neuroprotective effects on inhibited PC12 cell injury induced by okadaic acid, and compound 9 exhibited strong potential hepatoprotective activities. Their structures were elucidated on the basis of spectroscopic analyses, including UV, IR, NMR experiments, and electronic circular dichroism (ECD) spectra. Full article
Figures

Figure 1

Open AccessArticle Sequential Combination of Microwave- and Ultrasound-Assisted Extraction of Total Flavonoids from Osmanthus fragrans Lour. Flowers
Molecules 2017, 22(12), 2216; doi:10.3390/molecules22122216
Received: 23 November 2017 / Revised: 11 December 2017 / Accepted: 12 December 2017 / Published: 13 December 2017
PDF Full-text (11706 KB) | HTML Full-text | XML Full-text
Abstract
Microwave-assisted and ultrasound-assisted extraction assays were used to isolate total flavonoids (TF) from Osmanthus fragrans flowers. The effects of the solid-liquid ratio, ethanol concentration, microwave power, microwave extraction time, ultrasonic power and ultrasonic extraction time on the yield of TF were studied. A
[...] Read more.
Microwave-assisted and ultrasound-assisted extraction assays were used to isolate total flavonoids (TF) from Osmanthus fragrans flowers. The effects of the solid-liquid ratio, ethanol concentration, microwave power, microwave extraction time, ultrasonic power and ultrasonic extraction time on the yield of TF were studied. A sequential combination of microwave- and ultrasound-assisted extraction (SC-MUAE) methods was developed, which was subsequently optimized by Box-Behnken design-response surface methodology (BBD-RSM). The interaction effects of the ethanol concentration (40–60%), microwave extraction time (5–7 min), ultrasonic extraction time (8–12 min) and ultrasonic power (210–430 W) on the yield of TF were investigated. The optimum operating parameters for the extraction of TF were determined to be as follows: ethanol concentration (48.15%), microwave extraction time (6.43 min), ultrasonic extraction time (10.09 min) and ultrasonic power (370.9 W). Under these conditions, the extraction yield of TF was 7.86 mg/g. Full article
Figures

Open AccessArticle Preparation, Characterization, and Biological Activities of Topical Anti-Aging Ingredients in a Citrus junos Callus Extract
Molecules 2017, 22(12), 2198; doi:10.3390/molecules22122198
Received: 13 November 2017 / Revised: 8 December 2017 / Accepted: 9 December 2017 / Published: 11 December 2017
PDF Full-text (2566 KB) | HTML Full-text | XML Full-text
Abstract
In this study, we prepared and characterized a callus extract from Citrus junos and assessed its utility as a source of topical anti-aging ingredients. Callus extract was produced by aqueous extraction from Citrus junos grown on Murashige and Skoog medium with picloram as
[...] Read more.
In this study, we prepared and characterized a callus extract from Citrus junos and assessed its utility as a source of topical anti-aging ingredients. Callus extract was produced by aqueous extraction from Citrus junos grown on Murashige and Skoog medium with picloram as a growth regulator. After measuring the total phenolic and flavonoid contents, the major phenolic compound in calli was identified as p-hydroxycinnamoylmalic acid (1) by spectroscopic analysis. The total phenol content in the extract was determined to be 24.50 ± 0.43 mg/g of gallic acid equivalents; however, the total flavonoid content of the extract was not determined. The biological activities of the callus extract, in terms of skin anti-aging, were assessed by measuring the anti-tyrosinase activity in, and melanogenesis by, melanoma cells; and proliferation of, and procollagen synthesis by, human fibroblasts. The callus extract was incorporated into nanoliposomes (NLs) to improve its percutaneous absorption. Addition of the callus extract resulted in a 1.85-fold decrease in the melanin content of melanocytes compared with that with arbutin. The extract (500 μg/mL) significantly promoted the proliferation of, and procollagen synthesis by, fibroblasts (by 154% and 176%, respectively). In addition, the flux through the human epidermis of Citrus junos callus extract incorporated into NLs was 17.67-fold higher than that of the callus extract alone. These findings suggest that Citrus junos callus extract-loaded NLs have promise as an anti-aging cosmetic, as well as having a skin-lightening effect. Full article
Figures

Figure 1

Open AccessArticle Optimization of Bioactive Polyphenols Extraction from Picea Mariana Bark
Molecules 2017, 22(12), 2118; doi:10.3390/molecules22122118
Received: 30 October 2017 / Revised: 30 November 2017 / Accepted: 30 November 2017 / Published: 1 December 2017
PDF Full-text (1218 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Reported for its antioxidant, anti-inflammatory and non-toxicity properties, the hot water extract of Picea mariana bark was demonstrated to contain highly valuable bioactive polyphenols. In order to improve the recovery of these molecules, an optimization of the extraction was performed using water. Several
[...] Read more.
Reported for its antioxidant, anti-inflammatory and non-toxicity properties, the hot water extract of Picea mariana bark was demonstrated to contain highly valuable bioactive polyphenols. In order to improve the recovery of these molecules, an optimization of the extraction was performed using water. Several extraction parameters were tested and extracts obtained analyzed both in terms of relative amounts of different phytochemical families and of individual molecules concentrations. As a result, low temperature (80 °C) and low ratio of bark/water (50 mg/mL) were determined to be the best parameters for an efficient polyphenol extraction and that especially for low molecular mass polyphenols. These were identified as stilbene monomers and derivatives, mainly stilbene glucoside isorhapontin (up to 12.0% of the dry extract), astringin (up to 4.6%), resveratrol (up to 0.3%), isorhapontigenin (up to 3.7%) and resveratrol glucoside piceid (up to 3.1%) which is here reported for the first time for Picea mariana. New stilbene derivatives, piceasides O and P were also characterized herein as new isorhapontin dimers. This study provides novel information about the optimal extraction of polyphenols from black spruce bark, especially for highly bioactive stilbenes including the trans-resveratrol. Full article
Figures

Open AccessFeature PaperReview Resveratrol-Induced Effects on Body Fat Differ Depending on Feeding Conditions
Molecules 2017, 22(12), 2091; doi:10.3390/molecules22122091
Received: 30 October 2017 / Revised: 16 November 2017 / Accepted: 22 November 2017 / Published: 29 November 2017
PDF Full-text (1023 KB) | HTML Full-text | XML Full-text
Abstract
Science constantly seeks to identify new molecules that could be used as dietary functional ingredients in the fight against obesity and its co-morbidities. Among them, polyphenols represent a group of molecules of increasing interest. One of the most widely studied polyphenols is resveratrol
[...] Read more.
Science constantly seeks to identify new molecules that could be used as dietary functional ingredients in the fight against obesity and its co-morbidities. Among them, polyphenols represent a group of molecules of increasing interest. One of the most widely studied polyphenols is resveratrol (trans-3,4′,5-trihydroxystilbene), which has been proposed as an “energy restriction mimetic” because it can exert energy restriction-like effects. The aim of this review is to analyze the effects of resveratrol on obesity under different feeding conditions, such as overfeeding, normal feeding, and energy restriction, in animals and humans. The vast majority of the studies reported have addressed the administration of resveratrol to animals alongside an obesogenic diet. Under these experimental conditions usually a decreased body weight amount was found. To date, studies that focus on the effects of resveratrol under normal feeding or energy restriction conditions in animals and humans are scarcer. In these studies no changes in body fat were reported. After analyzing the results obtained under overfeeding, normal feeding, and energy restriction conditions, it can be stated that resveratrol is useful in reducing body fat accumulation, and thus preventing obesity. Nevertheless, for ethical reasons, these results have been obtained in animals. By contrast, there are no evidences showing the usefulness of this phenolic compound in reducing previously accumulated body fat. Consequently, as of yet, there is not scientific support for proposing resveratrol as a new anti-obesity treatment tool. Full article
Figures

Open AccessArticle The Rosiglitazone-Like Effects of Vitexilactone, a Constituent from Vitex trifolia L. in 3T3-L1 Preadipocytes
Molecules 2017, 22(11), 2030; doi:10.3390/molecules22112030
Received: 18 October 2017 / Revised: 8 November 2017 / Accepted: 17 November 2017 / Published: 22 November 2017
PDF Full-text (5650 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The increased number of patients with type 2 diabetes (T2D) has become a worldwide problem, and insulin sensitizers such as thiazolidinediones (TZDs) are used as therapeutic agents. We found that extracts of Vitex trifolia L. (V. trifolia), a medicinal plant from
[...] Read more.
The increased number of patients with type 2 diabetes (T2D) has become a worldwide problem, and insulin sensitizers such as thiazolidinediones (TZDs) are used as therapeutic agents. We found that extracts of Vitex trifolia L. (V. trifolia), a medicinal plant from Myanmar, induced adipogenesis similar to rosiglitazone (ROS), which is a TZD, in 3T3-L1 preadipocytes. In the present study, we attempted to isolate from V. trifolia those compounds that showed ROS-like effects. Among the extracts of hexane, ethyl acetate, and methanol obtained from V. trifolia, the ethyl acetate extract with the strongest ROS-like effects was purified by various chromatographic methods to obtain three known compounds: vitexilactone (1), vitexicarpin (2) and oleanolic acid (3). Among the isolated compounds, the ROS-like action of 1 was the strongest. The effects of 1 on 3T3-L1 cells during adipogenesis were compared with those of ROS. Both 1 and ROS increased lipid accumulation, the expression of adiponectin and GLUT4 in the cell membrane and decreased both the size of adipocytes and the phosphorylation of IRS-1, ERK1/2 and JNK in 3T3-L1 cells. In contrast, unlike ROS, the induction of proteins involved in lipogenesis was partial. ROS-like effects of 1 in 3T3-L1 cells were suppressed by the addition of bisphenol A diglycidyl ether (BADGE), one of a peroxisome proliferator-activated receptor γ (PPARγ) antagonists, suggesting that the action of 1 on adipocytes is mediated by PPARγ. From the results of the present study, it can be concluded that 1 is a novel insulin sensitizer candidate. Full article
Figures

Open AccessArticle Application of an Ultrafine Shearing Method for the Extraction of C-Phycocyanin from Spirulina platensis
Molecules 2017, 22(11), 2023; doi:10.3390/molecules22112023
Received: 31 October 2017 / Revised: 17 November 2017 / Accepted: 17 November 2017 / Published: 21 November 2017
PDF Full-text (7994 KB) | HTML Full-text | XML Full-text
Abstract
Cell disruption is an important step during the extraction of C-phycocyanin from Spirulina platensis. An ultrafine shearing method is introduced and combined with soaking and ultrasonication to disrupt the cell walls of S. platensis efficiently and economically. Five kinds of cell disruption
[...] Read more.
Cell disruption is an important step during the extraction of C-phycocyanin from Spirulina platensis. An ultrafine shearing method is introduced and combined with soaking and ultrasonication to disrupt the cell walls of S. platensis efficiently and economically. Five kinds of cell disruption method, including soaking, ultrasonication, freezing-thawing, soaking-ultrafine shearing and soaking-ultrafine shearing-ultrasonication were applied to break the cell walls of S. platensis. The effectiveness of cell breaking was evaluated based on the yield of the C-phycocyanin. The results show that the maximum C-phycocyanin yield was 9.02%, achieved by the soaking-ultrafine shearing-ultrasonication method, followed by soaking (8.43%), soaking-ultrafine shearing (8.89%), freezing and thawing (8.34%), and soaking-ultrasonication (8.62%). The soaking-ultrafine shearing-ultrasonication method is a novel technique for breaking the cell walls of S. platensis for the extraction of C-phycocyanin. Full article
Figures

Figure 1

Open AccessArticle Two Sulfur Glycoside Compounds Isolated from Lepidium apetalum Willd Protect NRK52e Cells against Hypertonic-Induced Adhesion and Inflammation by Suppressing the MAPK Signaling Pathway and RAAS
Molecules 2017, 22(11), 1956; doi:10.3390/molecules22111956
Received: 12 October 2017 / Revised: 8 November 2017 / Accepted: 9 November 2017 / Published: 12 November 2017
PDF Full-text (1189 KB) | HTML Full-text | XML Full-text
Abstract
Lepidium apetalum Willd has been used to reduce edema and promote urination. Cis-desulfoglucotropaeolin (cis-DG) and trans-desulfoglucotropaeolin (trans-DG) were isolated from Lepidium apetalum Willd, and caused a significant increase in cell viability in a hypertonic model in NRK52e
[...] Read more.
Lepidium apetalum Willd has been used to reduce edema and promote urination. Cis-desulfoglucotropaeolin (cis-DG) and trans-desulfoglucotropaeolin (trans-DG) were isolated from Lepidium apetalum Willd, and caused a significant increase in cell viability in a hypertonic model in NRK52e cells. In the hypertonic model, cis-DG and trans-DG significantly promoted the cell viability of NRK52e cells and inhibited the elevation of Na+ in the supernatant, inhibited the renin-angiotensin-aldosterone (RAAS) system, significantly reduced the levels of angiotensin II (Ang II) and aldosterone (ALD), and lowered aquaporin-2 (AQP2) and Na+–K+ ATP content in renal medulla. After treatment with cis-DG and trans-DG, expression of calcineurin (CAN) and Ca/calmodulin-dependent protein kinase II (CaMK II) was decreased in renal tissue and Ca2+ influx was inhibited, thereby reducing the secretion of transforming growth factor-β (TGFβ), reversing the increase in adhesion and inflammatory factor E-selectin and monocyte chemotactic protein 1 (MCP-1) induced by high NaCl, while reducing oxidative stress status and decreasing the expression of cyclooxygenase-2 (COX2). Furthermore, inhibition of protein kinase C (PKC) expression also contributed to these improvements. The cis-DG and trans-DG reduced the expression of p-p44/42 MAPK, p-JNK and p-p38, inhibited the phosphorylation of the MAPK signaling pathway in NRN52e cells induced by high salt, decreased the overexpression of p-p38 and p-HSP27, and inhibited the overactivation of the p38-MAPK signaling pathway, suggesting that the p38-MAPK pathway may play a vital role in the hypertonic-induced adhesion and inflammatory response. From the results of this study, it can be concluded that the mechanism of cis-DG and trans-DG may mainly be through inhibiting the p38-MAPK signaling pathway, inhibiting the excessive activation of the RAAS system, and thereby reducing adhesion and inflammatory factors. Full article
Figures

Figure 1

Open AccessReview Silybin, a Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaernt.)—Chemistry, Bioavailability, and Metabolism
Molecules 2017, 22(11), 1942; doi:10.3390/molecules22111942
Received: 10 October 2017 / Revised: 28 October 2017 / Accepted: 8 November 2017 / Published: 10 November 2017
Cited by 5 | PDF Full-text (1072 KB) | HTML Full-text | XML Full-text
Abstract
Milk thistle (Silybum marianum) is a medicinal plant that has been used for thousands of years as a remedy for a variety of ailments. The main component of S. marianum fruit extract (silymarin) is a flavonolignan called silybin, which is not
[...] Read more.
Milk thistle (Silybum marianum) is a medicinal plant that has been used for thousands of years as a remedy for a variety of ailments. The main component of S. marianum fruit extract (silymarin) is a flavonolignan called silybin, which is not only the major silymarin element but is also the most active ingredient of this extract, which has been confirmed in various studies. This compound belongs to the flavonoid group known as flavonolignans. Silybin’s structure consists in two main units. The first is based on a taxifolin, the second a phenyllpropanoid unit, which in this case is conyferil alcohol. These two units are linked together into one structure by an oxeran ring. Since the 1970s, silybin has been regarded in official medicine as a substance with hepatoprotective properties. There is a large body of research that demonstrates silybin’s many other healthy properties, but there are still a lack of papers focused on its molecular structure, chemistry, metabolism, and novel form of administration. Therefore, the aim of this paper is a literature review presenting and systematizing our knowledge of the silybin molecule, with particular emphasis on its structure, chemistry, bioavailability, and metabolism. Full article
Figures

Figure 1

Open AccessArticle Antimicrobial Abietane-Type Diterpenoids from Plectranthus punctatus
Molecules 2017, 22(11), 1919; doi:10.3390/molecules22111919
Received: 7 October 2017 / Revised: 2 November 2017 / Accepted: 3 November 2017 / Published: 7 November 2017
Cited by 1 | PDF Full-text (1707 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Four new para-benzoquinone containing abietane-type diterpenoids (14) along with thirteen known diterpenoids (517) were isolated from the roots of Plectranthus punctatus. The structures of the compounds were established by detailed spectroscopic analyses and
[...] Read more.
Four new para-benzoquinone containing abietane-type diterpenoids (14) along with thirteen known diterpenoids (517) were isolated from the roots of Plectranthus punctatus. The structures of the compounds were established by detailed spectroscopic analyses and comparison with literature data. The compounds were tested for their antibacterial and cytotoxic activity and showed significant inhibitory activity against all bacterial strains used, with compounds 6, 8, 10, and 11 showing an inhibition zone for Staphylococcus warneri even greater than the reference drug, gentamycin. Full article
Figures

Open AccessArticle Structural and Functional Properties Changes of β-Conglycinin Exposed to Hydroxyl Radical-Generating Systems
Molecules 2017, 22(11), 1893; doi:10.3390/molecules22111893
Received: 9 October 2017 / Accepted: 1 November 2017 / Published: 3 November 2017
Cited by 2 | PDF Full-text (1580 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The objective of the present study was to examine the structural and functional changes of β-conglycinin exposed to oxidizing radicals produced by FeCl3/H2O2/ascorbic acid hydroxyl radical-generating system (HRGS) for 3 h at room temperature. Increasing H2
[...] Read more.
The objective of the present study was to examine the structural and functional changes of β-conglycinin exposed to oxidizing radicals produced by FeCl3/H2O2/ascorbic acid hydroxyl radical-generating system (HRGS) for 3 h at room temperature. Increasing H2O2 concentrations resulted in a loss of histidine residues, lysine residues, and available lysine, which was accompanied by the formation of protein carbonyls and disulphide bonds (p < 0.05). Changes in secondary structure, surface hydrophobicity, and intrinsic fluorescence indicated that hydroxyl radicals had induced protein unfolding and conformational alterations. Results from SDS-PAGE implied that a small amount of protein cross-linkages produced by oxidative incubation. The emulsifying properties of β-conglycinin were gradually improved with the increasing extent of oxidation. The structural changes above contributed to the reduction of potential allergenicity of β-conglycinin, as verified by specific ELISA analysis. These results suggest that moderate oxidation could partially improve the protein functional properties and reduced the potential allergy of protein, providing guidance for effective use of moderately oxidized soy protein in the industry. Full article
Figures

Open AccessArticle Acaricidal Activity and Synergistic Effect of Thyme Oil Constituents against Carmine Spider Mite (Tetranychus Cinnabarinus (Boisduval))
Molecules 2017, 22(11), 1873; doi:10.3390/molecules22111873
Received: 19 September 2017 / Revised: 30 October 2017 / Accepted: 30 October 2017 / Published: 1 November 2017
PDF Full-text (1481 KB) | HTML Full-text | XML Full-text
Abstract
Studies examining the use of essential oils as replacements for synthetic insecticides require an understanding of the contribution of each constituent present, interactions among these components, and how they relate to overall toxicity. In the present study, the chemical composition of commercial thyme
[...] Read more.
Studies examining the use of essential oils as replacements for synthetic insecticides require an understanding of the contribution of each constituent present, interactions among these components, and how they relate to overall toxicity. In the present study, the chemical composition of commercial thyme oil was identified by gas chromatography-mass spectrometry. Thyme oil and blends of its major constituents were tested for their acaricidal activitities against carmine spider mites (Tetranychus cinnabarinus (Boisduval)) using a slide-dip bioassay. Natural thyme oil showed greater toxicity than any single constituent or blend of constituents. Thymol was the most abundant component (34.4%), and also possessed the strongest acaricidal activity compared with other single constituents. When tested individually, four constituents (linalool, terpinene, p-cymene and carvacrol) also had activity, while α-pinene, benzoic acid and ethyl gallate had almost no activity. The toxicity of blends of selected constituents indicated a synergistic effect among the putatively active and inactive constituents, with the presence of all constituents necessary to reach the highest toxicity. The results indicated that thyme oil and some of its major constituents have the potential to be developed into botanical acaricides. Full article
Figures

Figure 1

Open AccessArticle Identification for the First Time of Cyclo(d-Pro-l-Leu) Produced by Bacillus amyloliquefaciens Y1 as a Nematocide for Control of Meloidogyne incognita
Molecules 2017, 22(11), 1839; doi:10.3390/molecules22111839
Received: 23 September 2017 / Revised: 19 October 2017 / Accepted: 21 October 2017 / Published: 27 October 2017
PDF Full-text (2294 KB) | HTML Full-text | XML Full-text
Abstract
The aim of the current study was to describe the role and mechanism of Bacillus amyloliquefaciens Y1 against the root-knot nematode, Meloidogyne incognita, under in vitro and in vivo conditions. Initially, the exposure of the bacterial culture supernatant and crude extract of Y1
[...] Read more.
The aim of the current study was to describe the role and mechanism of Bacillus amyloliquefaciens Y1 against the root-knot nematode, Meloidogyne incognita, under in vitro and in vivo conditions. Initially, the exposure of the bacterial culture supernatant and crude extract of Y1 to M. incognita significantly inhibited the hatching of eggs and caused the mortality of second-stage juveniles (J2), with these inhibitory effects depending on the length of incubation time and concentration of the treatment. The dipeptide cyclo(d-Pro-l-Leu) was identified in B. amyloliquefaciens culture for the first time using chromatographic techniques and nuclear magnetic resonance (NMR 1H, 13C, H-H COSY, HSQC, and HMBC) and recognized to have nematocidal activity. Various concentrations of cyclo(d-Pro-l-Leu) were investigated for their effect on the hatching of eggs and J2 mortality. Moreover, the in vivo nematocidal activity of the Y1 strain was investigated by conducting pot experiments in which tomato plants were inoculated with M. incognita. Each and every pot was amended 50 mL of fertilizer media (F), or Y1 culture, or nematicide (N) (only once), or fertilizer media with N (FN) at 1, 2, 3, 4 and 5 weeks after transplantation. The results of the pot experiments demonstrated the antagonistic effect of B. amyloliquefaciens Y1 against M. incognita as it significantly decreases the count of eggs and galls per root of the tomato plant as well as the population of J2 in the soil. Besides, the investigation into the growth parameters, such as the length of shoot, shoot fresh and dry weights of the tomato plants, showed that they were significantly higher in the Y1 strain Y1-treated plants compared to F-, FN- and N-treated plants. Therefore, the biocontrol repertoire of this bacterium opens a new insight into the applications in crop pest control. Full article
Figures

Open AccessArticle Enhanced Glucose Uptake in Human Liver Cells and Inhibition of Carbohydrate Hydrolyzing Enzymes by Nordic Berry Extracts
Molecules 2017, 22(10), 1806; doi:10.3390/molecules22101806
Received: 19 September 2017 / Revised: 18 October 2017 / Accepted: 19 October 2017 / Published: 24 October 2017
PDF Full-text (453 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A Western lifestyle with low physical activity and a diet rich in sugar, fat and processed food contribute to higher incidences of diabetes and obesity. Enhanced glucose uptake in human liver cells was observed after treatment with phenolic extracts from different Nordic berries.
[...] Read more.
A Western lifestyle with low physical activity and a diet rich in sugar, fat and processed food contribute to higher incidences of diabetes and obesity. Enhanced glucose uptake in human liver cells was observed after treatment with phenolic extracts from different Nordic berries. All berry extracts showed higher inhibition against α-amylase and α-glucosidase than the anti-diabetic agent acarbose. Total phenolic content and phenolic profiles in addition to antioxidant activities, were also investigated. The berries were extracted with 80% methanol on an accelerated solvent extraction system (ASE) and then purified by C-18 solid phase extraction (SPE). Among the ASE methanol extracts, black chokeberry, crowberry and elderberry extracts showed high stimulation of glucose uptake in HepG2 cells and also considerable inhibitory effect towards carbohydrate hydrolyzing enzymes. SPE extracts with higher concentrations of phenolics, resulted in increased glucose uptake and enhanced inhibition of α-amylase and α-glucosidase compared to the ASE extracts. Crowberry and cloudberry were the most potent 15-lipoxygenase inhibitors, while bog whortleberry and lingonberry were the most active xanthine oxidase inhibitors. These results increase the value of these berries as a component of a healthy Nordic diet and have a potential benefit against diabetes. Full article
Figures

Open AccessArticle Equol, a Clinically Important Metabolite, Inhibits the Development and Pathogenicity of Magnaporthe oryzae, the Causal Agent of Rice Blast Disease
Molecules 2017, 22(10), 1799; doi:10.3390/molecules22101799
Received: 28 September 2017 / Revised: 16 October 2017 / Accepted: 18 October 2017 / Published: 24 October 2017
PDF Full-text (5037 KB) | HTML Full-text | XML Full-text
Abstract
Equol, a metabolite of soybean isoflavone daidzein, has been proven to have various bioactivities related to human health, but little is known on its antifungal activity to plant fungal pathogens. Magnaporthe oryzae is a phytopathogenic fungus that causes rice blast, a devastating disease
[...] Read more.
Equol, a metabolite of soybean isoflavone daidzein, has been proven to have various bioactivities related to human health, but little is known on its antifungal activity to plant fungal pathogens. Magnaporthe oryzae is a phytopathogenic fungus that causes rice blast, a devastating disease on rice. Here, we demonstrated that equol influences the development and pathogenicity of M. oryzae. Equol showed a significant inhibition to the mycelial growth, conidial generation and germination, and appressorial formation of M. oryzae. As a result, equol greatly reduced the virulence of M. oryzae on rice and barley leaves. The antifungal activity of equol was also found in several other plant fungal pathogens. These findings expand our knowledge on the bioactivities of equol. Full article
Figures

Figure 1a

Open AccessArticle Phenolic Compounds Present Schinus terebinthifolius Raddi Influence the Lowering of Blood Pressure in Rats
Molecules 2017, 22(10), 1792; doi:10.3390/molecules22101792
Received: 28 September 2017 / Revised: 16 October 2017 / Accepted: 18 October 2017 / Published: 23 October 2017
PDF Full-text (983 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
This study identified two phenolic compounds in Schinus terebinthifolius Raddi fruits: naringenin (first report in this species) and gallic acid. Their structures were elucidated by nuclear magnetic resonance (NMR) data (1H-, 13C-NMR) and a high-performance liquid chromatography (HPLC) technique. A
[...] Read more.
This study identified two phenolic compounds in Schinus terebinthifolius Raddi fruits: naringenin (first report in this species) and gallic acid. Their structures were elucidated by nuclear magnetic resonance (NMR) data (1H-, 13C-NMR) and a high-performance liquid chromatography (HPLC) technique. A high content of phenolics (659.21 mg of gallic acid equivalents/g of sample—Folin-Ciocalteau method) and total flavonoids (140.69 mg of rutin equivalents/g of sample—aluminum chloride method) were quantified in S. terebinthifolius, as well as high antioxidant activity (77.47%—2,2-diphenyl-1-picrylhydrazyl, DPPH method). The antihypertensive activity related to its phenolic content was investigated. After intravenous infusion in Wistar rats, these phenolics significantly reduced (p < 0.05) the systolic, median, and diastolic arterial pressures of individuals. The rotarod test was performed to determine the mechanism of action of the sample vasorelaxant effect. It was found that its action exceeded that of the positive control used (diazepam). This confirmed the vasodilatory activity exerted by S. terebinthifolius fruits is related to the phenolic compounds present in the plant, which are potent antioxidants and inhibit oxidative stress, mainly in the central nervous system. Full article
Figures

Figure 1

Open AccessArticle Structure, Absolute Configuration, and Antiproliferative Activity of Abietane and Icetexane Diterpenoids from Salvia ballotiflora
Molecules 2017, 22(10), 1690; doi:10.3390/molecules22101690
Received: 31 August 2017 / Accepted: 29 September 2017 / Published: 18 October 2017
PDF Full-text (2278 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
From the aerial parts of Salvia ballotiflora, eleven diterpenoids were isolated; among them, four icetexanes and one abietane (15) are reported for the first time. Their structures were established by spectroscopic means, mainly 1H- and 13C-NMR,
[...] Read more.
From the aerial parts of Salvia ballotiflora, eleven diterpenoids were isolated; among them, four icetexanes and one abietane (15) are reported for the first time. Their structures were established by spectroscopic means, mainly 1H- and 13C-NMR, including 1D and 2D homo- and hetero-nuclear experiments. Most of the isolated diterpenoids were tested for their antiproliferative, anti-inflammatory, and radical scavenging activities using the sulforhodamine B assay on six cancer cell lines, the TPA-induced ear edema test in mice, and the reduction of the DPPH assay, respectively. Some diterpenoids showed anti-proliferative activity, these being icetexanes 6 and 3, which were the most active with IC50 (μM) = 0.27 ± 0.08 and 1.40 ± 0.03, respectively, for U251 (human glioblastoma) and IC50 (μM) = 0.0.46 ± 0.05 and 0.82 ± 0.06 for SKLU-1 (human lung adenocarcinoma), when compared with adriamycin (IC50 (μM) = 0.08 ± 0.003 and 0.05 ± 0.003, as the positive control), respectively. Compounds 3 and 10 showed significant reduction of the induced ear edema of 37.4 ± 2.8 and 25.4 ± 3.0% (at 1.0 μmol/ear), respectively. Compound 4 was the sole active diterpenoid in the antioxidant assay (IC50 = 98. 4 ± 3.3), using α-tocopherol as the positive control (IC50 (μM) = 31.7 ± 1.04). The diterpenoid profile found is of chemotaxonomic relevance and reinforces the evolutionary link of S. ballotiflora with other members of the section Tomentellae. Full article
Figures

Figure 1

Open AccessArticle Health-Promoting Phytochemicals from 11 Mustard Cultivars at Baby Leaf and Mature Stages
Molecules 2017, 22(10), 1749; doi:10.3390/molecules22101749
Received: 7 September 2017 / Revised: 25 September 2017 / Accepted: 12 October 2017 / Published: 17 October 2017
PDF Full-text (692 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Mustard is a Brassica vegetable that provides a number of phytonutrients. However, the phytonutrient profile of mustard has been relatively limited. We analyzed the glucosinolates and their hydrolysis products, carotenoids, total anthocyanin and phenolic contents, and antioxidant capacity of the leaves of 11
[...] Read more.
Mustard is a Brassica vegetable that provides a number of phytonutrients. However, the phytonutrient profile of mustard has been relatively limited. We analyzed the glucosinolates and their hydrolysis products, carotenoids, total anthocyanin and phenolic contents, and antioxidant capacity of the leaves of 11 mustard cultivars grown in a greenhouse at the baby leaf and mature stages. An aliphatic glucosinolate sinigrin and its hydrolysis products allyl isothiocyanate and 1-cyano-2,3-epithiopropane were the major phytonutrients in the mustard leaves. Carotenoids β-carotene, lutein, violaxanthin, and neoxanthin were detected. We found phytonutrient concentration and their change with plant growth were cultivar-dependent. The %RDA value for vitamin A calculated using β-carotene content and retinol activity equivalents suggests that mustard cultivars used in this study can be a good source of vitamin A. Phenolic contents and antioxidant capacity also varied among cultivars and between physiological stages. Our results suggest that mustard leaves are rich in various phytochemicals and their composition depends on cultivar and the physiological stage. This is the first report on phytochemical composition in various mustard cultivars at different physiological stages. Full article
Figures

Open AccessArticle Pharmacokinetic Comparison of Seven Major Bio-Active Components in Normal and Blood Stasis Rats after Oral Administration of Herb Pair Danggui-Honghua by UPLC-TQ/MS
Molecules 2017, 22(10), 1746; doi:10.3390/molecules22101746
Received: 13 August 2017 / Revised: 11 October 2017 / Accepted: 12 October 2017 / Published: 17 October 2017
PDF Full-text (1238 KB) | HTML Full-text | XML Full-text
Abstract
The compatibility between Danggui (Angelicae Sinensis Radix) and Honghua (Carthami Flos) is a known herb pair, which could activate blood circulation and dissipate blood stasis effects. In this paper, we quantified seven main bio-active components (hydroxysafflor yellow A, caffeic acid, p-coumaric acid,
[...] Read more.
The compatibility between Danggui (Angelicae Sinensis Radix) and Honghua (Carthami Flos) is a known herb pair, which could activate blood circulation and dissipate blood stasis effects. In this paper, we quantified seven main bio-active components (hydroxysafflor yellow A, caffeic acid, p-coumaric acid, kaempferol-3-O-rutinoside, ferulic acid, 3-n-butylphthalide, and ligustilide) in plasma samples in vivo by UPLC-TQ/MS method and investigatedwhether the pharmacokinetic (PK) behaviors of the seven components could be altered in blood stasis rats after oral administration of the Gui-Hong extracts. It was found that the Cmax and AUC0-t of these components in blood stasis rats had increasing tendency compared with normal rats. Most components in model and normal rats had significant difference in some pharmacokinetic parameters, which indicated that the metabolism enzymes and transporters involved in the metabolism and disposition of these bio-active componentsmay bealtered in blood stasis rats. This study was the first report about the pharmacokinetic investigation between normal and blood stasis rats after oral administrationof Gui-Hong extracts, and these results are important and valuable for better clinical applications of Gui-Hong herb pair and relatedTCM formulae. Full article
Figures

Figure 1

Open AccessArticle Electrospun Phospholipid Fibers as Micro-Encapsulation and Antioxidant Matrices
Molecules 2017, 22(10), 1708; doi:10.3390/molecules22101708
Received: 9 September 2017 / Revised: 5 October 2017 / Accepted: 9 October 2017 / Published: 17 October 2017
PDF Full-text (2441 KB) | HTML Full-text | XML Full-text
Abstract
Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC) and the total phenolic content (TPC) of
[...] Read more.
Electrospun phospholipid (asolectin) microfibers were investigated as antioxidants and encapsulation matrices for curcumin and vanillin. These phospholipid microfibers exhibited antioxidant properties which increased after the encapsulation of both curcumin and vanillin. The total antioxidant capacity (TAC) and the total phenolic content (TPC) of curcumin/phospholipid and vanillin/phospholipid microfibers remained stable over time at different temperatures (refrigerated, ambient) and pressures (vacuum, ambient). 1H-NMR confirmed the chemical stability of both encapsulated curcumin and vanillin within phospholipid fibers. Release studies in aqueous media revealed that the phenolic bioactives were released mainly due to swelling of the phospholipid fiber matrix over time. The above studies confirm the efficacy of electrospun phospholipid microfibers as encapsulation and antioxidant systems. Full article
Figures

Figure 1

Open AccessReview A Review on the Phytochemistry, Pharmacology, Pharmacokinetics and Toxicology of Geniposide, a Natural Product
Molecules 2017, 22(10), 1689; doi:10.3390/molecules22101689
Received: 25 August 2017 / Revised: 27 September 2017 / Accepted: 10 October 2017 / Published: 10 October 2017
Cited by 2 | PDF Full-text (864 KB) | HTML Full-text | XML Full-text
Abstract
Iridoid glycosides are natural products occurring widely in many herbal plants. Geniposide (C17H24O10) is a well-known one, present in nearly 40 species belonging to various families, especially the Rubiaceae. Along with this herbal component, dozens of its
[...] Read more.
Iridoid glycosides are natural products occurring widely in many herbal plants. Geniposide (C17H24O10) is a well-known one, present in nearly 40 species belonging to various families, especially the Rubiaceae. Along with this herbal component, dozens of its natural derivatives have also been isolated and characterized by researchers. Furthermore, a large body of pharmacological evidence has proved the various biological activities of geniposide, such as anti-inflammatory, anti-oxidative, anti-diabetic, neuroprotective, hepatoprotective, cholagogic effects and so on. However, there have been some research articles on its toxicity in recent years. Therefore, this review paper aims to provide the researchers with a comprehensive profile of geniposide on its phytochemistry, pharmacology, pharmacokinetics and toxicology in order to highlight some present issues and future perspectives as well as to help us develop and utilize this iridoid glycoside more efficiently and safely. Full article
Figures

Figure 1

Open AccessArticle Bioassay-Guided Isolated Compounds from Morinda officinalis Inhibit Alzheimer’s Disease Pathologies
Molecules 2017, 22(10), 1638; doi:10.3390/molecules22101638
Received: 20 September 2017 / Revised: 28 September 2017 / Accepted: 28 September 2017 / Published: 29 September 2017
PDF Full-text (963 KB) | HTML Full-text | XML Full-text
Abstract
Due to the side effects of synthetic drugs, the therapeutic potential of natural products for Alzheimer’s disease (AD) has gained interest. Morinda officinalis has demonstrated inhibitory effects on geriatric diseases, such as bone loss and osteoporosis. However, although AD is a geriatric disease,
[...] Read more.
Due to the side effects of synthetic drugs, the therapeutic potential of natural products for Alzheimer’s disease (AD) has gained interest. Morinda officinalis has demonstrated inhibitory effects on geriatric diseases, such as bone loss and osteoporosis. However, although AD is a geriatric disease, M. officinalis has not been evaluated in an AD bioassay. Therefore, M. officinalis extracts and fractions were tested for AD-related activity, including inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BChE), β-site amyloid precursor protein cleaving enzyme 1 (BACE1), and advanced glycation end-product (AGE) formation. A bioassay-guided approach led to isolation of 10 active compounds, eight anthraquinones (18), one coumarin (9), and one phytosterol (10), from n-hexane and ethyl acetate fractions of M. officinalis. The five anthraquinones (48) were stronger inhibitors of AChE than were other compounds. Compounds 3 and 9 were good inhibitors of BChE, and compounds 3 and 8 were good inhibitors of BACE1. Compounds 15 and 79 were more active than the positive control in inhibiting AGE formation. In addition, we first suggested a structure-activity relationship by which anthraquinones inhibit AChE and BACE1. Our findings demonstrate the preventive and therapeutic efficacy of M. officinalis for AD and its potential use as a natural alternative medicine. Full article
Figures

Figure 1

Open AccessArticle In Silico Prediction of the Anti-Depression Mechanism of a Herbal Formula (Tiansi Liquid) Containing Morinda officinalis and Cuscuta chinensis
Molecules 2017, 22(10), 1614; doi:10.3390/molecules22101614
Received: 4 September 2017 / Revised: 20 September 2017 / Accepted: 21 September 2017 / Published: 26 September 2017
PDF Full-text (11398 KB) | HTML Full-text | XML Full-text
Abstract
Purpose: Depression is a sickening psychiatric condition that is prevalent worldwide. To manage depression, the underlying modes of antidepressant effect of herbals are important to be explored for the development of natural drugs. Tiansi Liquid is a traditional Chinese medicine (TCM) that
[...] Read more.
Purpose: Depression is a sickening psychiatric condition that is prevalent worldwide. To manage depression, the underlying modes of antidepressant effect of herbals are important to be explored for the development of natural drugs. Tiansi Liquid is a traditional Chinese medicine (TCM) that is prescribed for the management of depression, however its underlying mechanism of action is still uncertain. The purpose of this study was to systematically investigate the pharmacological mode of action of a herbal formula used in TCM for the treatment of depression. Methods: Based on literature search, an ingredients-targets database was developed for Tiansi Liquid, followed by the identification of targets related to depression. The interaction between these targets was evaluated on the basis of protein-protein interaction network constructed by STITCH and gene ontology (GO) enrichment analysis using ClueGO plugin. Results: As a result of literature search, 57 components in Tiansi Liquid formula and 106 potential targets of these ingredients were retrieved. A careful screening of these targets led to the identification of 42 potential targets associated with depression. Ultimately, 327 GO terms were found by analysis of gene functional annotation clusters and abundance value of these targets. Most of these terms were found to be closely related to depression. A significant number of protein targets such as IL10, MAPK1, PTGS2, AKT1, APOE, PPARA, MAPK1, MIF, NOS3 and TNF-α were found to be involved in the functioning of Tiansi Liquid against depression. Conclusions: The findings elaborate that Tiansi Liquid can be utilized to manage depression, however, multiple molecular mechanisms of action could be proposed for this effect. The observed core mechanisms could be the sensory perception of pain, regulation of lipid transport and lipopolysaccharide-mediated signaling pathway. Full article
Figures

Figure 1

Open AccessCommunication Anti-Inflammatory Phenolic Metabolites from the Edible Fungus Phellinus baumii in LPS-Stimulated RAW264.7 Cells
Molecules 2017, 22(10), 1583; doi:10.3390/molecules22101583
Received: 25 August 2017 / Revised: 20 September 2017 / Accepted: 20 September 2017 / Published: 21 September 2017
PDF Full-text (1259 KB) | HTML Full-text | XML Full-text
Abstract
The edible fungus Phellinus baumii Pilat (Hymenochaetaceae) has been used in Korean traditional medicines for strengthening health and prolonging life. An extract of the fruiting bodies of P. baumii was subjected to bioassay-guided fractionation based on its anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW264.7
[...] Read more.
The edible fungus Phellinus baumii Pilat (Hymenochaetaceae) has been used in Korean traditional medicines for strengthening health and prolonging life. An extract of the fruiting bodies of P. baumii was subjected to bioassay-guided fractionation based on its anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. The resulting fractions were chemically investigated, leading to isolation of three phenolic compounds (13), a sesquiterpene (4), two steroids (56), a fatty acid (7), and a cerebroside (8). Spectroscopic analyses including 1D and 2D NMR spectroscopy and LC/MS were used to determine their chemical structures. Compounds 2, 4, 5, 7 and 8 were identified in P. baumii for the first time. Since all compounds were isolated from active fractions with anti-inflammatory activity, their ability to inhibit LPS-stimulated nitric oxide (NO) production in RAW264.7 cells were evaluated in vitro. Compounds 1, 2, 3, 5 and 7 inhibited LPS-stimulated NO production, and compounds 13 had IC50 values <10 μM. Treatment of LPS-stimulated RAW264.7 cells with compounds 13 inhibited phosphorylation of IKKα and IκBα. In addition, treatment of compounds 13 reduced LPS-induced increases of nuclear factor-kappa B (NF-κB) p65, iNOS and COX-2 protein expressions. Collectively, compounds 13 inhibited NF-κB-dependent inflammation in RAW264.7 cells. Thus, P. baumii is a potential source of natural anti-inflammatory agents, and active compounds 13 could be promising lead compounds for the development of novel anti-inflammatory agents. Full article
Figures

Figure 1

Open AccessReview Cardiovascular Activity of the Chemical Constituents of Essential Oils
Molecules 2017, 22(9), 1539; doi:10.3390/molecules22091539
Received: 20 August 2017 / Revised: 8 September 2017 / Accepted: 8 September 2017 / Published: 17 September 2017
Cited by 1 | PDF Full-text (4338 KB) | HTML Full-text | XML Full-text
Abstract
Cardiovascular diseases are a leading cause of death in developed and developing countries and decrease the quality of life, which has enormous social and economic consequences for the population. Recent studies on essential oils have attracted attention and encouraged continued research of this
[...] Read more.
Cardiovascular diseases are a leading cause of death in developed and developing countries and decrease the quality of life, which has enormous social and economic consequences for the population. Recent studies on essential oils have attracted attention and encouraged continued research of this group of natural products because of their effects on the cardiovascular system. The pharmacological data indicate a therapeutic potential for essential oils for use in the treatment of cardiovascular diseases. Therefore, this review reports the current studies of essential oils chemical constituents with cardiovascular activity, including a description of their mechanisms of action. Full article
Open AccessCommunication A New Monoterpene from the Leaves of a Radiation Mutant Cultivar of Perilla frutescens var. crispa with Inhibitory Activity on LPS-Induced NO Production
Molecules 2017, 22(9), 1471; doi:10.3390/molecules22091471
Received: 17 August 2017 / Revised: 31 August 2017 / Accepted: 3 September 2017 / Published: 4 September 2017
PDF Full-text (3764 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The leaves of Perilla frutescens var. crispa (Lamiaceae)—known as ‘Jureum-soyeop’ or ‘Cha-jo-ki’ in Korean, ‘ZI SU YE’ in Chinese, and ‘Shiso’ in Japan—has been used as a medicinal herb. Recent gamma irradiated mutation breeding on P. frutescens var. crispa in our research group
[...] Read more.
The leaves of Perilla frutescens var. crispa (Lamiaceae)—known as ‘Jureum-soyeop’ or ‘Cha-jo-ki’ in Korean, ‘ZI SU YE’ in Chinese, and ‘Shiso’ in Japan—has been used as a medicinal herb. Recent gamma irradiated mutation breeding on P. frutescens var. crispa in our research group resulted in the development of a new perilla cultivar, P. frutescens var. crispa (cv. Antisperill; PFCA), which has a higher content of isoegomaketone. The leaves of PFCA were extracted by supercritical carbon dioxide (SC-CO2) extraction, and phytochemical investigation on this extract led to the isolation and identification of a new compound, 9-hydroxy-isoegomaketone [(2E)-1-(3-furanyl)-4-hydroxy-4-methyl-2-penten-1-one; 1]. Compound 1 exhibited inhibitory activity on nitric oxide (NO) production in lipopolysaccharide (LPS)-activated RAW264.7 cells with an IC50 value of 14.4 μM. The compounds in the SC-CO2 extracts of the radiation mutant cultivar and the original plant were quantified by high-performance liquid chromatography with diode array detection. Full article
Figures

Figure 1

Open AccessArticle Phenolics Isolated from Aframomum meleguta Enhance Proliferation and Ossification Markers in Bone Cells
Molecules 2017, 22(9), 1467; doi:10.3390/molecules22091467
Received: 13 August 2017 / Revised: 30 August 2017 / Accepted: 2 September 2017 / Published: 4 September 2017
Cited by 1 | PDF Full-text (1276 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Osteoporosis is a serious health problem characterized by decreased bone mineral density and deterioration of bone microarchitecture. Current antiosteoporotic agents exhibit a wide range of adverse effects; meanwhile, phytochemicals are effective and safer alternatives. In the current work, nine compounds belonging to hydroxyphenylalkane
[...] Read more.
Osteoporosis is a serious health problem characterized by decreased bone mineral density and deterioration of bone microarchitecture. Current antiosteoporotic agents exhibit a wide range of adverse effects; meanwhile, phytochemicals are effective and safer alternatives. In the current work, nine compounds belonging to hydroxyphenylalkane and diarylheptanoid groups were isolated from Aframomum meleguea seeds and identified as 6-gingerol (1), 6-paradol (2), 8-dehydrogingerdione (3), 8-gingerol (4), dihydro-6-paradol (5), dihydrogingerenone A (6), dihydrogingerenone C (7), 1,7-bis(3,4-dihydroxy-5-methoxyphenyl)heptane-3,5-diyl diacetate (8), and 1-(3,4-dihydroxy-5-methoxyphenyl)-7-(3,4-dihydroxyphenyl)heptane-3,5-diyl diacetate (9). The structures of isolated compounds were established by NMR and mass spectral data, in addition to referring to literature data. Exposure of MCF-7, MG-63, and SAOS-2 cells to subcytotoxic concentrations of the compounds under investigation resulted in accelerated proliferation. Among them, paradol was selected for further detailed biochemical analysis in SAOS-2 cells. DNA flowcytometric analysis of cell cycle distribution revealed that paradol did not induce any significant change in the proliferation index of SAOS-2 cells. Assessment of osteogenic gene expression revealed that paradol enhanced the expression of osteocyte and osteoblast-related genes and inhibited osteoclast and RUNX suppressor genes. Biochemically, paradol enhanced alkaline phosphatase activity and vitamin D content and decreased the osteoporotic marker acid phosphatase. In conclusion, paradol, which is a major constituents of A. melegueta seeds, exhibited potent proliferative and ossification characteristics in bone cells. Full article
Figures

Figure 1

Open AccessArticle Soluble Epoxide Hydrolase Inhibitory Activity of Components Isolated from Apios americana Medik
Molecules 2017, 22(9), 1432; doi:10.3390/molecules22091432
Received: 13 July 2017 / Revised: 22 August 2017 / Accepted: 28 August 2017 / Published: 30 August 2017
Cited by 2 | PDF Full-text (1672 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A new compound 1, 5-methoxy-2,5,7,4′-tetrahydroxy-coumaronochromone, along with seven known compounds (28), were isolated from Apios americana using open column chromatography. Their structures were established based on an analysis of 1D and 2D NMR, and MS spectra. Among these,
[...] Read more.
A new compound 1, 5-methoxy-2,5,7,4′-tetrahydroxy-coumaronochromone, along with seven known compounds (28), were isolated from Apios americana using open column chromatography. Their structures were established based on an analysis of 1D and 2D NMR, and MS spectra. Among these, two compounds 1 and 2 showed inhibitory activity on soluble epoxide hydrolase (sEH) at a concentration below 50 μM. The respective competitive (1) and mixed (2) inhibitors were revealed to have Ki values of 21.0 ± 0.8 and 14.5 ± 1.5 μM, based on the Dixon plot. The potential inhibitor (2) was visually presented in a predicted binding pose in the receptor by molecular docking. Additionally, molecular dynamics were performed for a detailed understanding of their complex by Gromacs 4.6.5 package. Full article
Figures

Open AccessReview An Overview of LEDs’ Effects on the Production of Bioactive Compounds and Crop Quality
Molecules 2017, 22(9), 1420; doi:10.3390/molecules22091420
Received: 3 August 2017 / Revised: 23 August 2017 / Accepted: 25 August 2017 / Published: 27 August 2017
Cited by 1 | PDF Full-text (1318 KB) | HTML Full-text | XML Full-text
Abstract
Light-emitting diodes (LEDs) are characterized by their narrow-spectrum, non-thermal photon emission, greater longevity, and energy-saving characteristics, which are better than traditional light sources. LEDs thus hold the potential to revolutionize horticulture lighting technology for crop production, protection, and preservation. Exposure to different LED
[...] Read more.
Light-emitting diodes (LEDs) are characterized by their narrow-spectrum, non-thermal photon emission, greater longevity, and energy-saving characteristics, which are better than traditional light sources. LEDs thus hold the potential to revolutionize horticulture lighting technology for crop production, protection, and preservation. Exposure to different LED wavelengths can induce the synthesis of bioactive compounds and antioxidants, which in turn can improve the nutritional quality of horticultural crops. Similarly, LEDs increase the nutrient contents, reduce microbial contamination, and alter the ripening of postharvest fruits and vegetables. LED-treated agronomic products can be beneficial for human health due to their good nutrient value and high antioxidant properties. Besides that, the non-thermal properties of LEDs make them easy to use in closed-canopy or within-canopy lighting systems. Such configurations minimize electricity consumption by maintaining optimal incident photon fluxes. Interestingly, red, blue, and green LEDs can induce systemic acquired resistance in various plant species against fungal pathogens. Hence, when seasonal clouds restrict sunlight, LEDs can provide a controllable, alternative source of selected single or mixed wavelength photon source in greenhouse conditions. Full article
Figures

Figure 1

Open AccessArticle Homoisoflavonoids and Chalcones Isolated from Haematoxylum campechianum L., with Spasmolytic Activity
Molecules 2017, 22(9), 1405; doi:10.3390/molecules22091405
Received: 13 July 2017 / Revised: 18 August 2017 / Accepted: 18 August 2017 / Published: 24 August 2017
PDF Full-text (1449 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Haematoxylum campechianum is a medicinal plant employed as an astringent to purify the blood and to treat stomach problems such as diarrhea and dysentery. A bio-guided chemical fractionation of the methanolic extract obtained from this plant allowed for the isolation of five compounds:
[...] Read more.
Haematoxylum campechianum is a medicinal plant employed as an astringent to purify the blood and to treat stomach problems such as diarrhea and dysentery. A bio-guided chemical fractionation of the methanolic extract obtained from this plant allowed for the isolation of five compounds: two chalcones known as sappanchalcone (1); 3-deoxysappanchalcone (2); three homoisoflavonoids known as hematoxylol A (3); 4-O-methylhematoxylol (4); and, hematoxin (5). The spasmolytic activity was determined in an in vitro model (electrically induced contractions of guinea pig ileum), and allowed to demonstrate that the methanolic extract (EC50 = 62.11 ± 3.23) fractions HcF7 (EC50 = 61.75 ± 3.55) and HcF9 (EC50 = 125.5 ± 10.65) and compounds 1 (EC50 = 16.06 ± 2.15) and 2 (EC50 = 25.37 ± 3.47) of Haematoxylum campechianum present significant relaxing activity as compared to papaverine (EC50 = 20.08 ± 2.0) as a positive control. Full article
Figures

Figure 1

Open AccessArticle Chemical Constituents of Murraya tetramera Huang and Their Repellent Activity against Tribolium castaneum
Molecules 2017, 22(8), 1379; doi:10.3390/molecules22081379
Received: 30 June 2017 / Revised: 13 August 2017 / Accepted: 17 August 2017 / Published: 20 August 2017
PDF Full-text (789 KB) | HTML Full-text | XML Full-text
Abstract
Sixteen compounds were isolated from the leaves and stems of Murraya tetramera Huang. Based on the NMR and MS spectral results, the structures were determined. It was confirmed that the isolated compounds included three new compounds (9, 10 and 13)
[...] Read more.
Sixteen compounds were isolated from the leaves and stems of Murraya tetramera Huang. Based on the NMR and MS spectral results, the structures were determined. It was confirmed that the isolated compounds included three new compounds (9, 10 and 13) and one new natural product (8), which were identified asmurratetra A (9), murratetra B (10), murratetra C (13) and [2-(7-methoxy-2-oxochromen-8-yl)-3-methylbut-2-enyl]3-methylbut-2-enoate (8), respectively. Meanwhile, the repellent activity against Tribolium castaneum was investigated for 13 of these isolated compounds. The results showed that the tested compounds had various levels of repellent activity against T. castaneum. Among them, compounds 1 (4(15)-eudesmene-1β,6α-diol), 11 (isoferulic acid) and 16 (2,3-dihydroxypropyl hexadecanoate) showed fair repellent activity against T. castaneum. They might be considered as potential leading compounds for the development of natural repellents. Full article
Figures

Figure 1

Open AccessArticle Portuguese Honeys from Different Geographical and Botanical Origins: A 4-Year Stability Study Regarding Quality Parameters and Antioxidant Activity
Molecules 2017, 22(8), 1338; doi:10.3390/molecules22081338
Received: 18 July 2017 / Revised: 8 August 2017 / Accepted: 9 August 2017 / Published: 11 August 2017
PDF Full-text (906 KB) | HTML Full-text | XML Full-text
Abstract
Portuguese honeys (n = 15) from different botanical and geographical origins were analysed regarding their quality parameters (diastase activity, hydroxymethylfurfural content, moisture and pH), colour (L*, a*, b*) and antioxidant profile (total phenolics content, total flavonoids content, DPPH• scavenging activity, and ferric reducing
[...] Read more.
Portuguese honeys (n = 15) from different botanical and geographical origins were analysed regarding their quality parameters (diastase activity, hydroxymethylfurfural content, moisture and pH), colour (L*, a*, b*) and antioxidant profile (total phenolics content, total flavonoids content, DPPH• scavenging activity, and ferric reducing power). The samples were analysed fresh and after 4-years of storage (at 25 °C and protected from light). The hydroxymethylfurfural content and diastase activity of the fresh samples were in accordance with the recommended values described in the legislation. In general, the antioxidant activity of the samples correlated more with the bioactive compounds content than with colour. The storage affected differently each individual sample, especially regarding the antioxidant profile. Nevertheless, although in general the lightness of the samples decreased (and the redness increased), after 4 years, 11 samples still presented acceptable diastase activity and hydroxymethylfurfural values. Full article
Figures

Open AccessArticle Identification and Biological Evaluation of Secondary Metabolites from Marine Derived Fungi-Aspergillus sp. SCSIOW3, Cultivated in the Presence of Epigenetic Modifying Agents
Molecules 2017, 22(8), 1302; doi:10.3390/molecules22081302
Received: 6 July 2017 / Accepted: 1 August 2017 / Published: 4 August 2017
Cited by 1 | PDF Full-text (898 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Chemical epigenetic manipulation was applied to a deep marine-derived fungus, Aspergillus sp. SCSIOW3, resulting in significant changes of the secondary metabolites. One new diphenylether-O-glycoside (diorcinol 3-O-α-D-ribofuranoside), along with seven known compounds, were isolated from the culture treated with a
[...] Read more.
Chemical epigenetic manipulation was applied to a deep marine-derived fungus, Aspergillus sp. SCSIOW3, resulting in significant changes of the secondary metabolites. One new diphenylether-O-glycoside (diorcinol 3-O-α-D-ribofuranoside), along with seven known compounds, were isolated from the culture treated with a combination of histone deacetylase inhibitor (suberohydroxamic acid) and DNA methyltransferase inhibitor (5-azacytidine). Compounds 2 and 4 exhibited significant biomembrane protective effect of erythrocytes. 2 also showed algicidal activity against Chattonella marina, a bloom forming alga responsible for large scale fish deaths. Full article
Figures

Open AccessArticle Immunomodulatory Activity of Octenyl Succinic Anhydride Modified Porang (Amorphophallus oncophyllus) Glucomannan on Mouse Macrophage-Like J774.1 Cells and Mouse Primary Peritoneal Macrophages
Molecules 2017, 22(7), 1187; doi:10.3390/molecules22071187
Received: 20 June 2017 / Revised: 12 July 2017 / Accepted: 12 July 2017 / Published: 15 July 2017
Cited by 1 | PDF Full-text (2683 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Porang is a local plant of Indonesia, which has a high content of glucomannan. In this study, porang glucomannan (PG) was esterified with octenyl succinic anhydride (OSA) to enhance emulsion properties to be widely used in food industry. OSA-modified PG (OSA-PG) enhanced the
[...] Read more.
Porang is a local plant of Indonesia, which has a high content of glucomannan. In this study, porang glucomannan (PG) was esterified with octenyl succinic anhydride (OSA) to enhance emulsion properties to be widely used in food industry. OSA-modified PG (OSA-PG) enhanced the phagocytosis activity of macrophage-like J774.1 cells and mouse peritoneal macrophages. In addition, OSA-PG increased the production of IL-6 and TNF-α by enhancing their gene expression. Immunoblot analysis displayed that OSA-PG tended to activate both nuclear factor-κB and mitogen-activated protein kinase cascades. Treatment of OSA-PG with polymyxin B revealed that cytokine production induced by OSA-PG was not caused by endotoxin contamination. Our findings also indicated that OSA-PG activates macrophages through not only Toll-like receptor (TLR) 4, but another receptor. Overall findings suggested that OSA-PG has a potential as an immunomodulatory food factor by stimulating macrophages. Full article
Figures

Figure 1

Open AccessArticle Isolation and Characterization of Aphidicolin Derivatives from Tolypocladium inflatum
Molecules 2017, 22(7), 1168; doi:10.3390/molecules22071168
Received: 14 June 2017 / Revised: 8 July 2017 / Accepted: 8 July 2017 / Published: 12 July 2017
Cited by 1 | PDF Full-text (1025 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Inflatin G (1), a new aphidicolin analogue, together with seven known compounds inflatin A (2), inflatin B (3), aphidicolin (4), aphidicolin-17-monoacetate (5), gulypyrone A (6), pyridoxatin rotamers A (7)
[...] Read more.
Inflatin G (1), a new aphidicolin analogue, together with seven known compounds inflatin A (2), inflatin B (3), aphidicolin (4), aphidicolin-17-monoacetate (5), gulypyrone A (6), pyridoxatin rotamers A (7) and B (8), were isolated from the ascomycete fungus Tolypocladium inflatum. Their structures were determined through NMR analyses and the circular dichroism data of the in situ formed [Rh2(OCOCF3)4] complexes. Compounds 1, 4, 5, 7, and 8 showed modest cytotoxicity against four human cancer cell lines A549, CNE1-MP1, A375, and MCF-7. Full article
Figures

Figure 1

Open AccessArticle 2,5-Dihydroxyacetophenone Induces Apoptosis of Multiple Myeloma Cells by Regulating the MAPK Activation Pathway
Molecules 2017, 22(7), 1157; doi:10.3390/molecules22071157
Received: 16 June 2017 / Revised: 3 July 2017 / Accepted: 7 July 2017 / Published: 11 July 2017
Cited by 3 | PDF Full-text (3415 KB) | HTML Full-text | XML Full-text
Abstract
2,5-Dihydroxyacetophenone (DHAP) is an active compound obtained from Radix rehmanniae preparata, which is widely used as a herbal medicine in many Asian countries. DHAP has been found to possess anti-inflammatory, anti-anxiety, and neuroprotective qualities. For the present study, we evaluated the anti-cancer effects
[...] Read more.
2,5-Dihydroxyacetophenone (DHAP) is an active compound obtained from Radix rehmanniae preparata, which is widely used as a herbal medicine in many Asian countries. DHAP has been found to possess anti-inflammatory, anti-anxiety, and neuroprotective qualities. For the present study, we evaluated the anti-cancer effects of DHAP on multiple myeloma cells. It was discovered that DHAP downregulated the expression of oncogenic gene products like Bcl-xl, Bcl-2, Mcl-1, Survivin, Cyclin D1, IAP-1, Cyclin E, COX-2, and MMP-9, and upregulated the expression of Bax and p21 proteins, consistent with the induction of G2/M phase cell cycle arrest and apoptosis in U266 cells. DHAP inhibited cell proliferation and induced apoptosis, as characterized by the cleavage of PARP and the activation of caspase-3, caspase-8, and caspase-9. Mitogen-activated protein kinase (MAPK) pathways have been linked to the modulation of the angiogenesis, proliferation, metastasis, and invasion of tumors. We therefore attempted to determine the effect of DHAP on MAPK signaling pathways, and discovered that DHAP treatment induced a sustained activation of JNK, ERK1/2, and p38 MAPKs. DHAP also potentiated the pro-apoptotic and anti-proliferative effects of bortezomib in U266 cells. Our results suggest that DHAP can be an effective therapeutic agent to target multiple myeloma. Full article
Figures

Figure 1a

Open AccessArticle Cytotoxic Compounds from Aloe megalacantha
Molecules 2017, 22(7), 1136; doi:10.3390/molecules22071136
Received: 31 May 2017 / Revised: 27 June 2017 / Accepted: 3 July 2017 / Published: 7 July 2017
PDF Full-text (750 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Phytochemical investigation of the ethyl acetate extract of the roots of Aloe megalacantha led to the isolation of four new natural products—1,8-dimethoxynepodinol (1), aloesaponarin III (2), 10-O-methylchrysalodin (3) and methyl-26-O-feruloyl-oxyhexacosanate (4)—along
[...] Read more.
Phytochemical investigation of the ethyl acetate extract of the roots of Aloe megalacantha led to the isolation of four new natural products—1,8-dimethoxynepodinol (1), aloesaponarin III (2), 10-O-methylchrysalodin (3) and methyl-26-O-feruloyl-oxyhexacosanate (4)—along with ten known compounds. All purified metabolites were characterized by NMR, mass spectrometric analyses and comparison with literature data. The isolates were evaluated for their cytotoxic activity against a human cervix carcinoma cell line KB-3-1 and some of them exhibited good activity, with aloesaponarin II (IC50 = 0.98 µM) being the most active compound. Full article
Figures

Figure 1

Open AccessArticle Anti-Inflammatory and Anti-Urolithiasis Effects of Polyphenolic Compounds from Quercus gilva Blume
Molecules 2017, 22(7), 1121; doi:10.3390/molecules22071121
Received: 16 June 2017 / Revised: 29 June 2017 / Accepted: 2 July 2017 / Published: 5 July 2017
PDF Full-text (3120 KB) | HTML Full-text | XML Full-text
Abstract
Quercus gilva Bume (QGB, family Fagaceae) is a tall evergreen oak species tree that grows in warm temperate regions in Korea, Japan, China and Taiwan. Quercus plants have long been the basis of traditional medicines. Their clinical benefits according to traditional medicine include
[...] Read more.
Quercus gilva Bume (QGB, family Fagaceae) is a tall evergreen oak species tree that grows in warm temperate regions in Korea, Japan, China and Taiwan. Quercus plants have long been the basis of traditional medicines. Their clinical benefits according to traditional medicine include relief of urolithiasis, tremors and inflammation. In the present study, the anti-urolithiasis activity including anti-inflammatory and anti-oxidative activities, of some phenolic compounds isolated from QGB were described. Seven compounds were isolated and identified as picraquassioside D (1), quercussioside (2), (+)-lyoniresinol-9′α-O-β-d-xylopyranoside (3), (+)-catechin (4), (−)-epicatechin (5), procyanidin B-3 (6), and procyanidin B-4 (7). Compounds 57 showed potent anti-oxidative and anti-inflammatory activities. These compounds were further tested for their inhibition of the gene expression of the inflammatory cytokines. The three compounds 57 showed dose-dependent inhibitory activities on gene expression of COX-2 and IL-1β. In vivo, urolithiasis was induced more effectively in an animal model of acute urolithiasis by the administration of QGB extract. These results indicate the potential of compounds from QGB in the treatment of urolithiasis. Full article
Figures

Figure 1

Open AccessArticle Antioxidant Capacity, Anticancer Ability and Flavonoids Composition of 35 Citrus (Citrus reticulata Blanco) Varieties
Molecules 2017, 22(7), 1114; doi:10.3390/molecules22071114
Received: 20 June 2017 / Revised: 3 July 2017 / Accepted: 3 July 2017 / Published: 5 July 2017
Cited by 1 | PDF Full-text (696 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Citrus (Citrus reticulate Blanco) is one of the most commonly consumed and widely distributed fruit in the world, which is possessing extensive bioactivities. Present study aimed to fully understand the flavonoids compositions, antioxidant capacities and in vitro anticancer abilities of different citrus
[...] Read more.
Citrus (Citrus reticulate Blanco) is one of the most commonly consumed and widely distributed fruit in the world, which is possessing extensive bioactivities. Present study aimed to fully understand the flavonoids compositions, antioxidant capacities and in vitro anticancer abilities of different citrus resources. Citrus fruits of 35 varieties belonging to 5 types (pummelos, oranges, tangerines, mandarins and hybrids) were collected. Combining li quid chromatography combined with electrospray ionization mass spectrometry (LC-ESI-MS/MS) and ultra-performance liquid chromatography combined with diode array detector (UPLC-DAD), a total of 39 flavonoid compounds were identified, including 4 flavones, 9 flavanones and 26 polymethoxylated flavonoids (PMFs). Each citrus fruit was examined and compared by 4 parts, flavedo, albedo, segment membrane and juice sacs. The juice sacs had the lowest total phenolics, following by the segment membrane. Four antioxidant traits including 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC) and cupric reducing antioxidant capacity (CUPRAC) were applied for the antioxidant capacities evaluation. Three gastric cancer cell lines, SGC-7901, BGC-823 and AGS were applied for the cytotoxicity evaluation. According to the results of correlation analysis, phenolics compounds might be the main contributor to the antioxidant activity of citrus extracts, while PMFs existing only in the flavedo might be closely related to the gastric cancer cell line cytotoxicity of citrus extracts. The results of present study might provide a theoretical guidance for the utilization of citrus resources. Full article
Figures

Figure 1

Open AccessArticle Phytochemical Analysis and Antimicrobial Activity of Myrcia tomentosa (Aubl.) DC. Leaves
Molecules 2017, 22(7), 1100; doi:10.3390/molecules22071100
Received: 23 May 2017 / Accepted: 29 June 2017 / Published: 4 July 2017
PDF Full-text (449 KB) | HTML Full-text | XML Full-text
Abstract
This work describes the isolation and structural elucidation of compounds from the leaves of Myrcia tomentosa (Aubl.) DC. (goiaba-brava) and evaluates the antimicrobial activity of the crude extract, fractions and isolated compounds against bacteria and fungi. Column chromatography was used to fractionate and
[...] Read more.
This work describes the isolation and structural elucidation of compounds from the leaves of Myrcia tomentosa (Aubl.) DC. (goiaba-brava) and evaluates the antimicrobial activity of the crude extract, fractions and isolated compounds against bacteria and fungi. Column chromatography was used to fractionate and purify the extract of the M. tomentosa leaves and the chemical structures of the compounds were determined using spectroscopic techniques. The antibacterial and antifungal activities were assessed using the broth microdilution method. The phytochemical investigation isolated 11 compounds: α-bisabolol, α-bisabolol oxide B, α-cadinol, β-sitosterol, n-pentacosane, n-tetracosane, quercetin, kaempferol, avicularin, juglanin and guaijaverin. The crude ethanolic extract and its fractions were tested against 15 bacteria and 9 yeasts. The crude extract inhibited the in vitro growth of yeasts at concentration of 4 to 32 μg/mL. The hexane, dichloromethane, ethyl acetate and aqueous fractions inhibited Candida sp. at concentrations of 4 to 256 μg/mL, whereas the Cryptococcus sp. isolates were inhibited only by the hexane and dichloromethane fractions in minimal inhibitory concentrations (MICs) at 16 to 64 μg/mL. The flavonoid quercetin-3-O-α-arabinofuranose (avicularin) was the most active compound, inhibiting Candida species in concentrations of 2 to 32 μg/mL. The MIC values suggest potential activity of this plant species against yeast. Full article
Figures

Open AccessArticle Antibacterial Activities of Pyrenylated Coumarins from the Roots of Prangos hulusii
Molecules 2017, 22(7), 1098; doi:10.3390/molecules22071098
Received: 9 June 2017 / Revised: 25 June 2017 / Accepted: 28 June 2017 / Published: 1 July 2017
Cited by 3 | PDF Full-text (616 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The dichloromethane extract of the roots of Prangos hulusii, a recently described endemic species from Turkey, has yielded nine known and one new prenylated coumarins. The structures were elucidated by spectroscopic methods and direct comparison with the reference compounds where available. The
[...] Read more.
The dichloromethane extract of the roots of Prangos hulusii, a recently described endemic species from Turkey, has yielded nine known and one new prenylated coumarins. The structures were elucidated by spectroscopic methods and direct comparison with the reference compounds where available. The root extract and its prenylated coumarins exhibit antimicrobial activity against nine standard and six clinically isolated strains at a concentration between 5 and 125 µg/mL. In particular, the new coumarin, 4′-senecioiloxyosthol (1), displayed 5 µg/mL MIC (Minimum Inhibitory Concentration) value against Bacillus subtilis ATCC 9372, murraol (4) and auraptenol (5) showed 63 µg/mL MIC value against Klebsiella pneumoniae ATCC 4352 and Bacillus subtilis ATCC 9372, and isoimperatorin (9) exhibited 16 µg/mL MIC value. Full article
Figures

Figure 1

Open AccessArticle Cell-Free Production of Pentacyclic Triterpenoid Compound Betulinic Acid from Betulin by the Engineered Saccharomyces cerevisiae
Molecules 2017, 22(7), 1075; doi:10.3390/molecules22071075
Received: 1 June 2017 / Revised: 24 June 2017 / Accepted: 26 June 2017 / Published: 27 June 2017
PDF Full-text (1783 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Betulinic acid is a product of plant secondary metabolism which has shown various bioactivities. Several CYP716A subfamily genes were recently characterized encoding multifunctional oxidases capable of C-28 oxidation. CYP716A12 was identified as betulin C-28 oxidase, capable of modifying betulin. This study aimed to
[...] Read more.
Betulinic acid is a product of plant secondary metabolism which has shown various bioactivities. Several CYP716A subfamily genes were recently characterized encoding multifunctional oxidases capable of C-28 oxidation. CYP716A12 was identified as betulin C-28 oxidase, capable of modifying betulin. This study aimed to induce the transformation of betulin to betulinic acid by co-expressing enzymes CYP716A12 from Medicago truncatula and ATR1 from Arabidopsis thaliana in Saccharomyces cerevisiae. The microsome protein extracted from the transgenic yeast successfully catalyzed the transformation of betulin to betulinic acid. We also characterized the optimization of cell fragmentation, protein extraction method, and the conversion conditions. Response surface methodology was implemented, and the optimal yield of betulinic acid reached 18.70%. After optimization, the yield and the conversion rate of betulin were increased by 83.97% and 136.39%, respectively. These results may present insights and strategies for the sustainable production of betulinic acid in multifarious transgenic microbes. Full article
Figures

Figure 1

Open AccessArticle Labradorins with Antibacterial Activity Produced by Pseudomonas sp.
Molecules 2017, 22(7), 1072; doi:10.3390/molecules22071072
Received: 11 May 2017 / Revised: 11 June 2017 / Accepted: 21 June 2017 / Published: 27 June 2017
PDF Full-text (758 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The urgent need for new antibacterial drugs has led to renewed interest in microorganisms, which historically have been the main source of previously discovered antibiotics. The present study describes the discovery of two new antibacterial oxazolylindole type alkaloids, labradorins 5 (1)
[...] Read more.
The urgent need for new antibacterial drugs has led to renewed interest in microorganisms, which historically have been the main source of previously discovered antibiotics. The present study describes the discovery of two new antibacterial oxazolylindole type alkaloids, labradorins 5 (1) and 6 (2), which were isolated and characterized from two isolates of Pseudomonas sp., along with four previously known tryptophane derived alkaloids. The structures of 1 and 2 were determined by NMR spectroscopy and MS, and confirmed by synthesis. During bioassay-guided isolation using several human bacterial pathogens, 1 and 2 displayed activity towards Staphylococcus aureus and Acinetobacter baumannii. The minimal inhibitory concentrations (MIC) of compounds 1 and 2 against S. aureus were 12 μg·mL−1 and 50 μg·mL−1, respectively, whereas the MICs against A. baumannii were >50 μg·mL−1. The CC50 values of compound 1 towards a liver cell line (HEP-G2) and a T-cell line (MT4) were 30 μg·mL−1 and 20 μg·mL−1, respectively, and for compound 2 were >100 μg·mL−1 and 20 μg·mL−1, respectively. Due to the limited potency of compounds 1 and 2, along with their toxicity, the compounds do not warrant further development towards new antibiotics. Full article
Figures

Figure 1

Open AccessReview Deoxyelephantopin and Isodeoxyelephantopin as Potential Anticancer Agents with Effects on Multiple Signaling Pathways
Molecules 2017, 22(6), 1013; doi:10.3390/molecules22061013
Received: 17 May 2017 / Revised: 8 June 2017 / Accepted: 15 June 2017 / Published: 21 June 2017
Cited by 1 | PDF Full-text (1832 KB) | HTML Full-text | XML Full-text
Abstract
Cancer is the 2nd leading cause of death worldwide. The development of drugs to target only one specific signaling pathway has limited therapeutic success. Developing chemotherapeutics to target multiple signaling pathways has emerged as a new prototype for cancer treatment. Deoxyelephantopin (DET) and
[...] Read more.
Cancer is the 2nd leading cause of death worldwide. The development of drugs to target only one specific signaling pathway has limited therapeutic success. Developing chemotherapeutics to target multiple signaling pathways has emerged as a new prototype for cancer treatment. Deoxyelephantopin (DET) and isodeoxyelephantopin (IDET) are sesquiterpene lactone components of “Elephantopus scaber and Elephantopus carolinianus”, traditional Chinese medicinal herbs that have long been used as folk medicines to treat liver diseases, diabetes, diuresis, bronchitis, fever, diarrhea, dysentery, cancer, and inflammation. Recently, the anticancer activity of DET and IDET has been widely investigated. Here, our aim is to review the current status of DET and IDET, and discuss their anticancer activity with specific emphasis on molecular targets and mechanisms used by these compounds to trigger apoptosis pathways which may help to further design and conduct research to develop them as lead therapeutic drugs for cancer treatments. The literature has shown that DET and IDET induce apoptosis through multiple signaling pathways which are deregulated in cancer cells and suggested that by targeting multiple pathways simultaneously, these compounds could selectively kill cancer cells. This review suggests that DET and IDET hold promising anticancer activity but additional studies and clinical trials are needed to validate and understand their therapeutic effect to develop them into potent therapeutics for the treatment of cancer. Full article
Figures

Figure 1

Open AccessArticle Phenolic Glycosides from Capsella bursa-pastoris (L.) Medik and Their Anti-Inflammatory Activity
Molecules 2017, 22(6), 1023; doi:10.3390/molecules22061023
Received: 16 May 2017 / Revised: 12 June 2017 / Accepted: 18 June 2017 / Published: 20 June 2017
PDF Full-text (596 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A new sesquilignan glycoside 1, together with seven known phenolic glycosides 28 were isolated from the aerial parts of Capsella bursa-pastoris. The chemical structure of the new compound 1 was elucidated by extensive nuclear magnetic resonance (NMR) data (1
[...] Read more.
A new sesquilignan glycoside 1, together with seven known phenolic glycosides 28 were isolated from the aerial parts of Capsella bursa-pastoris. The chemical structure of the new compound 1 was elucidated by extensive nuclear magnetic resonance (NMR) data (1H- and 13C-NMR, 1H-1H correlation spectroscopy (1H-1H COSY), heteronuclear single-quantum correlation (HSQC), heteronuclear multiple bond correlation (HMBC), and nuclear overhauser effect spectroscopy (NOESY)) and HR-FABMS analysis. The anti-inflammatory effects of 18 were evaluated in lipopolysaccharide (LPS)-stimulated murine microglia BV-2 cells. Compounds 4 and 7 exhibited moderate inhibitory effects on nitric oxide production in LPS-activated BV-2 cells, with IC50 values of 17.80 and 27.91 µM, respectively. Full article
Figures

Open AccessArticle Anti-Inflammatory Phenolic Acid Esters from the Roots and Rhizomes of Notopterygium incisium and Their Permeability in the Human Caco-2 Monolayer Cell Model
Molecules 2017, 22(6), 935; doi:10.3390/molecules22060935
Received: 8 May 2017 / Revised: 1 June 2017 / Accepted: 2 June 2017 / Published: 4 June 2017
Cited by 1 | PDF Full-text (866 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A new ferulic acid ester named 4-methyl-3-trans-hexenylferulate (1), together with eight known phenolic acid esters (29), was isolated from the methanolic extract of the roots and rhizomes of Notopterygium incisium. Their structures were elucidated
[...] Read more.
A new ferulic acid ester named 4-methyl-3-trans-hexenylferulate (1), together with eight known phenolic acid esters (29), was isolated from the methanolic extract of the roots and rhizomes of Notopterygium incisium. Their structures were elucidated by extensive spectroscopic techniques, including 2D NMR spectroscopy and mass spectrometry. 4-Methoxyphenethyl ferulate (8) NMR data is reported here for the first time. The uptake and transepithelial transport of the isolated compounds 19 were investigated in the human intestinal Caco-2 cell monolayer model. Compounds 2 and 6 were assigned for the well-absorbed compounds, compound 8 was assigned for the moderately absorbed compound, and compounds 1, 3, 4, 5, 7, and 9 were assigned for the poorly absorbed compounds. Moreover, all of the isolated compounds were assayed for the inhibitory effects against nitric oxide (NO) production in the lipopolysaccharide-activated RAW264.7 macrophages model and L-N6-(1-iminoethyl)-lysine (L-NIL) was used as a positive control. Compounds 1, 5, 8, and 9 exhibited potent inhibitory activity on NO production with the half maximal inhibitory concentration (IC50) values of 1.01, 4.63, 2.47, and 2.73 μM, respectively, which were more effective than L-NIL with IC50 values of 9.37 μM. These findings not only enriched the types of anti-inflammatory compounds in N. incisum but also provided some useful information for predicting their oral bioavailability and their suitability as drug leads or promising anti-inflammatory agents. Full article
Figures

Figure 1

Open AccessArticle Variability in the Content of Trans-Resveratrol, Trans-ε-Viniferin and R2-Viniferin in Grape Cane of Seven Vitis vinifera L. Varieties during a Three-Year Study
Molecules 2017, 22(6), 928; doi:10.3390/molecules22060928
Received: 21 April 2017 / Revised: 25 May 2017 / Accepted: 31 May 2017 / Published: 3 June 2017
PDF Full-text (1869 KB) | HTML Full-text | XML Full-text
Abstract
Grape canes are a waste product from viticulture that show potential as an industrially extractable source of stilbenes, which are valuable for medical and other purposes. In this work, grape canes collected in three consecutive years (2014–2016) at six different places in South
[...] Read more.
Grape canes are a waste product from viticulture that show potential as an industrially extractable source of stilbenes, which are valuable for medical and other purposes. In this work, grape canes collected in three consecutive years (2014–2016) at six different places in South Moravia, Czech Republic were extracted, and the contents of trans-resveratrol, trans-ε-viniferin, and r2-viniferin were determined by high-performance liquid chromatography. The study included three blue grape varieties of Vitis vinifera L. (Cabernet Moravia, Blaufränkisch, and Piwi variety Laurot) and four white grape varieties (Chardonnay, Green Veltliner, Piwi variety Hibernal, and Piwi variety Malverina). From the viewpoint of producing extracts with high stilbenes content, the Hibernal variety is clearly the best. The mean amounts of the stilbenes for this variety at all localities and for all three years were 4.99 g/kg for trans-resveratrol, 3.24 g/kg for trans-ε-viniferin, and 1.73 g/kg for r2-viniferin. The influence of vintage, locality, and variety on the amounts of stilbenes was studied using PCA analysis. In contrast to expectations, there was no strong impact of locality on stilbenes content. The differences were varietal for most varieties, regardless of the area of cultivation. Laurot and Hibernal varieties did differ significantly in that respect, however, as they exhibited clear dependence on location. Full article
Figures

Open AccessArticle Some Physical Properties of Protein Moiety of Alkali-Extracted Tea Polysaccharide Conjugates Were Shielded by Its Polysaccharide
Molecules 2017, 22(6), 914; doi:10.3390/molecules22060914
Received: 25 February 2017 / Revised: 8 May 2017 / Accepted: 10 May 2017 / Published: 31 May 2017
PDF Full-text (1515 KB) | HTML Full-text | XML Full-text
Abstract
Polysaccharide conjugates were alkali-extracted from green tea (TPC-A). Although it contained 11.80% covalently binding proteins, TPC-A could not bind to the Coomassie Brilliant Blue dyes G250 and R250. TPC-A had no expected characteristic absorption peak of protein in the UV-vis spectrum scanning in
[...] Read more.
Polysaccharide conjugates were alkali-extracted from green tea (TPC-A). Although it contained 11.80% covalently binding proteins, TPC-A could not bind to the Coomassie Brilliant Blue dyes G250 and R250. TPC-A had no expected characteristic absorption peak of protein in the UV-vis spectrum scanning in the range of 200–700 nm. The UV-vis wavelength of 280 nm was not suitable to detect the presence of the protein portion of TPC-A. The zeta potential of TPC-A merely presented the negative charge properties of polysaccharides instead of the acid–base property of its protein section across the entire pH range. Furthermore, TPC-A was more stable when the pH of solution exceeded 4.0. In addition, no precipitation or haze was generated in the TPC-A/(−)-epigallocatechin gallate (EGCG) mixtures during 12 h storage. TPC-A has emulsifying activity, which indicated that its protein moiety formed hydrophobic groups. Thus, it was proposed that some physical properties of TPC-A protein were shielded by its olysaccharide, since the protein moiety was wrapped by its polysaccharide chains. Full article
Figures

Figure 1

Open AccessArticle Total Synthesis and Pharmacological Investigation of Cordyheptapeptide A
Molecules 2017, 22(6), 682; doi:10.3390/molecules22060682
Received: 23 March 2017 / Revised: 17 April 2017 / Accepted: 18 April 2017 / Published: 27 May 2017
Cited by 1 | PDF Full-text (638 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The present investigation reports the synthesis of a phenylalanine-rich N-methylated cyclopeptide, cordyheptapeptide A (8), previously isolated from the insect pathogenic fungus Cordyceps sp. BCC 1788, accomplished through the coupling of N-methylated tetrapeptide and tripeptide fragments followed by cyclization of
[...] Read more.
The present investigation reports the synthesis of a phenylalanine-rich N-methylated cyclopeptide, cordyheptapeptide A (8), previously isolated from the insect pathogenic fungus Cordyceps sp. BCC 1788, accomplished through the coupling of N-methylated tetrapeptide and tripeptide fragments followed by cyclization of the linear heptapeptide unit. Structure elucidation of the newly synthesized cyclopolypeptide was performed by means of FT-IR, 1H-NMR, 13C-NMR, and fast atom bombardment mass spectrometry (FABMS), and screened for its antibacterial, antidermatophytic, and cytotoxic potential. According to the antimicrobial activity results, the newly synthesized N-Methylated cyclopeptide exhibited potent antibacterial activity against Gram-negative bacteria Pseudomonas aeruginosa and Klebsiella pneumoniae and antifungal activity against dermatophytes Trichophyton mentagrophytes and Microsporum audouinii at a concentration of 6 μg/mL, in comparison to the reference drugs, gatifloxacin and griseofulvin. In addition, cyclopolypeptide 8 displayed suitable levels of cytotoxicity against Dalton’s lymphoma ascites (DLA) and Ehrlich’s ascites carcinoma (EAC) cell lines. Full article
Figures

Open AccessArticle Identification of Anthocyanin Composition and Functional Analysis of an Anthocyanin Activator in Solanum nigrum Fruits
Molecules 2017, 22(6), 876; doi:10.3390/molecules22060876
Received: 3 May 2017 / Revised: 22 May 2017 / Accepted: 22 May 2017 / Published: 25 May 2017
Cited by 1 | PDF Full-text (2952 KB) | HTML Full-text | XML Full-text
Abstract
Solanum nigrum fruits have been conventionally used in beverages due to their nutritional substances such as minerals, vitamins, amino acids, proteins, sugars, polyphenols, and anthocyanins. The characterization of components and regulatory mechanism of anthocyanins in S. nigrum fruits have rarely been reported. In
[...] Read more.
Solanum nigrum fruits have been conventionally used in beverages due to their nutritional substances such as minerals, vitamins, amino acids, proteins, sugars, polyphenols, and anthocyanins. The characterization of components and regulatory mechanism of anthocyanins in S. nigrum fruits have rarely been reported. In this study, we determined that the peel and flesh of S. nigrum fruits shared similar HPLC profiles but different contents and total antioxidant activities for anthocyanins. After an efficient purification method, mainly including extraction with pH 1.0 distilled water and then desorption with pH 1.0 95% ethanol after a DM-130 resin adsorption step to obtain more pure anthocyanin extracts, the purity of anthocyanins extracted from S. nigrum fruits reached 56.1%. Moreover, eight anthocyanins from S. nigrum fruit were identified with HPLC-MS/MS for the first time. A typical R2R3-MYB transcription factor gene, SnMYB, was also cloned for the first time by rapid amplification of cDNA ends (RACE)-PCR from S. nigrum. Moreover, the contents of anthocyanins were shown to correlate well (r = 0.93) with the expression levels of SnMYB gene during the fruit’s developmental stages. Most significantly, SnMYB gene successfully produced high anthocyanin content (1.03 mg/g) when SnMYB gene was transiently expressed in tobacco leaves. Taken together, S. nigrum fruits are a promising resource for anthocyanin extraction, and SnMYB gene is an activator that positively regulates anthocyanin biosynthesis in S. nigrum. Full article
Figures

Figure 1

Open AccessArticle Impact of Maturity of Malay Cherry (Lepisanthes alata) Leaves on the Inhibitory Activity of Starch Hydrolases
Molecules 2017, 22(6), 873; doi:10.3390/molecules22060873
Received: 24 April 2017 / Revised: 20 May 2017 / Accepted: 23 May 2017 / Published: 24 May 2017
PDF Full-text (1837 KB) | HTML Full-text | XML Full-text
Abstract
Aqueous extracts of young (7-day-old) Malay cherry (Lepisanthes alata) leaves were incorporated into wheat and rice flours to evaluate their inhibitory activities against α-amylase and α-glucosidase. HPLC-ESI/MS2 results showed that the active components in young leaves were proanthocyanidins with lower
[...] Read more.
Aqueous extracts of young (7-day-old) Malay cherry (Lepisanthes alata) leaves were incorporated into wheat and rice flours to evaluate their inhibitory activities against α-amylase and α-glucosidase. HPLC-ESI/MS2 results showed that the active components in young leaves were proanthocyanidins with lower mean degrees of polymerisation (≤10). The IC50 of the aqueous extracts of young leaves were 2.50 ± 0.03 and 12.91 ± 0.29 µg/mL, against α-amylase and α-glucosidase, which make them less active compared to the mature leaves. In contrast, total proanthocyanidins in aqueous extracts decreased as the leaves matured, indicating that the compounds in the mature leaves have much higher activity. However, there was no significant difference in the digestibility of wheat noodles incorporated with the aqueous extracts from either young or mature leaves. Interestingly, with regard to rice noodles, their digestibility was mostly reduced by incorporating aqueous extracts of young leaves compared to using mature leaves. Full article
Figures

Figure 1

Open AccessArticle New Glycosides from the Fruits of Nicandra physaloides
Molecules 2017, 22(5), 828; doi:10.3390/molecules22050828
Received: 9 April 2017 / Revised: 16 May 2017 / Accepted: 16 May 2017 / Published: 17 May 2017
PDF Full-text (621 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Three new glycosides (13) and 15 known ones (418) were isolated and identified from the fruits of Nicandra physaloides. The structures of these compounds were established by 1D and 2D NMR spectra and HR-ESI-MS.
[...] Read more.
Three new glycosides (13) and 15 known ones (418) were isolated and identified from the fruits of Nicandra physaloides. The structures of these compounds were established by 1D and 2D NMR spectra and HR-ESI-MS. The compounds (418) were the first time isolated from the Nicandra genus and they (except 8, 10, 14) exhibited inhibitions on the NO release of LPS-induced RAW 264.7 cells with IC50 values from 26.9 to 47.5 μM. Full article
Figures

Open AccessArticle Isolaurenidificin and Bromlaurenidificin, Two New C15-Acetogenins from the Red Alga Laurencia obtusa
Molecules 2017, 22(5), 807; doi:10.3390/molecules22050807
Received: 15 April 2017 / Revised: 10 May 2017 / Accepted: 10 May 2017 / Published: 15 May 2017
PDF Full-text (1178 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Chromatographic fractionation of the CH2Cl2/MeOH extract of the Red Sea red alga Laurencia obtusa gave two new hexahydrofuro[3,2-b]furan-based C15-acetogenins, namely, isolaurenidificin (1) and bromlaurenidificin (2). The chemical structures were elucidated based
[...] Read more.
Chromatographic fractionation of the CH2Cl2/MeOH extract of the Red Sea red alga Laurencia obtusa gave two new hexahydrofuro[3,2-b]furan-based C15-acetogenins, namely, isolaurenidificin (1) and bromlaurenidificin (2). The chemical structures were elucidated based on extensive analyses of their spectral data. Compounds 1 and 2 showed no toxicity (LC50 > 12 mM) using Artemia salina as test organism. Both compounds showed weak cytotoxicity against A549, HepG-2, HCT116, MCF-7, and PC-3 cells, however, they exhibited a relatively potent cytotoxic activity against peripheral blood neutrophils. This can be attributed partly to induction of apoptosis. Full article
Figures

Open AccessReview Bioactive Natural Products of Marine Sponges from the Genus Hyrtios
Molecules 2017, 22(5), 781; doi:10.3390/molecules22050781
Received: 23 March 2017 / Revised: 28 April 2017 / Accepted: 8 May 2017 / Published: 11 May 2017
PDF Full-text (6698 KB) | HTML Full-text | XML Full-text
Abstract
Marine sponges are known as a rich source for novel bioactive compounds with valuable pharmacological potential. One of the most predominant sponge genera is Hyrtios, reported to have various species such as Hyrtios erectus, Hyrtios reticulatus, Hyrtios gumminae, Hyrtios
[...] Read more.
Marine sponges are known as a rich source for novel bioactive compounds with valuable pharmacological potential. One of the most predominant sponge genera is Hyrtios, reported to have various species such as Hyrtios erectus, Hyrtios reticulatus, Hyrtios gumminae, Hyrtios communis, and Hyrtios tubulatus and a number of undescribed species. Members of the genus Hyrtios are a rich source of natural products with diverse and valuable biological activities, represented by different chemical classes including alkaloids, sesterterpenes and sesquiterpenes. This review covers the literature until June 2016, providing a complete survey of all compounds isolated from the genus Hyrtios with their corresponding biological activities whenever applicable. Full article
Figures

Open AccessArticle Ontogenetic Variation of Individual and Total Capsaicinoids in Malagueta Peppers (Capsicum frutescens) during Fruit Maturation
Molecules 2017, 22(5), 736; doi:10.3390/molecules22050736
Received: 30 March 2017 / Revised: 28 April 2017 / Accepted: 30 April 2017 / Published: 3 May 2017
Cited by 2 | PDF Full-text (1705 KB) | HTML Full-text | XML Full-text
Abstract
The ontogenetic variation of total and individual capsaicinoids (nordihydrocapsaicin (n-DHC), capsaicin (C), dihydrocapsaicin (DHC), homocapsaicin (h-C) and homodihydrocapsaicin (h-DHC)) present in Malagueta pepper (Capsicum frutescens) during fruit ripening has been studied. Malagueta peppers were grown in a greenhouse under controlled temperature
[...] Read more.
The ontogenetic variation of total and individual capsaicinoids (nordihydrocapsaicin (n-DHC), capsaicin (C), dihydrocapsaicin (DHC), homocapsaicin (h-C) and homodihydrocapsaicin (h-DHC)) present in Malagueta pepper (Capsicum frutescens) during fruit ripening has been studied. Malagueta peppers were grown in a greenhouse under controlled temperature and humidity conditions. Capsaicinoids were extracted using ultrasound-assisted extraction (UAE) and the extracts were analyzed by ultra-performance liquid chromatography (UHPLC) with fluorescence detection. A significant increase in the total content of capsaicinoids was observed in the early days (between 12 and 33). Between day 33 and 40 there was a slight reduction in the total capsaicinoid content (3.3% decrease). C was the major capsaicinoid, followed by DHC, n-DHC, h-C and h-DHC. By considering the evolution of standardized values of the capsaicinoids it was verified that n-DHC, DHC and h-DHC (dihydrocapsaicin-like capsaicinoids) present a similar behavior pattern, while h-C and C (capsaicin-like capsaicinoids) show different evolution patterns. Full article
Figures

Open AccessArticle Pectic Bee Pollen Polysaccharide from Rosa rugosa Alleviates Diet-Induced Hepatic Steatosis and Insulin Resistance via Induction of AMPK/mTOR-Mediated Autophagy
Molecules 2017, 22(5), 699; doi:10.3390/molecules22050699
Received: 25 March 2017 / Revised: 14 April 2017 / Accepted: 24 April 2017 / Published: 28 April 2017
Cited by 1 | PDF Full-text (2527 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Despite it is used as a nutraceutical against diabetes and obesity, the mechanism of action of bee pollen is still unclear. Pectic bee pollen polysaccharide (RBPP-P) was isolated from Rosa rugosa, and its structure was characterized by 13C-NMR and Fourier transform-infrared
[...] Read more.
Despite it is used as a nutraceutical against diabetes and obesity, the mechanism of action of bee pollen is still unclear. Pectic bee pollen polysaccharide (RBPP-P) was isolated from Rosa rugosa, and its structure was characterized by 13C-NMR and Fourier transform-infrared spectroscopy (FT-IR). Using high glucose and fatty acids-treated HepG2 cells and high fat diet (HFD)-induced obesity mice, we detected its effect on insulin function and lipid metabolism based on autophagy. RBPP-P contained arabinogalactan, rhamnogalacturonan I, and homogalacturonan domains. In vivo studies demonstrated that RBPP-P markedly ameliorated insulin resistance, glucose intolerance, and liver steatosis in obese mice. The suppressive effects of RBPP-P on liver steatosis and triglyceride content were mediated by increased autophagy and lipase expression in liver. In AMPK knockdown cells (prkaa 1/2−/− MEF) and HFD-fed mice tissues (liver, gonadal white adipose, and inguinal white adipose), RBPP-P enhanced autophagy in AMPK/mTOR-dependent way in liver, but not in adipose tissue. These findings demonstrated that bee pollen polysaccharide alleviated liver steatosis and insulin resistance by promoting autophagy via an AMPK/mTOR-mediated signaling pathway, suggesting that RBPP-P could be a novel therapeutic agent used for the treatment of obesity and diabetes. Full article
Figures

Open AccessArticle Modification of Natural Eudesmane Scaffolds via Mizoroki-Heck Reactions
Molecules 2017, 22(4), 652; doi:10.3390/molecules22040652
Received: 3 March 2017 / Revised: 4 April 2017 / Accepted: 5 April 2017 / Published: 20 April 2017
PDF Full-text (4022 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The Mizoroki-Heck reaction was applied to substrates derived from isocostic and ilicic acids, important sesquiterpene components of Dittrichia viscosa L. Greuter that were extracted directly from plant material collected in Morocco. After optimization of the metallo-catalysis conditions, various aryl-groups were successfully introduced on
[...] Read more.
The Mizoroki-Heck reaction was applied to substrates derived from isocostic and ilicic acids, important sesquiterpene components of Dittrichia viscosa L. Greuter that were extracted directly from plant material collected in Morocco. After optimization of the metallo-catalysis conditions, various aryl-groups were successfully introduced on the exocyclic double bond with an exclusive E-configuration and without racemization. Full article
Figures

Figure 1

Open AccessArticle LC-ESI-MS/MS Identification of Biologically Active Phenolic Compounds in Mistletoe Berry Extracts from Different Host Trees
Molecules 2017, 22(4), 624; doi:10.3390/molecules22040624
Received: 22 March 2017 / Revised: 5 April 2017 / Accepted: 6 April 2017 / Published: 12 April 2017
Cited by 1 | PDF Full-text (1496 KB) | HTML Full-text | XML Full-text
Abstract
A new, rapid, sensitive and selective liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method was developed to determine the content of flavonoid aglycones and phenolic acids in mistletoe berries (Viscum album L.) harvested from six different Polish host trees. Additionally, the total phenolic
[...] Read more.
A new, rapid, sensitive and selective liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method was developed to determine the content of flavonoid aglycones and phenolic acids in mistletoe berries (Viscum album L.) harvested from six different Polish host trees. Additionally, the total phenolic content (TPC) and total flavonoid content (TFC) as well as an antioxidant and antiproliferative activity were evaluated for the first time. The plant material was selectively extracted using ultrasound assisted maceration with methanol/water (8:2) solution. The obtained TPC and TFC results varied from 7.146 to 9.345 mg GA g1 and from 1.888 to 2.888 mg Q g−1 of dry extracts, respectively. The LC-ESI-MS/MS analysis demonstrated the highest content of phenolic acids in mistletoe berries from Populus nigra ‘Italica’ L. and flavonoid aglycones in mistletoe berries from Tilia cordata Mill. (354.45 µg and 5.955 µg per g dry extract, respectively). The moderate antioxidant activity of investigated extracts was obtained. The studies revealed that the examined extracts decreased the proliferation of human colon adenocarcinoma cells line LS180 in a dose-dependent manner without cytotoxicity in the human colon epithelial cell line CCD 841 CoTr. Moreover, the obtained results suggest considerable impact of polyphenols on the anticancer activity of these extracts. Full article
Figures

Figure 1a

Open AccessArticle Essential Oils of Hyptis pectinata Chemotypes: Isolation, Binary Mixtures and Acute Toxicity on Leaf-Cutting Ants
Molecules 2017, 22(4), 621; doi:10.3390/molecules22040621
Received: 6 March 2017 / Revised: 4 April 2017 / Accepted: 6 April 2017 / Published: 12 April 2017
Cited by 1 | PDF Full-text (1245 KB) | HTML Full-text | XML Full-text
Abstract
Leaf-cutting ants are pests of great economic importance due to the damage they cause to agricultural and forest crops. The use of organosynthetic insecticides is the main form of control of these insects. In order to develop safer technology, the objective of this
[...] Read more.
Leaf-cutting ants are pests of great economic importance due to the damage they cause to agricultural and forest crops. The use of organosynthetic insecticides is the main form of control of these insects. In order to develop safer technology, the objective of this work was to evaluate the formicidal activity of the essential oils of two Hyptis pectinata genotypes (chemotypes) and their major compounds on the leaf-cutting ants Acromyrmex balzani Emery and Atta sexdens rubropilosa Forel. Bioassays of exposure pathways (contact and fumigation) and binary mixtures of the major compounds were performed. The major compounds identified in the essential oils of H. pectinata were β-caryophyllene, caryophyllene oxide and calamusenone. The essential oils of H. pectinata were toxic to the ants in both exposure pathways. Essential oils were more toxic than their major compounds alone. The chemotype calamusenone was more toxic to A. balzani in both exposure pathways. A. sexdens rubropilosa was more susceptible to the essential oil of the chemotype β-caryophyllene in both exposure pathways. In general, the binary mixtures of the major compounds resulted in additive effect of toxicity. The essential oils of H. pectinata is a raw material of great potential for the development of new insecticides. Full article
Figures

Figure 1

Open AccessArticle Phenolic Compounds from the Rhizomes of Smilax china L. and Their Anti-Inflammatory Activity
Molecules 2017, 22(4), 515; doi:10.3390/molecules22040515
Received: 20 February 2017 / Revised: 17 March 2017 / Accepted: 18 March 2017 / Published: 3 April 2017
Cited by 4 | PDF Full-text (736 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
A new triflavanoid, kandelin B-5 (1), was isolated from the rhizomes of Smilax china L., together with six known phenylpropanoid substituted flavan-3-ols (27), nine flavonoids (816), two stilbenoids (17, 18),
[...] Read more.
A new triflavanoid, kandelin B-5 (1), was isolated from the rhizomes of Smilax china L., together with six known phenylpropanoid substituted flavan-3-ols (27), nine flavonoids (816), two stilbenoids (17, 18), and two other compounds (19, 20). The structure of compound 1 was determined on the basis of 1D, 2D NMR and HR-ESI-MS data, as well as chemical method. Compounds 25, 812, 15, 17, and 19 were evaluated for anti-inflammatory activity. Only compounds 10, 15 and 17 showed slightly IL-1β expression inhibitory activities on LPS induced THP-1 cells, with inhibition rate of 15.8%, 37.3%, and 35.8%, respectively, at concentration of 50 μg/mL. Full article
Figures

Open AccessArticle Intestinal Transport Characteristics and Metabolism of C-Glucosyl Dihydrochalcone, Aspalathin
Molecules 2017, 22(4), 554; doi:10.3390/molecules22040554
Received: 14 March 2017 / Accepted: 27 March 2017 / Published: 30 March 2017
Cited by 1 | PDF Full-text (842 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Insight into the mechanisms of intestinal transport and metabolism of aspalathin will provide important information for dose optimisation, in particular for studies using mouse models. Aspalathin transportation across the intestinal barrier (Caco-2 monolayer) tested at 1–150 µM had an apparent rate of permeability
[...] Read more.
Insight into the mechanisms of intestinal transport and metabolism of aspalathin will provide important information for dose optimisation, in particular for studies using mouse models. Aspalathin transportation across the intestinal barrier (Caco-2 monolayer) tested at 1–150 µM had an apparent rate of permeability (Papp) typical of poorly absorbed compounds (1.73 × 10−6 cm/s). Major glucose transporters, sodium glucose linked transporter 1 (SGLT1) and glucose transporter 2 (GLUT2), and efflux protein (P-glycoprotein, PgP) (1.84 × 10−6 cm/s; efflux ratio: 1.1) were excluded as primary transporters, since the Papp of aspalathin was not affected by the presence of specific inhibitors. The Papp of aspalathin was also not affected by constituents of aspalathin-enriched rooibos extracts, but was affected by high glucose concentration (20.5 mM), which decreased the Papp value to 2.9 × 10−7 cm/s. Aspalathin metabolites (sulphated, glucuronidated and methylated) were found in mouse urine, but not in blood, following an oral dose of 50 mg/kg body weight of the pure compound. Sulphates were the predominant metabolites. These findings suggest that aspalathin is absorbed and metabolised in mice to mostly sulphate conjugates detected in urine. Mechanistically, we showed that aspalathin is not actively transported by the glucose transporters, but presumably passes the monolayer paracellularly. Full article
Figures

Open AccessArticle Assessment of Lipophilicity Indices Derived from Retention Behavior of Antioxidant Compounds in RP-HPLC
Molecules 2017, 22(4), 550; doi:10.3390/molecules22040550
Received: 27 February 2017 / Revised: 26 March 2017 / Accepted: 27 March 2017 / Published: 29 March 2017
Cited by 2 | PDF Full-text (1244 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Reverse phase high pressure liquid chromatography was employed in order to evaluate the lipophilicity of antioxidant compounds from different classes, such as phenolic acids, flavanones, flavanols, flavones, anthocyanins, stilbenes, xantonoids, and proanthocyanidins. The retention time of each compound was measured using five different
[...] Read more.
Reverse phase high pressure liquid chromatography was employed in order to evaluate the lipophilicity of antioxidant compounds from different classes, such as phenolic acids, flavanones, flavanols, flavones, anthocyanins, stilbenes, xantonoids, and proanthocyanidins. The retention time of each compound was measured using five different HPLC columns: RP18 (LiChroCART, Purosphere RP-18e), C8 (Zorbax, Eclipse XDBC8), C16-Amide (Discovery RP-Amide C16), CN100 (Saulentechnik, Lichrosphere), and pentafluorophenyl (Phenomenex, Kinetex PFP), and the mobile phase consisted of methanol and water (0.1% formic acid) in different proportions. The measurements were conducted at two different column temperatures, room temperature (22 °C) and, in order to mimic the environment from the human body, 37 °C. Furthermore, principal component analysis (PCA) was used to obtain new lipophilicity indices and holistic lipophilicity charts. Additionally, highly representative depictions of the chromatographic behavior of the investigated compounds and stationary phases at different temperatures were obtained using two new chemometric approaches, namely two-way joining cluster analysis and sum of ranking differences. Full article
Figures

Open AccessArticle Rapid Determination of 30 Polyphenols in Tongmai Formula, a Combination of Puerariae Lobatae Radix, Salviae Miltiorrhizae Radix et Rhizoma, and Chuanxiong Rhizoma, via Liquid Chromatography-Tandem Mass Spectrometry
Molecules 2017, 22(4), 545; doi:10.3390/molecules22040545
Received: 20 February 2017 / Revised: 19 March 2017 / Accepted: 27 March 2017 / Published: 29 March 2017
Cited by 2 | PDF Full-text (526 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Tongmai formula (TMF) is a herbal preparation composed of three traditional Chinese medicinal materials: Puerariae Lobatae Radix (Gegen), Salviae Miltiorrhizae Radix et Rhizoma (Danshen) and Chuanxiong Rhizoma (Chuanxiong). It has been used to treat cardiovascular diseases for decades. To develop a reliable and
[...] Read more.
Tongmai formula (TMF) is a herbal preparation composed of three traditional Chinese medicinal materials: Puerariae Lobatae Radix (Gegen), Salviae Miltiorrhizae Radix et Rhizoma (Danshen) and Chuanxiong Rhizoma (Chuanxiong). It has been used to treat cardiovascular diseases for decades. To develop a reliable and convenient analytical method for a comprehensive determination of polyphenols in TMF and the ascertainment of their chemical correlations with its herbal components, a method combining high-performance liquid chromatography with electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) was developed and validated for rapid determination of 30 polyphenols in TMF and its three herbal components. The chromatographic separation was carried out on a Chromolith Fastgradient RP-18 endcapped 50-2 column using an optimized gradient elution. Statistical analysis of obtained data demonstrated that the method had a desirable linearity, precision, and accuracy, as well as excellent sensitivity. The obtained results indicated that, among the 30 polyphenols in TMF, 22 originated from Gegen, 6 originated from Danshen, and 2 originated from Chuanxiong. The major polyphenols in TMF have been identified as puerarin, mirificin, salvianolic acid B, salvianic acid A, 3’-hydroxypuerarin, 3’-methoxypuerarin, and salvianolic acid A, with a combined contribution of 19.2% of the preparation. The development and validation of this method will greatly facilitate future pharmacological studies of TMF and its herbal components, as well as polyphenols in cardiovascular therapies. Full article
Figures

Figure 1

Open AccessArticle 3,4-Dihydroxybenzalactone Suppresses Human Non-Small Cell Lung Carcinoma Cells Metastasis via Suppression of Epithelial to Mesenchymal Transition, ROS-Mediated PI3K/AKT/MAPK/MMP and NFκB Signaling Pathways
Molecules 2017, 22(4), 537; doi:10.3390/molecules22040537
Received: 9 February 2017 / Revised: 17 March 2017 / Accepted: 20 March 2017 / Published: 28 March 2017
Cited by 5 | PDF Full-text (15410 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
3,4-Dihydroxybenzalactone (DBL) was isolated from Phellinus linteus (PL), which is a folk medicine possessing various physiological effects. In this study, we used highly metastatic A549 cells to investigate efficacy of DBL inhibition of cancer metastasis and possible mechanisms. The results revealed DBL inhibited
[...] Read more.
3,4-Dihydroxybenzalactone (DBL) was isolated from Phellinus linteus (PL), which is a folk medicine possessing various physiological effects. In this study, we used highly metastatic A549 cells to investigate efficacy of DBL inhibition of cancer metastasis and possible mechanisms. The results revealed DBL inhibited migratory and invasive abilities of cancer cells at noncytotoxic concentrations. We found DBL suppressed enzymatic activities, protein expression, and RNA levels of matrix metalloproteinase (MMP)-2 and MMP-9. Western blot results showed DBL decreased phosphoinositide 3-kinase (PI3K)/AKT, phosphorylation status of mitogen-activated protein kinases (MAPKs), and focal adhesion kinase (FAK)/paxillin, which correlated with cell migratory ability. DBL also affected epithelial to mesenchymal transition (EMT)-related biomarkers. In addition, DBL enhanced cytoprotective effects through elevated antioxidant enzymes including heme oxygenase 1 (HO-1), catalase, glutathione peroxidase (GPx), and superoxide dismutase (SOD). Moreover, DBL influenced the nuclear translocation of nuclear factor κB (NFκB), nuclear factor erythroid 2-related factor 2 (Nrf2), Snail, and Slug in A549 cells. Taken together, these results suggested that treatment with DBL may act as a potential candidate to inhibit lung cancer metastasis by inhibiting MMP-2 and -9 via affecting PI3K/AKT, MAPKs, FAK/paxillin, EMT/Snail and Slug, Nrf2/antioxidant enzymes, and NFκB signaling pathways. Full article
Figures

Figure 1

Open AccessArticle Anti-Melanogenic Properties of Greek Plants. A Novel Depigmenting Agent from Morus alba Wood
Molecules 2017, 22(4), 514; doi:10.3390/molecules22040514
Received: 12 February 2017 / Revised: 10 March 2017 / Accepted: 12 March 2017 / Published: 23 March 2017
Cited by 2 | PDF Full-text (2107 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In therapeutic interventions associated with melanin hyperpigmentation, tyrosinase is regarded as a target enzyme as it catalyzes the rate-limiting steps in mammalian melanogenesis. Since many known agents have been proven to be toxic, there has been increasing impetus to identify alternative tyrosinase inhibitors,
[...] Read more.
In therapeutic interventions associated with melanin hyperpigmentation, tyrosinase is regarded as a target enzyme as it catalyzes the rate-limiting steps in mammalian melanogenesis. Since many known agents have been proven to be toxic, there has been increasing impetus to identify alternative tyrosinase inhibitors, especially from natural sources. In this study, we investigated 900 extracts from Greek plants for potential tyrosinase inhibitive properties. Among the five most potent extracts, the methanol extract of Morus alba wood (MAM) demonstrated a significant reduction in intracellular tyrosinase and melanin content in B16F10 melanoma cells. Bioassay-guided isolation led to the acquisition of twelve compounds: oxyresveratrol (1), kuwanon C (2), mulberroside A (3), resorcinol (4), dihydrooxyresveratol (5), trans-dihydromorin (6), 2,4,3′-trihydroxydihydrostilbene (7), kuwanon H (8), 2,4-dihydroxybenzaldehyde (9), morusin (10), moracin M (11) and kuwanon G (12). Among these, 2,4,3′-trihydroxydihydrostilbene (7) is isolated for the first time from Morus alba and constitutes a novel potent tyrosinase inhibitor (IC50 0.8 ± 0.15). We report here for the first time dihydrooxyresveratrol (5) as a potent natural tyrosinase inhibitor (IC50 0.3 ± 0.05). Computational docking analysis indicated the binding modes of six tyrosinase inhibitors with the aminoacids of the active centre of tyrosinase. Finally, we found both MAM extract and compounds 1, 6 and 7 to significantly suppress in vivo melanogenesis during zebrafish embryogenesis. Full article
Figures

Figure 1

Open AccessReview Emerging Anti-Mitotic Activities and Other Bioactivities of Sesquiterpene Compounds upon Human Cells
Molecules 2017, 22(3), 459; doi:10.3390/molecules22030459
Received: 18 January 2017 / Accepted: 2 March 2017 / Published: 13 March 2017
PDF Full-text (3949 KB) | HTML Full-text | XML Full-text
Abstract
We review the bio-activities of natural product sesquiterpenes and present the first description of their effects upon mitosis. This type of biological effect upon cells is unexpected because sesquiterpenes are believed to inactivate proteins through Michael-type additions that cause non-specific cytotoxicity. Yet, certain
[...] Read more.
We review the bio-activities of natural product sesquiterpenes and present the first description of their effects upon mitosis. This type of biological effect upon cells is unexpected because sesquiterpenes are believed to inactivate proteins through Michael-type additions that cause non-specific cytotoxicity. Yet, certain types of sesquiterpenes can arrest cells in mitosis as measured by cell biology, biochemical and imaging techniques. We have listed the sesquiterpenes that arrest cells in mitosis and analyzed the biological data that support those observations. In view of the biochemical complexity of mitosis, we propose that a subset of sesquiterpenes have a unique chemical structure that can target a precise protein(s) required for mitosis. Since the process of mitotic arrest precedes that of cell death, it is possible that some sesquiterpenes that are currently classified as cytotoxic might also induce a mitotic arrest. Our analysis provides a new perspective of sesquiterpene chemical biology Full article
Figures

Figure 1

Open AccessReview Pentacyclic Triterpene Bioavailability: An Overview of In Vitro and In Vivo Studies
Molecules 2017, 22(3), 400; doi:10.3390/molecules22030400
Received: 3 February 2017 / Revised: 24 February 2017 / Accepted: 28 February 2017 / Published: 4 March 2017
Cited by 7 | PDF Full-text (1095 KB) | HTML Full-text | XML Full-text
Abstract
Pentacyclic triterpenes are naturally found in a great variety of fruits, vegetables and medicinal plants and are therefore part of the human diet. The beneficial health effects of edible and medicinal plants have partly been associated with their triterpene content, but the in
[...] Read more.
Pentacyclic triterpenes are naturally found in a great variety of fruits, vegetables and medicinal plants and are therefore part of the human diet. The beneficial health effects of edible and medicinal plants have partly been associated with their triterpene content, but the in vivo efficacy in humans depends on many factors, including absorption and metabolism. This review presents an overview of in vitro and in vivo studies that were carried out to determine the bioavailability of pentacyclic triterpenes and highlights the efforts that have been performed to improve the dissolution properties and absorption of these compounds. As plant matrices play a critical role in triterpene bioaccessibility, this review covers literature data on the bioavailability of pentacyclic triterpenes ingested either from foods and medicinal plants or in their free form. Full article
Figures

Figure 1

Open AccessArticle New Cytotoxic Seco-Type Triterpene and Labdane-Type Diterpenes from Nuxia oppositifolia
Molecules 2017, 22(3), 389; doi:10.3390/molecules22030389
Received: 26 January 2017 / Revised: 26 February 2017 / Accepted: 27 February 2017 / Published: 2 March 2017
PDF Full-text (762 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Chromatographic purification of the n-hexane and dichloromethane extracts of Nuxia oppositifolia aerial parts, growing in Saudi Arabia, resulted in the isolation and characterization of three new labdane-type diterpene acids, 2β-acetoxy-labda-7-en-15-oic acid (1), 2β-acetoxy-7-oxolabda-8-en-15-oic acid (2), 2β-acetoxy-6-oxolabda-7-en-15-oic acid (
[...] Read more.
Chromatographic purification of the n-hexane and dichloromethane extracts of Nuxia oppositifolia aerial parts, growing in Saudi Arabia, resulted in the isolation and characterization of three new labdane-type diterpene acids, 2β-acetoxy-labda-7-en-15-oic acid (1), 2β-acetoxy-7-oxolabda-8-en-15-oic acid (2), 2β-acetoxy-6-oxolabda-7-en-15-oic acid (3), and one new seco-triterpene, 3,4-seco olean-12-en-3,30 dioic acid (4), together with 10 known lupane, oleanane and ursane-type triterpenes, as well as the common phytosterols, β-sitosterol and stigmasterol (516). Their structures have been assigned on the basis of different spectroscopic techniques including 1D and 2D NMR. Moreover, 13 of the isolated compounds were tested on the human cancer cell lines HeLa (cervical), A549 (lung) and MDA (breast), and most of the compounds showed potent cytotoxic activities in vitro. Full article
Figures

Open AccessArticle Is Gamma Radiation Suitable to Preserve Phenolic Compounds and to Decontaminate Mycotoxins in Aromatic Plants? A Case-Study with Aloysia citrodora Paláu
Molecules 2017, 22(3), 347; doi:10.3390/molecules22030347
Received: 4 January 2017 / Revised: 16 February 2017 / Accepted: 20 February 2017 / Published: 23 February 2017
Cited by 3 | PDF Full-text (416 KB) | HTML Full-text | XML Full-text
Abstract
This study aimed to determine the effect of gamma radiation on the preservation of phenolic compounds and on decontamination of dry herbs in terms of ochratoxin A (OTA) and aflatoxin B1 (AFB1), using Aloysia citrodora Paláu as a case study. For this purpose,
[...] Read more.
This study aimed to determine the effect of gamma radiation on the preservation of phenolic compounds and on decontamination of dry herbs in terms of ochratoxin A (OTA) and aflatoxin B1 (AFB1), using Aloysia citrodora Paláu as a case study. For this purpose, artificially contaminated dry leaves were submitted to gamma radiation at different doses (1, 5, and 10 kGy; at dose rate of 1.7 kGy/h). Phenolic compounds were analysed by HPLC-DAD-ESI/MS and mycotoxin levels were determined by HPLC-fluorescence. Eleven phenolic compounds were identified in the samples and despite the apparent degradation of some compounds (namely verbasoside), 1 and 10 kGy doses point to a preservation of the majority of the compounds. The mean mycotoxin reduction varied between 5.3% and 9.6% for OTA and from 4.9% to 5.2% for AFB1. It was not observed a significant effect of the irradiation treatments on mycotoxin levels, and a slight degradation of the phenolic compounds in the irradiated samples was observed. Full article
Figures

Open AccessArticle Simultaneous Quantification of Nine New Furanocoumarins in Angelicae Dahuricae Radix Using Ultra-Fast Liquid Chromatography with Tandem Mass Spectrometry
Molecules 2017, 22(2), 322; doi:10.3390/molecules22020322
Received: 9 December 2016 / Revised: 26 January 2017 / Accepted: 13 February 2017 / Published: 20 February 2017
PDF Full-text (514 KB) | HTML Full-text | XML Full-text
Abstract
A series of new furanocoumarins with long-chain hydrophobic groups, namely andafocoumarins A–H and J, have been isolated from the dried roots of Angelica dahurica cv. Hangbaizhi (Angelicae Dahuricae radix) in our previous study, among which andafocoumarins A and B were demonstrated to have
[...] Read more.
A series of new furanocoumarins with long-chain hydrophobic groups, namely andafocoumarins A–H and J, have been isolated from the dried roots of Angelica dahurica cv. Hangbaizhi (Angelicae Dahuricae radix) in our previous study, among which andafocoumarins A and B were demonstrated to have better anti-inflammatory activity than the positive controls. In this work, a sensitive, accurate, and efficient ultra-fast liquid chromatography coupled with triple quadrupole mass spectrometer (UFLC-MS/MS) method was developed and validated for simultaneous quantification of above-mentioned nine compounds in four cultivars of Angelicae Dahuricae Radix. Chromatographic separation was performed on a Kinetex 2.6u C18 100 Å column (100 × 2.1 mm, 2.6 µm). The mobile phases were comprised of acetonitrile and water with a flow rate of 0.5 mL/min. Using the established method, all components could be easily separated within 12 min. With the multiple reaction monitor mode, all components were detected in positive electrospray ionization. The method was validated with injection precision, linearity, lower limit of detection, lower limit of quantification, precision, recovery, and stability, respectively. The final results demonstrated that the method was accurate and efficient, which could be used to simultaneously quantify the nine andafocoumarins in Angelicae Dahuricae Radix. The results also indicated that in different batches of Angelicae Dahuricae Radix, some of the andafocoumarins were significantly different in terms of content. Full article
Figures

Figure 1

Open AccessArticle Anti-Hyperglycemic Activity of Major Compounds from Calea ternifolia
Molecules 2017, 22(2), 289; doi:10.3390/molecules22020289
Received: 18 January 2017 / Revised: 8 February 2017 / Accepted: 9 February 2017 / Published: 14 February 2017
PDF Full-text (1263 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Demethylisoencecalin (1) and caleins A (4) and C (5) (3.16–31.6 mg/kg, p.o.), the major components from an infusion of Calea ternifolia controlled postprandial glucose levels during an oral sucrose tolerance test (OSTT, 3 g/kg) in normal and
[...] Read more.
Demethylisoencecalin (1) and caleins A (4) and C (5) (3.16–31.6 mg/kg, p.o.), the major components from an infusion of Calea ternifolia controlled postprandial glucose levels during an oral sucrose tolerance test (OSTT, 3 g/kg) in normal and nicotinamide/streptozotocin (NA/STZ, 40/100 mg/kg) hyperglicemic mice. The effects were comparable to those of acarbose (5 mg/kg). During the isolation of 1, 4, and 5, four additional metabolites not previously reported for the plant, were obtained, namely 6-acetyl-5-hydroxy-2-methyl-2-hydroxymethyl-2H-chromene (3), herniarin (6), scoparone (7), and 4′,7-dimethylapigenin (8). In addition, the structure of calein C (5) was confirmed by X-ray analysis. Pharmacological evaluation of the essential oil of the species (31.6–316.2 mg/kg, p.o.) provoked also an important decrement of blood glucose levels during an OSTT. Gas chromatography coupled with mass spectrometry (GC-MS) analysis of the headspace solid phase microextraction (HS-SPME)-adsorbed compounds and active essential oil obtained by hydrodistillation revealed that chromene 1 was the major component (19.92%); sesquiterpenes represented the highest percentage of the essential oil content (55.67%) and included curcumene (7.10%), spathulenol (12.95%) and caryophyllene oxide (13.0%). A suitable High Performance Liquid Chromatography (HPLC) method for quantifying chromenes 1 and 6-hydroxyacetyl-5-hydroxy-2,2-dimethyl-2H-chromene (2) was developed and validated according to standard protocols. Full article
Figures

Open AccessReview Hydroxycinnamic Acids and Their Derivatives: Cosmeceutical Significance, Challenges and Future Perspectives, a Review
Molecules 2017, 22(2), 281; doi:10.3390/molecules22020281
Received: 22 January 2017 / Accepted: 8 February 2017 / Published: 13 February 2017
Cited by 10 | PDF Full-text (632 KB) | HTML Full-text | XML Full-text
Abstract
Bioactive compounds from natural sources, due to their widely-recognized benefits, have been exploited as cosmeceutical ingredients. Among them, phenolic acids emerge with a very interesting potential. In this context, this review analyzes hydroxycinnamic acids and their derivatives as multifunctional ingredients for topical application,
[...] Read more.
Bioactive compounds from natural sources, due to their widely-recognized benefits, have been exploited as cosmeceutical ingredients. Among them, phenolic acids emerge with a very interesting potential. In this context, this review analyzes hydroxycinnamic acids and their derivatives as multifunctional ingredients for topical application, as well as the limitations associated with their use in cosmetic formulations. Hydroxycinnamic acids and their derivatives display antioxidant, anti-collagenase, anti-inflammatory, antimicrobial and anti-tyrosinase activities, as well as ultraviolet (UV) protective effects, suggesting that they can be exploited as anti-aging and anti-inflammatory agents, preservatives and hyperpigmentation-correcting ingredients. Due to their poor stability, easy degradation and oxidation, microencapsulation techniques have been employed for topical application, preventing them from degradation and enabling a sustained release. Based on the above findings, hydroxycinnamic acids present high cosmetic potential, but studies addressing the validation of their benefits in cosmetic formulations are still scarce. Furthermore, studies dealing with skin permeation are scarcely available and need to be conducted in order to predict the topical bioavailability of these compounds after application. Full article
Figures

Open AccessArticle Bioactive Benzofuran Derivatives from Cortex Mori Radicis, and Their Neuroprotective and Analgesic Activities Mediated by mGluR1
Molecules 2017, 22(2), 236; doi:10.3390/molecules22020236
Received: 30 December 2016 / Revised: 28 January 2017 / Accepted: 31 January 2017 / Published: 8 February 2017
Cited by 3 | PDF Full-text (1233 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Four new benzofuran-type stilbene glycosides and 14 known compounds including 8 benzofuran-type stilbenes and 6 flavonoids were isolated from the traditional Chinese medicine, Cortex Mori Radicis. The new compounds were identified as (9R)-moracin P 3′-O-α-l-arabinopyranoside (1
[...] Read more.
Four new benzofuran-type stilbene glycosides and 14 known compounds including 8 benzofuran-type stilbenes and 6 flavonoids were isolated from the traditional Chinese medicine, Cortex Mori Radicis. The new compounds were identified as (9R)-moracin P 3′-O-α-l-arabinopyranoside (1), (9R)-moracin P 9-O-β-d-glucopyranoside (2), (9R)-moracin P 3′-O-β-d-glucopyranoside (3), and (9R)-moracin O 10-O-β-d-glucopyranoside (4) based on the spectroscopic interpretation and chemical analysis. Three benzofuran-type stilbenes, moracin O (5), R (7), and P (8) showed significant neuroprotective activity against glutamate-induced cell death in SK-N-SH cells. In addition, moracin O (5) and P (8) also demonstrated a remarkable inhibition of the acetic acid-induced pain. The molecular docking with metabotropic glutamate receptor 1 (mGluR1) results indicated that these neuroprotective benzofuran-type stilbenes might be the active analgesic components of the genus Morus, and acted by mediating the mGluR1 pathway. Full article
Figures

Open AccessArticle Flavonoid Composition and Antitumor Activity of Bee Bread Collected in Northeast Portugal
Molecules 2017, 22(2), 248; doi:10.3390/molecules22020248
Received: 1 January 2017 / Revised: 24 January 2017 / Accepted: 3 February 2017 / Published: 7 February 2017
Cited by 3 | PDF Full-text (898 KB) | HTML Full-text | XML Full-text
Abstract
Bee bread (BB) is a fermented mixture of plant pollen, honey, and bee saliva that worker bees use as food for larvae, and for young bees to produce royal jelly. In the present study, five BB samples, collected from Apis mellifera iberiensis hives
[...] Read more.
Bee bread (BB) is a fermented mixture of plant pollen, honey, and bee saliva that worker bees use as food for larvae, and for young bees to produce royal jelly. In the present study, five BB samples, collected from Apis mellifera iberiensis hives located in different apiaries near Bragança, in the northeast region of Portugal, and one BB commercial sample were characterized by high-performance liquid chromatography coupled to a diode array detector and electrospray mass spectrometry (HPLC-DAD-ESI/MS) in terms of phenolic compounds, such as flavonoid glycoside derivatives. Furthermore, the samples were screened, using in vitro assays, against different human tumor cell lines, MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung cancer), HeLa (cervical carcinoma) and HepG2 (hepatocellular carcinoma), and also against non-tumor liver cells (porcine liver cells, PLP2). The main phenolic compounds found were flavonol derivatives, mainly quercetin, kaempferol, myricetin, isorhamnetin and herbacetrin glycoside derivatives. Thirty-two compounds were identified in the six BB samples, presenting BB1 and BB3 with the highest contents (6802 and 6480 µg/g extract, respectively) and the highest number of identified compounds. Two isorhamnetin glycoside derivatives, isrohamnetin-O-hexosyl-O-rutinoside and isorhamnetin-O-pentosyl-hexoside, were the most abundant compounds present in BB1; on the other hand, quercetin-3-O-rhamnoside was the most abundant flavonol in BB3. However, it was not possible to establish a correlation between the flavonoids and the observed low to moderate cytotoxicity (ranging from >400 to 68 µg/mL), in which HeLa and NCI-H460 cell lines were the most susceptible to the inhibition. To the authors’ knowledge, this is the first report characterizing glycosidic flavonoids in BB samples, contributing to the chemical knowledge of this less explored bee product. Full article
Figures

Open AccessArticle Identification of Larvicidal Constituents of the Essential Oil of Echinops grijsii Roots against the Three Species of Mosquitoes
Molecules 2017, 22(2), 205; doi:10.3390/molecules22020205
Received: 25 October 2016 / Accepted: 20 January 2017 / Published: 27 January 2017
Cited by 3 | PDF Full-text (434 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The screening of Chinese medicinal herbs for insecticidal principles showed that the essential oil of Echinops grijsii Hance roots possessed significant larvicidal activity against mosquitoes. The essential oil was extracted via hydrodistillation and its constituents were determined by gas chromatography‐mass spectrometry (GC‐MS) analysis.
[...] Read more.
The screening of Chinese medicinal herbs for insecticidal principles showed that the essential oil of Echinops grijsii Hance roots possessed significant larvicidal activity against mosquitoes. The essential oil was extracted via hydrodistillation and its constituents were determined by gas chromatography‐mass spectrometry (GC‐MS) analysis. GC‐MS analyses revealed the presence of 31 components, with 5‐(3‐buten‐1‐yn‐1‐yl)‐2,2′‐bithiophene (5‐BBT, 27.63%), αterthienyl (α‐T, 14.95%),1,8‐cineole (5.56%) and cis‐β‐ocimene (5.01%) being the four major constituents. Based bioactivity‐directed chromatographic separation of the essential oil led to the isolation of 5‐BBT, 5‐(4‐isovaleroyloxybut‐1‐ynyl)‐2,2′‐bithiophene (5‐IBT) and αT as active compounds. The essential oil of E. grijsii exhibited larvicidal activity against the fourth instar larvae of Aedes albopictus, Anopheles sinensis and Culex pipiens pallens with LC50 values of 2.65 μg/mL, 3.43 μg/mL and 1.47 μg/mL, respectively. The isolated thiophenes, 5‐BBT and 5‐IBT, possessed strong larvicidal activity against the fourth instar larvae of Ae. albopictus(LC50 = 0.34 μg/mL and 0.45 μg/mL, respectively) and An. sinensis(LC50 = 1.36 μg/mL and 5.36 μg/mL, respectively). The two isolated thiophenes also had LC50 values against the fourth instar larvae of C. pipiens pallens of 0.12 μg/mL and 0.33 μg/mL, respectively. The findings indicated that the essential oil of E. grijsii roots and the isolated thiophenes have an excellent potential for use in the control of Ae.albopictus, An. sinensis and C. pipiens pallens larvae and could be used in the search for new, safer and more effective natural compounds as larvicides. Full article
Figures

Figure 1

Open AccessArticle Chemical Characterization and Antioxidant Potential of Wild Ganoderma Species from Ghana
Molecules 2017, 22(2), 196; doi:10.3390/molecules22020196
Received: 1 January 2017 / Revised: 20 January 2017 / Accepted: 22 January 2017 / Published: 25 January 2017
Cited by 1 | PDF Full-text (250 KB) | HTML Full-text | XML Full-text
Abstract
The chemical characterization and antioxidant potential of twelve wild strains of Ganoderma sp. from Ghana, nine (LS1–LS9) of which were found growing wild simultaneously on the same dying Delonix regia tree, were evaluated. Parameters evaluated included the nutritional value, composition in sugars, fatty
[...] Read more.
The chemical characterization and antioxidant potential of twelve wild strains of Ganoderma sp. from Ghana, nine (LS1–LS9) of which were found growing wild simultaneously on the same dying Delonix regia tree, were evaluated. Parameters evaluated included the nutritional value, composition in sugars, fatty acids, phenolic and other organic compounds and some vitamins and vitamin precursors. Antioxidant potential was evaluated by investigating reducing power, radical scavenging activity and lipid peroxidation inhibition using five in vitro assays. Protein, carbohydrate, fat, ash and energy contents ranged between 15.7–24.5 g/100 g·dw, 73.31–81.90 g/100 g, 0.48–1.40 g/100 g, 0.68–2.12 g/100 g ash and 396.1–402.02 kcal/100 g, respectively. Fatty acids such as linoleic, oleic and palmitic acids were relatively abundant. Free sugars included rhamnose, fructose, mannitol, sucrose and trehalose. Total tocopherols, organic acids and phenolic compounds’ content ranged between 741–3191 µg/100 g, 77–1003 mg/100 g and 7.6–489 µg/100 g, respectively. There were variations in the β-glucans, ergosterol and vitamin D2 contents. The three major minerals in decreasing order were K > P > S. Ganoderma sp. strain AM1 showed the highest antioxidant activity. This study reveals, for the first time, chemical characteristics of Ganoderma spp. which grew simultaneously on the same tree. Full article
Figures

Open AccessArticle Polish Yellow Sweet Clover (Melilotus officinalis L.) Honey, Chromatographic Fingerprints, and Chemical Markers
Molecules 2017, 22(1), 138; doi:10.3390/molecules22010138
Received: 14 November 2016 / Revised: 7 January 2017 / Accepted: 12 January 2017 / Published: 15 January 2017
Cited by 3 | PDF Full-text (357 KB) | HTML Full-text | XML Full-text
Abstract
A case study of Polish Melilotus officinalis honey was presented for the first time. Gas chromatography–mass spectrometry (GC-MS) (after steam distillation, Soxhlet extraction, ultrasonic solvent extraction, and solid phase extraction (SPE)) and targeted high performance liquid chromatography with a photodiode array detector (HPLC-PAD)
[...] Read more.
A case study of Polish Melilotus officinalis honey was presented for the first time. Gas chromatography–mass spectrometry (GC-MS) (after steam distillation, Soxhlet extraction, ultrasonic solvent extraction, and solid phase extraction (SPE)) and targeted high performance liquid chromatography with a photodiode array detector (HPLC-PAD) were applied to determine the characteristic components of honey. While ubiquitous in most honeys, carbohydrates, terpene derivatives, and phenylacetic acid dominated in the Soxhlet extracts (25.54%) and in the application of SPE (13.04%). In addition, lumichrome (1.85%) was found, and may be considered as a marker of this honey. Due to the presence of these compounds, Polish yellow sweet clover honey is similar to French lavender honeys. The major compounds determined in the methanolic extract were (+)-catechine (39.7%) and gallic acid (up to 30%), which can be regarded as specific chemical markers of the botanical origin of melilot honey. With respect to total phenolic and flavonoid contents, 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays were determined spectrophotometrically. The honey exhibited a moderate antioxidant activity, typical for light honeys, which correlates well with its phenolic and flavonoid composition. Full article
Figures

Figure 1

2016

Jump to: 2018, 2017, 2015, 2014, 2013, 2012, 2011, 2010

Open AccessArticle Anti-HBV Activities of Three Compounds Extracted and Purified from Herpetospermum Seeds
Molecules 2017, 22(1), 14; doi:10.3390/molecules22010014
Received: 7 November 2016 / Revised: 19 December 2016 / Accepted: 20 December 2016 / Published: 27 December 2016
Cited by 1 | PDF Full-text (1294 KB) | HTML Full-text | XML Full-text
Abstract
The goal of this research was to evaluate the anti-hepatitis B virus (HBV) activities of three compounds extracted and purified from Herpetospermum seeds (HS) on HepG2.2.15 cells. Herpetin (HPT), herpetone (HPO), and herpetfluorenone (HPF) were isolated from HS and identified using HR-ESI-MS and
[...] Read more.
The goal of this research was to evaluate the anti-hepatitis B virus (HBV) activities of three compounds extracted and purified from Herpetospermum seeds (HS) on HepG2.2.15 cells. Herpetin (HPT), herpetone (HPO), and herpetfluorenone (HPF) were isolated from HS and identified using HR-ESI-MS and NMR. Different concentrations of the drugs were added to the HepG2.2.15 cells. Cell toxicity was observed with an MTT assay, cell culture supernatants were collected, and HBsAg and HBeAg were detected by ELISA. The content of HBV DNA was determined via quantitative polymerase chain reaction (PCR) with fluorescent probes. The 50% toxicity concentration (TC50) of HPF was 531.48 μg/mL, suggesting that this species is less toxic than HPT and HPO. HPT and HPF showed more potent antiviral activities than HPO. The 50% inhibition concentration (IC50) values of HPF on HBsAg and HBeAg were 176.99 and 134.53 μg/mL, respectively, and the corresponding therapeutic index (TI) values were 2.66 and 3.49, respectively. HPT and HPF were shown to significantly reduce the level of HBV DNA in the HepG2.2.15 culture medium compared to the negative control. This initial investigation of the anti-HBV constituents of HS yielded three compounds that revealed a synergistic effect of multiple components in the ethnopharmacological use of HS. Full article
Figures

Figure 1

Open AccessArticle Simultaneous Determination of Multiple Components in Guanjiekang in Rat Plasma via the UPLC–MS/MS Method and Its Application in Pharmacokinetic Study
Molecules 2016, 21(12), 1732; doi:10.3390/molecules21121732
Received: 7 October 2016 / Revised: 9 December 2016 / Accepted: 13 December 2016 / Published: 16 December 2016
Cited by 2 | PDF Full-text (1777 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Guanjiekang (GJK) that is formed by five medicinal herbs including Astragali Radix, Aconiti Lateralis Radix Praeparaia, Glycyrrhizae Radix et Rhizoma, Corydalis Rhizoma and Paeoniae Radix Alba was used for the treatment of rheumatoid arthritis (RA). However, the pharmacokinetic (PK) profile of
[...] Read more.
Guanjiekang (GJK) that is formed by five medicinal herbs including Astragali Radix, Aconiti Lateralis Radix Praeparaia, Glycyrrhizae Radix et Rhizoma, Corydalis Rhizoma and Paeoniae Radix Alba was used for the treatment of rheumatoid arthritis (RA). However, the pharmacokinetic (PK) profile of active components in GJK remains unclear. This study aims to evaluate the pharmacokinetic behavior of seven representative active constituents in GJK (i.e., benzoylhypaconine, benzoylmesaconine, paeoniflorin, tetrahydropalmatine, calycosin-7-glucoside, formononetin and isoliquiritigenin) after oral administration of GJK in rats. A rapid, sensitive and reliable ultra-performance liquid chromatography-tandem mass spectrometer (UPLC–MS/MS) method has been successfully developed for the simultaneous determination of these seven constituents in rat plasma. Chromatographic separation was achieved on a C18 column with a gradient elution program that consists of acetonitrile and water (containing 0.1% formic acid) at a flow rate of 0.35 mL/min. Detection was performed under the multiple reaction monitoring (MRM) in the positive electrospray ionization (ESI) mode. The calibration curves exhibited good linearity (R2 > 0.99) over a wide concentration range for all constituents. The accuracies ranged from 92.9% to 107.8%, and the intra-day and inter-day precisions at three different levels were below 15%. Our PK results showed that these seven compounds were quickly absorbed after the administration of the GJK product, and Tmax ranged from 30 min to 189 min. The in vivo concentrations of paeoniflorin and isoliquiritigenin were significantly higher than the reported in vitro effective doses, indicating that they could partly contribute to the therapeutic effect of GJK. Therefore, we conclude that pharmacokinetic studies of representative bioactive chemicals after administration of complex herbal products are not only necessary but also feasible. Moreover, these seven compounds that were absorbed in vivo can be used as indicator standards for quality control and for determining pharmacokinetic behavior of herbal medicines in clinical studies. Full article
Figures

Figure 1

Open AccessArticle Impact of Cluster Zone Leaf Removal on Grapes cv. Regent Polyphenol Content by the UPLC-PDA/MS Method
Molecules 2016, 21(12), 1688; doi:10.3390/molecules21121688
Received: 16 October 2016 / Revised: 24 November 2016 / Accepted: 1 December 2016 / Published: 11 December 2016
Cited by 2 | PDF Full-text (635 KB) | HTML Full-text | XML Full-text
Abstract
Abstract: Leaf removal is known to enhance light exposure of clusters and therefore may affect grape composition. Owing to the risk of decreasing grape quality or sunburn as a consequence of improper sun exposure, it is crucial to determine the optimum leaf removal
[...] Read more.
Abstract: Leaf removal is known to enhance light exposure of clusters and therefore may affect grape composition. Owing to the risk of decreasing grape quality or sunburn as a consequence of improper sun exposure, it is crucial to determine the optimum leaf removal techniques adequate for the particular climate conditions of a vineyard area. Defoliation experiments on vine cv. Regent were conducted in two consecutive years (2014 and 2015). The effect of leaf removal treatment on the qualitative and quantitative composition of the polyphenol compounds in the grapes, with reference to the basic weather conditions of the vineyard area, located in Szczecin in the North-Western part of Poland, was assessed. Defoliation was performed manually in the cluster zone at three phenological plant stages: pre-flowering, berry-set and véraison. Leaf removal, especially early defoliation (pre-flowering), enhanced total polyphenol content, including the amount of anthocyanins, flavonols and flavan-3-ols and furthermore, it increased the amount of soluble solids, decreasing the titratable acidity in grapes. On the other hand, the treatments had a reducing impact on the phenolic acids in berries. Defoliation at earlier stages of cluster development appears to be an efficient strategy for improving berry quality in cool climate areas, however, additionally further weather data control is required to determine the effects on berry components. Full article
Figures

Figure 1

Open AccessArticle Salidroside Regulates Inflammatory Response in Raw 264.7 Macrophages via TLR4/TAK1 and Ameliorates Inflammation in Alcohol Binge Drinking-Induced Liver Injury
Molecules 2016, 21(11), 1490; doi:10.3390/molecules21111490
Received: 27 September 2016 / Revised: 3 November 2016 / Accepted: 4 November 2016 / Published: 9 November 2016
Cited by 7 | PDF Full-text (3938 KB) | HTML Full-text | XML Full-text
Abstract
The current study was designed to investigate the anti-inflammatory effect of salidroside (SDS) and the underlying mechanism by using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro and a mouse model of binge drinking-induced liver injury in vivo. SDS downregulated protein expression of toll-like
[...] Read more.
The current study was designed to investigate the anti-inflammatory effect of salidroside (SDS) and the underlying mechanism by using lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages in vitro and a mouse model of binge drinking-induced liver injury in vivo. SDS downregulated protein expression of toll-like receptor 4 (TLR4) and CD14. SDS inhibited LPS-triggered phosphorylation of LPS-activated kinase 1 (TAK1), p38, c-Jun terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). Degradation of IκB-α and nuclear translocation of nuclear factor (NF)-κB were effectively blocked by SDS. SDS concentration-dependently suppressed LPS mediated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein levels, as well as their downstream products, NO. SDS significantly inhibited protein secretion and mRNA expression of of interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Additionally C57BL/6 mice were orally administrated SDS for continuous 5 days, followed by three gavages of ethanol every 30 min. Alcohol binge drinking caused the increasing of hepatic lipid accumulation and serum transaminases levels. SDS pretreatment significantly alleviated liver inflammatory changes and serum transaminases levels. Further investigation indicated that SDS markedly decreased protein level of IL-1β in serum. Taken together, these data implied that SDS inhibits liver inflammation both in vitro and in vivo, and may be a promising candidate for the treatment of inflammatory liver injury. Full article
Figures