Genesis and Exploration for Submarine Sulphide Deposits

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Deposits".

Deadline for manuscript submissions: closed (15 December 2020) | Viewed by 24071

Special Issue Editors


E-Mail Website
Guest Editor
Departamento de Geologia, Faculdade de Ciências da Universidade de Lisboa Edifício C6 – Piso 4, Campo Grande, 1749-016 Lisboa, Portugal

E-Mail Website
Guest Editor
Key Laboratory of Submarine Geosciences, State Oceanic Administration, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China

Special Issue Information

Dear Colleagues,

The society of plenty, decarbonation of the economy and spreading of consumption of high-tech goods are creating the post-oil crisis, as raw materials become scarce and critical. New sources of raw materials are becoming a major global concern. There is ample interest in the possibilities and opportunities provided by sustainable mining of the deep seafloor. We call this “Blue Mining”.

One of the main categories of deep seafloor deposits is that of sms deposits. However, deposits exposed on the seafloor (including those simply predicted) do not seem to contain enough metal to qualitatively change the global supply of base metals (including copper and zinc). Also, the geological record is rich in large deposits, much larger than those of the present-day seafloor. We call “large” to, say, 2Mt sms deposits, whereas equivalent (VMS) deposits on land would be small. Could it be that we have not yet found the present-day equivalents to the giants of the past? A major direction of seafloor science is in fact the search for extinct and sub-seafloor large sulphide deposits. Just as the present is the key to the past, we may be faced with the intriguing notion that the past may be the key to the present.

Prof. Dr. Fernando Barriga
Dr. Chunhui Tao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 100200 KiB  
Article
Geochemistry of Basalts from Southwest Indian Ridge 64° E: Implications for the Mantle Heterogeneity East of the Melville Transform
by Zhen Dong, Chunhui Tao, Jin Liang, Shili Liao, Wei Li, Guoyin Zhang and Zhimin Cao
Minerals 2021, 11(2), 175; https://doi.org/10.3390/min11020175 - 8 Feb 2021
Viewed by 2607
Abstract
As one of the regional, magmatic, robust, axial ridge segments along the ultraslow-spreading Southwest Indian Ridge (SWIR), the magmatic process and mantle composition of the axial high relief at 64° E is still unclear. Here, we present major and trace elements and Sr-Nd-Pb [...] Read more.
As one of the regional, magmatic, robust, axial ridge segments along the ultraslow-spreading Southwest Indian Ridge (SWIR), the magmatic process and mantle composition of the axial high relief at 64° E is still unclear. Here, we present major and trace elements and Sr-Nd-Pb isotope data of mid-ocean ridge basalts (MORBs) from 64° E. The basalts show higher contents of Al2O3, SiO2, and Na2O and lower contents of TiO2, CaO, and FeO for a given MgO content, and depletion in heavy rare-earth elements (HREE), enrichment in large-ion lithophile elements, and lower 87Sr/86Sr, 143Nd/144Nd and higher radiogenic Pb isotopes than the depleted MORB mantle (DMM). The high Zr/Nb (24–43) and low Ba/Nb (3.8–7.0) ratios are consistent with typical, normal MORB (N-MORB). Extensive plagioclase fractional crystallization during magma evolution was indicated, while fractionation of olivine and clinopyroxene is not significant, which is consistent with petrographic observations. Incompatible trace elements and isotopic characteristics show that the basaltic melt was formed by the lower partial melting degree of spinel lherzolite than that of segment #27 (i.e., Duanqiao Seamount, 50.5° E), Joseph Mayes Mountain (11.5° E), etc. The samples with a DMM end-member are unevenly mixed with the lower continental crust (LCC)- and the enriched mantle end-member (EM2)-like components, genetically related to the Gondwana breakup and contaminated by upper and lower continental crust (or continental mantle) components. Full article
(This article belongs to the Special Issue Genesis and Exploration for Submarine Sulphide Deposits)
Show Figures

Figure 1

39 pages, 19761 KiB  
Article
Mineralogy and Geochemistry of Deep-Sea Sediments from the Ultraslow-Spreading Southwest Indian Ridge: Implications for Hydrothermal Input and Igneous Host Rock
by Xian Chen, Xiaoming Sun, Zhongwei Wu, Yan Wang, Xiao Lin and Hongjun Chen
Minerals 2021, 11(2), 138; https://doi.org/10.3390/min11020138 - 29 Jan 2021
Cited by 13 | Viewed by 4169
Abstract
Detailed mineralogical and geochemical characteristics of typical surface sediments and hydrothermal deposits collected from the ultraslow-spreading Southwest Indian Ridge (SWIR) were studied by high-resolution XRD, SEM-EDS, XRF, and ICP-MS. The SWIR marine samples can be generally classified into two main categories: surface sediment [...] Read more.
Detailed mineralogical and geochemical characteristics of typical surface sediments and hydrothermal deposits collected from the ultraslow-spreading Southwest Indian Ridge (SWIR) were studied by high-resolution XRD, SEM-EDS, XRF, and ICP-MS. The SWIR marine samples can be generally classified into two main categories: surface sediment (biogenic, volcanic) and hydrothermal-derived deposit; moreover, the surface sediment can be further classified into metalliferous and non-metalliferous based on the metalliferous sediment index (MSI). The chemical composition of biogenic sediment (mainly biogenic calcite) was characterized by elevated contents of Ca, Ba, Rb, Sr, Th, and light rare earth elements (LREE), while volcanic sediment (mainly volcanogenic debris) was relatively enriched in Mn, Mg, Al, Si, Ni, Cr, and high field strength elements (HFSEs). By contrast, the hydrothermal-derived deposit (mainly pyrite-marcasite, chalcopyrite-isocubanite, and low-temperature cherts) contained significantly higher contents of Fe, Cu, Zn, Pb, Mn, Co, Mo, Ag, and U. In addition, the metalliferous surface sediment contained a higher content of Cu, Mn, Fe, Co, Mo, Ba, and As. Compared with their different host (source) rock, the basalt-hosted marine sediments contained higher contents of Ti–Al–Zr–Sc–Hf and/or Mo–Ba–Ag; In contrast, the peridotite-hosted marine sediments were typically characterized by elevated concentrations of Mg–Cu–Ni–Cr and/or Co–Sn–Au. The differences in element enrichment and mineral composition between these sediment types were closely related to their sedimentary environments (e.g., near/far away from the vent sites) and inherited from their host (source) rock. Together with combinations of certain characteristic elements (such as Al–Fe–Mn and Si–Al–Mg), relict hydrothermal products, and diagnostic mineral tracers (e.g., nontronite, SiO2(bio), olivine, serpentine, talc, sepiolite, pyroxene, zeolite, etc.), it would be more effective to differentiate the host rock of deep-sea sediments and to detect a possible hydrothermal input. Full article
(This article belongs to the Special Issue Genesis and Exploration for Submarine Sulphide Deposits)
Show Figures

Figure 1

23 pages, 13990 KiB  
Article
Prospectivity Mapping for Magmatic-Related Seafloor Massive Sulfide on the Mid-Atlantic Ridge Applying Weights-of-Evidence Method Based on GIS
by Lushi Liu, Jilong Lu, Chunhui Tao and Shili Liao
Minerals 2021, 11(1), 83; https://doi.org/10.3390/min11010083 - 15 Jan 2021
Cited by 4 | Viewed by 6441
Abstract
The Mid-Atlantic Ridge belongs to slow-spreading ridges. Hannington predicted that there were a large number of mineral resources on slow-spreading ridges; however, seafloor massive sulfide deposits usually develop thousands of meters below the seafloor, which make them extremely difficult to explore. Therefore, it [...] Read more.
The Mid-Atlantic Ridge belongs to slow-spreading ridges. Hannington predicted that there were a large number of mineral resources on slow-spreading ridges; however, seafloor massive sulfide deposits usually develop thousands of meters below the seafloor, which make them extremely difficult to explore. Therefore, it is necessary to use mineral prospectivity mapping to narrow the exploration scope and improve exploration efficiency. Recently, Fang and Shao conducted mineral prospectivity mapping of seafloor massive sulfide on the northern Mid-Atlantic Ridge, but the mineral prospectivity mapping of magmatic-related seafloor massive sulfide on the whole Mid-Atlantic Ridge scale has not yet been carried out. In this study, 11 types of data on magmatic-related seafloor massive sulfide mineralization were collected on the Mid-Atlantic Ridge, namely water depth, slope, oceanic crust thickness, large faults, small faults, ridge, bedrock age, spreading rate, Bouguer gravity, and magnetic and seismic point density. Then, the favorable information was extracted from these data to establish 11 predictive maps and to create a mineral potential model. Finally, the weights-of-evidence method was applied to conduct mineral prospectivity mapping. Weight values indicate that oceanic crust thickness, large faults, and spreading rate are the most important prospecting criteria in the study area, which correspond with important ore-controlling factors of magmatic-related seafloor massive sulfide on slow-spreading ridges. This illustrates that the Mid-Atlantic Ridge is a typical slow-spreading ridge, and the mineral potential model presented in this study can also be used on other typical slow-spreading ridges. Seven zones with high posterior probabilities but without known hydrothermal fields were delineated as prospecting targets. The results are helpful for narrowing the exploration scope on the Mid-Atlantic Ridge and can guide the investigation of seafloor massive sulfide resources efficiently. Full article
(This article belongs to the Special Issue Genesis and Exploration for Submarine Sulphide Deposits)
Show Figures

Figure 1

18 pages, 11225 KiB  
Article
Application of Knowledge-Driven Methods for Mineral Prospectivity Mapping of Polymetallic Sulfide Deposits in the Southwest Indian Ridge between 46° and 52°E
by Yao Ma, Jiangnan Zhao, Yu Sui, Shili Liao and Zongyao Zhang
Minerals 2020, 10(11), 970; https://doi.org/10.3390/min10110970 - 30 Oct 2020
Cited by 12 | Viewed by 2450
Abstract
As a product of hydrothermal activity, seafloor polymetallic sulfide deposit has become the focus of marine mineral exploration due to its great prospects for mineralization potential. The mineral prospectivity mapping is a multiple process that involves weighting and integrating evidential layers to further [...] Read more.
As a product of hydrothermal activity, seafloor polymetallic sulfide deposit has become the focus of marine mineral exploration due to its great prospects for mineralization potential. The mineral prospectivity mapping is a multiple process that involves weighting and integrating evidential layers to further explore the potential target areas, which can be categorized into data-driven and knowledge-driven methods. This paper describes the application of fuzzy logic and fuzzy analytic hierarchy process (AHP) models to process the data of the Southwest Indian Ocean Mid-Ridge seafloor sulfide deposit and delineate prospect areas. Nine spatial evidential layers representing the controlling factors for the formation and occurrence of polymetallic sulfide deposit were extracted to establish a prospecting prediction model. Fuzzy logic and fuzzy AHP models combine expert experience and fuzzy sets to assign weights to each layer and integrate the evidence layers to generate prospectivity map. Based on prediction-area (P-A) model, the optimal gamma operator (γ) values were determined to be 0.95 and 0.90 for fuzzy logic and fuzzy AHP to synthesize the evidence layers. The concentration-area (C-A) fractal method was used to classify different levels of metallogenic probability by determining corresponding thresholds. Finally, Receiver Operating Characteristic (ROC) curves were applied to measure the performance of the two prospectivity models. The results show that the areas under the ROC curve of the fuzzy logic and the fuzzy AHP model are 0.813 and 0.887, respectively, indicating that prediction based on knowledge-driven methods can effectively predict the metallogenic favorable area in the study area, opening the door for future exploration of seafloor polymetallic sulfide deposits. Full article
(This article belongs to the Special Issue Genesis and Exploration for Submarine Sulphide Deposits)
Show Figures

Figure 1

29 pages, 18948 KiB  
Article
Trace Element Geochemistry of Sulfides from the Ashadze-2 Hydrothermal Field (12°58′ N, Mid-Atlantic Ridge): Influence of Host Rocks, Formation Conditions or Seawater?
by Irina Melekestseva, Valery Maslennikov, Gennady Tret’yakov, Svetlana Maslennikova, Leonid Danyushevsky, Vasily Kotlyarov, Ross Large, Victor Beltenev and Pavel Khvorov
Minerals 2020, 10(9), 743; https://doi.org/10.3390/min10090743 - 22 Aug 2020
Cited by 12 | Viewed by 2794
Abstract
The trace element (TS) composition of isocubanite, chalcopyrite, pyrite, bornite, and covellite from oxidized Cu-rich massive sulfides of the Ashadze-2 hydrothermal field (12°58′ N, Mid-Atlantic Ridge) is studied using LA-ICP-MS. The understanding of TE behavior, which depends on the formation conditions and the [...] Read more.
The trace element (TS) composition of isocubanite, chalcopyrite, pyrite, bornite, and covellite from oxidized Cu-rich massive sulfides of the Ashadze-2 hydrothermal field (12°58′ N, Mid-Atlantic Ridge) is studied using LA-ICP-MS. The understanding of TE behavior, which depends on the formation conditions and the mode of TE occurrence, in sulfides is important, since they are potential sources for byproduct TEs. Isocubanite has the highest Co contents). Chalcopyrite concentrates most Au. Bornite has the highest amounts of Se, Sn, and Te. Crystalline pyrite is a main carrier of Mn. Covellite after isocubanite is a host to the highest Sr, Ag, and Bi contents. Covellite after pyrite accumulates V, Ga and In. The isocubanite+chalcopyrite aggregates in altered gabrro contain the highest amounts of Ni, Zn, As, Mo, Cd, Sb (166 ppm), Tl, and Pb. The trace element geochemistry of sulfides is mainly controlled by local formation conditions. Submarine oxidation results in the formation of covellite and its enrichment in most trace elements relative to primary sulfides. This is a result of incorporation of seawater-derived elements and seawater-affected dissolution of accessory minerals (native gold, galena and clausthalite). Full article
(This article belongs to the Special Issue Genesis and Exploration for Submarine Sulphide Deposits)
Show Figures

Figure 1

Review

Jump to: Research

15 pages, 820 KiB  
Review
Ocean-Floor Sediments as a Resource of Rare Earth Elements: An Overview of Recently Studied Sites
by Jelena Milinovic, Francisco J. L. Rodrigues, Fernando J. A. S. Barriga and Bramley J. Murton
Minerals 2021, 11(2), 142; https://doi.org/10.3390/min11020142 - 30 Jan 2021
Cited by 21 | Viewed by 4775
Abstract
The rare earth elements (REE), comprising 15 elements of the lanthanum series (La-Lu) together with yttrium (Y) and scandium (Sc), have become of particular interest because of their use, for example, in modern communications, renewable energy generation, and the electrification of transport. However, [...] Read more.
The rare earth elements (REE), comprising 15 elements of the lanthanum series (La-Lu) together with yttrium (Y) and scandium (Sc), have become of particular interest because of their use, for example, in modern communications, renewable energy generation, and the electrification of transport. However, the security of supply of REE is considered to be at risk due to the limited number of sources, with dependence largely on one supplier that produced approximately 63% of all REE in 2019. As a result, there is a growing need to diversify supply. This has resulted in the drive to seek new resources elsewhere, and particularly on the deep-ocean floor. Here, we give a summary of REE distribution in minerals, versatile applications, and an update of their economic value. We present the most typical onshore methods for the determination of REE and examine methods for their offshore exploration in near real time. The motivation for this comes from recent studies over the past decade that showed ΣREE concentrations as high as 22,000 ppm in ocean-floor sediments in the Pacific Ocean. The ocean-floor sediments are evaluated in terms of their potential as resources of REE, while the likely economic cost and environmental impacts of deep-sea mining these are also considered. Full article
(This article belongs to the Special Issue Genesis and Exploration for Submarine Sulphide Deposits)
Show Figures

Figure 1

Back to TopTop