materials-logo

Journal Browser

Journal Browser

Experimental Study, Numerical Simulation & Structural Applications of Construction Materials—2nd Edition

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Construction and Building Materials".

Deadline for manuscript submissions: 20 June 2024 | Viewed by 515

Special Issue Editors


E-Mail Website
Guest Editor
Department of Civil Engineering, Tongji University, Shanghai 200092, China
Interests: steel and concrete composite structures; concrete; fiber-reinforced concrete; steel; corrosion; fatigue; bridge engineering; numerical modeling
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Civil Engineering, Chongqing University, Chongqing 400044, China
Interests: steel and concrete composite structures; engineered cementitious composites (ECC) ; ultra-high performance concrete (UHPC); high strength steel structures; bridge strengthening
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Construction materials play a critical role in building modern infrastructures, representing an enormous investment in raw materials, energy, and capital, with the result being significant environmental burdens and social costs. In recent decades, novel advanced construction materials and their structural applications have emerged with the support of continuously developing innovative technologies. To achieve higher-performing construction materials and advanced construction technologies, further research has drawn great attention from researchers and the interest of technicians.

After the success of the Special Issue of Materials on “Experimental Study, Numerical Simulation & Structural Applications of Construction Materials”, we are delighted to open this second edition.

This Special Issue of Materials invites original research articles and comprehensive reviews regarding experimental studies, numerical simulations, and structural applications of construction materials.

Dr. Xiaoqing Xu
Dr. Fengjiang Qin
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • mechanical properties
  • structural performance
  • high performance
  • reinforced concrete
  • structural steel
  • fiber-reinforced polymer
  • numerical modelling
  • repair and strengthening of structures

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 11155 KiB  
Article
Experimental and Numerical Study of Membrane Residual Stress in Q690 High-Strength Steel Welded Box Section Compressed Member
by Jie Wang, Aimin Xu, Jin Di, Fengjiang Qin and Pengfei Men
Materials 2024, 17(10), 2296; https://doi.org/10.3390/ma17102296 - 13 May 2024
Viewed by 223
Abstract
High-strength steel (HSS) members with welded sections exhibit a notably lower residual compressive stress ratio compared with common mild steel (CMS) members. Despite this difference, current codes often generalize the findings from CMS members to HSS members, and the previous unified residual stress [...] Read more.
High-strength steel (HSS) members with welded sections exhibit a notably lower residual compressive stress ratio compared with common mild steel (CMS) members. Despite this difference, current codes often generalize the findings from CMS members to HSS members, and the previous unified residual stress models are generally conservative. This study focuses on the membrane residual stress distribution in Q690 steel welded box sections. By leveraging experimental results, the influence of section sizes and welding parameters on membrane residual stress was delved into. A larger plate size correlates with a decrease in the residual compressive stress across the section, with a more pronounced reduction observed in adjacent plates. Additionally, augmenting the number of welding passes tends to diminish residual stresses across the section. Results showed that membrane residual stress adhered to the section’s self-equilibrium, while the self-equilibrium in the plates was not a uniform pattern. A reliable residual stress simulation method for Q690 steel welded box sections was established using a three-dimensional thermal–elastic–plastic finite element model (3DTEFEM) grounded in experimental data. This method served as the cornerstone for parameter analysis in this study and set the stage for subsequent research. As a result, an accurate unified residual stress model for Q690 steel welded box sections was derived. Full article
Show Figures

Figure 1

Back to TopTop