Special Issue "NMR in Medicine"

Quicklinks

A special issue of Diagnostics (ISSN 2075-4418).

Deadline for manuscript submissions: closed (30 May 2015)

Special Issue Editor

Guest Editor
Dr. Krishan Kumar

Director, Laboratory for Translational Research in Imaging Pharmaceuticals; Ohio State Molecular Imaging Pharmaceutical Scholar; Department of Radiology, The Ohio State University, 460 West 12th Ave, Columbus, OH 43240, USA
Phone: 732 766 5222
Interests: Targeted MRI Contrast Agents, Nano Material Based MRI Contrast Agents, PET Imaging Agents Using Antibodies and Antibody Fragments, and Process Development for PET Radionuclides Production and Separation

Special Issue Information

Dear Colleagues,

Magnetic Resonance Imaging (MRI) has become a routine technique in diagnostics imaging. Millions of MRI procedures are performed every year. It is a safe, non-invasive, and non-destructive tool for imaging soft tissues and for detecting tumors in many organs. Significant progress has been made since the first demonstration of the MRI in the 1970’s; increasingly sophisticated instrumentations and T1 and T2 MRI contrast agents (CAs) have been developed. For example, numerous CAs have become available commercially since the introduction of the first gadolinium-based MRI contrast agent in the 1980s. Subsequently, gadolinium-based CAs have become the subject of a black-box warning from the US FDA. This was due to reported serious side effects, termed Nephrogenic Systemic Fibrosis (NSF), in patients with impaired renal functions. Therefore, recent research has been focused on the development of a newer generation of MRI contrast agents with greater efficiency (high relaxivity), and increased safety (i.e., no loss of gadolinium in vivo) and targeting capability; these developments include several nanoparticle-based technologies.

Hybrid technologies involving PET/CT and SPECT/CT are being used routinely in the clinic with many thousands of scanners being used worldwide, while PET/MR imaging has been recently approved for clinical use. This encourages researchers to investigate the further development of SPECT/MR based technology. This Special Issue will provide a forum for communication among chemists, physicists, biologists, biochemists, and medical practitioners, such a radiologists. The issue will focus on research and review articles related to developments in MRI technologies, novel MRI contrast agents, clinical applications, and pharmacovigilance.

Dr. Krishan Kumar
Guest Editor

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Diagnostics is an international peer-reviewed Open Access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 300 CHF (Swiss Francs). English correction and/or formatting fees of 250 CHF (Swiss Francs) will be charged in certain cases for those articles accepted for publication that require extensive additional formatting and/or English corrections.


Keywords

  • Nuclear Magnetic Resonance, NMR
  • NMR in Biomedicine
  • Magnetic Resonance Imaging, MRI
  • Contrast Agents
  • MRI Contrast Agents
  • Enhanced Relaxivity
  • T1 Agents, T2 Agents
  • Nanoparticulate-Based MRI Contrast Agents
  • PET/MR, SPECT/MR
  • Nephrogenic Systemic Fibrosis

Published Papers (3 papers)

View options order results:
result details:
Displaying articles 1-3
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Molecular Imaging of Tumors Using a Quantitative T1 Mapping Technique via Magnetic Resonance Imaging
Diagnostics 2015, 5(3), 318-332; doi:10.3390/diagnostics5030318
Received: 14 May 2015 / Revised: 3 July 2015 / Accepted: 10 July 2015 / Published: 17 July 2015
Cited by 3 | PDF Full-text (5073 KB) | HTML Full-text | XML Full-text
Abstract
Magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM) with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA)3 molecular imaging agent labeled heterotopic xenograft models of [...] Read more.
Magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM) with molecular imaging agents would allow for the specific localization of brain tumors. Prior studies using T1-weighted MR imaging demonstrated that the SBK2-Tris-(Gd-DOTA)3 molecular imaging agent labeled heterotopic xenograft models of brain tumors more intensely than non-specific contrast agents using conventional T1-weighted imaging techniques. In this study, we used a dynamic quantitative T1 mapping strategy to more objectively compare intra-tumoral retention of the SBK2-Tris-(Gd-DOTA)3 agent over time in comparison to non-targeted control agents. Our results demonstrate that the targeted SBK2-Tris-(Gd-DOTA)3 agent, a scrambled-Tris-(Gd-DOTA)3 control agent, and the non-specific clinical contrast agent Optimark™ all enhanced flank tumors of human glioma cells with similar maximal changes on T1 mapping. However, the retention of the agents differs. The non-specific agents show significant recovery within 20 min by an increase in T1 while the specific agent SBK2-Tris-(Gd-DOTA)3 is retained in the tumors and shows little recovery over 60 min. The retention effect is demonstrated by percent change in T1 values and slope calculations as well as by calculations of gadolinium concentration in tumor compared to muscle. Quantitative T1 mapping demonstrates the superior binding and retention in tumors of the SBK2-Tris-(Gd-DOTA)3 agent over time compared to the non-specific contrast agent currently in clinical use. Full article
(This article belongs to the Special Issue NMR in Medicine)
Figures

Review

Jump to: Research

Open AccessReview Contrast Enhanced MRI in the Diagnosis of HCC
Diagnostics 2015, 5(3), 383-398; doi:10.3390/diagnostics5030383
Received: 29 May 2015 / Revised: 22 August 2015 / Accepted: 28 August 2015 / Published: 21 September 2015
PDF Full-text (3513 KB) | HTML Full-text | XML Full-text
Abstract
Hepatocellular carcinoma (HCC) is the 6th most common cancer worldwide. Imaging plays a critical role in HCC screening and diagnosis. Initial screening of patients at risk for HCC is performed with ultrasound. Confirmation of HCC can then be obtained by Computed Tomography [...] Read more.
Hepatocellular carcinoma (HCC) is the 6th most common cancer worldwide. Imaging plays a critical role in HCC screening and diagnosis. Initial screening of patients at risk for HCC is performed with ultrasound. Confirmation of HCC can then be obtained by Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), due to the relatively high specificity of both techniques. This article will focus on reviewing MRI techniques for imaging HCC, felt by many to be the exam of choice for HCC diagnosis. MRI relies heavily upon the use of gadolinium-based contrast agents and while primarily extracellular gadolinium-based contrast agents are used, there is an emerging role of hepatobiliary contrast agents in HCC imaging. The use of other non-contrast enhanced MRI techniques for assessing HCC will also be discussed and these MRI strategies will be reviewed in the context of the pathophysiology of HCC to help understand the MR imaging appearance of HCC. Full article
(This article belongs to the Special Issue NMR in Medicine)
Open AccessReview Positron Emission Tomography in Breast Cancer
Diagnostics 2015, 5(1), 61-83; doi:10.3390/diagnostics5010061
Received: 22 December 2014 / Revised: 3 March 2015 / Accepted: 4 March 2015 / Published: 16 March 2015
Cited by 3 | PDF Full-text (1075 KB) | HTML Full-text | XML Full-text
Abstract
Gradually, FDG-PET/CT has been strengthening within the diagnostic algorithms of oncological diseases. In many of these, PET/CT has shown to be useful at different stages of the disease: diagnosis, staging or re-staging, treatment response assessment, and recurrence. Some of the advantages of [...] Read more.
Gradually, FDG-PET/CT has been strengthening within the diagnostic algorithms of oncological diseases. In many of these, PET/CT has shown to be useful at different stages of the disease: diagnosis, staging or re-staging, treatment response assessment, and recurrence. Some of the advantages of this imaging modality versus CT, MRI, bone scan, mammography, or ultrasound, are based on its great diagnostic capacity since, according to the radiopharmaceutical used, it reflects metabolic changes that often occur before morphological changes and therefore allows us to stage at diagnosis. Moreover, another advantage of this technique is that it allows us to evaluate the whole body so it can be very useful for the detection of distant disease. With regard to breast cancer, FDG-PET/CT has proven to be important when recurrence is suspected or in the evaluation of treatment response. The technological advancement of PET equipment through the development of new detectors and equipment designed specifically for breast imaging, and the development of more specific radiopharmaceuticals for the study of the different biological processes of breast cancer, will allow progress not only in making the diagnosis of the disease at an early stage but also in enabling personalized therapy for patients with breast cancer. Full article
(This article belongs to the Special Issue NMR in Medicine)

Journal Contact

MDPI AG
Diagnostics Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
diagnostics@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Diagnostics
Back to Top