Next Issue
Volume 1, December
Previous Issue
Volume 1, June
 
 

Photonics, Volume 1, Issue 3 (September 2014) – 8 articles , Pages 162-282

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
2093 KiB  
Article
A Rapid and Convenient Procedure to Evaluate Optical Performance of Intraocular Lenses
by Frank Schaeffel and Hakan Kaymak
Photonics 2014, 1(3), 267-282; https://doi.org/10.3390/photonics1030267 - 18 Sep 2014
Cited by 8 | Viewed by 5587
Abstract
A new portable lens scanner was developed and tested for measuring focal lengths and relative contrast transfer of mono- and multifocal intraocular lenses (IOLs). A photograph of a natural scene was imaged in white light through an IOL in a water-filled cuvette, with [...] Read more.
A new portable lens scanner was developed and tested for measuring focal lengths and relative contrast transfer of mono- and multifocal intraocular lenses (IOLs). A photograph of a natural scene was imaged in white light through an IOL in a water-filled cuvette, with their +21D base power largely neutralized by a −20D trial lens, using a USB monochrome video camera that could be focused via a laptop-controlled stepping motor from −8.5 to + 8.0D. The output of 10000 ON-OFF antagonistic “receptive fields” measuring the video image with adjustable diameter was continuously recorded by custom written software to quantify focus and relative contrast. Six monofocal and four multifocal IOLs, as well as two radial refractive gradient (RRG) lenses were measured. After calibration with trial lenses the optical powers and relative contrast transfer of mono- and multifocal IOLs were readily measured. Refractive power profiles measured in RRG lenses closely matched data obtained from the manufacturer. The lens scanner uses a rapidly operating procedure, is portable and can be used to verify positions of the focal planes of mono- and multifocal IOLs in less than 3 s. Full article
(This article belongs to the Special Issue Optics and Technologies for Ophthalmology and Visual Science)
Show Figures

Figure 1

368 KiB  
Article
Preliminary Design and Evaluation of a B-Scan OCT-Guided Needle
by Karen M. Joos and Jin-Hui Shen
Photonics 2014, 1(3), 260-266; https://doi.org/10.3390/photonics1030260 - 12 Sep 2014
Cited by 29 | Viewed by 5719
Abstract
Real-time intraoperative B-scan optical coherence tomography (OCT) visualization of intraocular tissues is a desired ophthalmic feature during retinal procedures. A novel intraocular 25-gauge B-mode forward-imaging OCT probe was combined with a 36-gauge needle into a prototype instrument. Imaging of the needle tip itself [...] Read more.
Real-time intraoperative B-scan optical coherence tomography (OCT) visualization of intraocular tissues is a desired ophthalmic feature during retinal procedures. A novel intraocular 25-gauge B-mode forward-imaging OCT probe was combined with a 36-gauge needle into a prototype instrument. Imaging of the needle tip itself and the effects of saline injection into a gelatin phantom were performed. A combined B-scan forward-imaging OCT-needle prototype was capable of real-time-imaging of saline injection into a gelatin phantom. Additional future miniaturization may permit this instrument to be an adjunctive real-time imaging and procedure tool for vitreoretinal surgery. Full article
(This article belongs to the Special Issue Optics and Technologies for Ophthalmology and Visual Science)
Show Figures

Graphical abstract

504 KiB  
Article
Coal Char Derived Few-Layer Graphene Anodes for Lithium Ion Batteries
by Dan Wang, Santosh H. Vijapur and Gerardine G. Botte
Photonics 2014, 1(3), 251-259; https://doi.org/10.3390/photonics1030251 - 25 Aug 2014
Cited by 16 | Viewed by 8711
Abstract
Few-layer graphene films were synthesized through chemical vapor deposition technique using coal char as solid carbon source. Raman spectroscopy, X-ray diffraction, transmission electron microscopy, and selected area electron diffraction were used to characterize the graphene films. The electrochemical performance of the coal char [...] Read more.
Few-layer graphene films were synthesized through chemical vapor deposition technique using coal char as solid carbon source. Raman spectroscopy, X-ray diffraction, transmission electron microscopy, and selected area electron diffraction were used to characterize the graphene films. The electrochemical performance of the coal char derived few layer graphene anodes for lithium ion batteries was investigated by charge/discharge curves and discharge capacity at different current densities. The graphene anode maintained the reversible capacity at ~0.025, 0.013, and 0.007 mAh/cm2 at a current density of 10, 30, and 50 µA/cm2, respectively. The coal char derived graphene anodes show potential applications in thin film batteries for nanoelectronics. Full article
Show Figures

Figure 1

1174 KiB  
Article
Energy-Saving Mechanism in WDM/TDM-PON Based on Upstream Network Traffic
by Paola Garfias, Marilet De Andrade, Massimo Tornatore, Anna Buttaboni, Sebastià Sallent and Lluís Gutiérrez
Photonics 2014, 1(3), 235-250; https://doi.org/10.3390/photonics1030235 - 12 Aug 2014
Cited by 18 | Viewed by 5544
Abstract
One of the main challenges of Passive Optical Networks (PONs) is the resource (bandwidth and wavelength) management. Since it has been shown that access networks consume a significant part of the overall energy of the telecom networks, the resource management schemes should also [...] Read more.
One of the main challenges of Passive Optical Networks (PONs) is the resource (bandwidth and wavelength) management. Since it has been shown that access networks consume a significant part of the overall energy of the telecom networks, the resource management schemes should also consider energy minimization strategies. To sustain the increased bandwidth demand of emerging applications in the access section of the network, it is expected that next generation optical access networks will adopt the wavelength division/time division multiplexing (WDM/TDM) technique to increase PONs capacity. Compared with traditional PONs, the architecture of a WDM/TDM-PON requires more transceivers/receivers, hence they are expected to consume more energy. In this paper, we focus on the energy minimization in WDM/TDM-PONs and we propose an energy-efficient Dynamic Bandwidth and Wavelength Allocation mechanism whose objective is to turn off, whenever possible, the unnecessary upstream traffic receivers at the Optical Line Terminal (OLT). We evaluate our mechanism in different scenarios and show that the proper use of upstream channels leads to relevant energy savings. Our proposed energy-saving mechanism is able to save energy at the OLT while maintaining the introduced penalties in terms of packet delay and cycle time within an acceptable range. We might highlight the benefits of our proposal as a mechanism that maximizes the channel utilization. Detailed implementation of the proposed algorithm is presented, and simulation results are reported to quantify energy savings and effects on network performance on different network scenarios. Full article
(This article belongs to the Special Issue All Optical Networks for Communications)
Show Figures

Graphical abstract

918 KiB  
Review
Basic Technology and Clinical Applications of the Updated Model of Laser Speckle Flowgraphy to Ocular Diseases
by Tetsuya Sugiyama
Photonics 2014, 1(3), 220-234; https://doi.org/10.3390/photonics1030220 - 12 Aug 2014
Cited by 85 | Viewed by 10345
Abstract
Laser speckle flowgraphy (LSFG) allows for quantitative estimation of blood flow in the optic nerve head (ONH), choroid and retina, utilizing the laser speckle phenomenon. The basic technology and clinical applications of LSFG-NAVI, the updated model of LSFG, are summarized in this review. [...] Read more.
Laser speckle flowgraphy (LSFG) allows for quantitative estimation of blood flow in the optic nerve head (ONH), choroid and retina, utilizing the laser speckle phenomenon. The basic technology and clinical applications of LSFG-NAVI, the updated model of LSFG, are summarized in this review. For developing a commercial version of LSFG, the special area sensor was replaced by the ordinary charge-coupled device camera. In LSFG-NAVI, the mean blur rate (MBR) has been introduced as a new parameter. Compared to the original LSFG model, LSFG-NAVI demonstrates a better spatial resolution of the blood flow map of human ocular fundus. The observation area is 24 times larger than the original system. The analysis software can separately calculate MBRs in the blood vessels and tissues (capillaries) of an entire ONH and the measurements have good reproducibility. The absolute values of MBR in the ONH have been shown to linearly correlate with the capillary blood flow. The Analysis of MBR pulse waveform provides parameters including skew, blowout score, blowout time, rising and falling rates, flow acceleration index, acceleration time index, and resistivity index for comparing different eyes. Recently, there have been an increasing number of reports on the clinical applications of LSFG-NAVI to ocular diseases, including glaucoma, retinal and choroidal diseases. Full article
(This article belongs to the Special Issue Optics and Technologies for Ophthalmology and Visual Science)
Show Figures

Graphical abstract

360 KiB  
Article
Photostress Testing Device for Diagnosing Retinal Disease
by Elizabeth Swan, Jim Schwiegerling, Gholam Peyman and Eniko Enikov
Photonics 2014, 1(3), 211-219; https://doi.org/10.3390/photonics1030211 - 08 Aug 2014
Cited by 31 | Viewed by 5109
Abstract
Retinal diseases such as Age-Related Macular Degeneration (ARMD) affect nearly one in three elderly patients. ARMD damages the central vision photoreceptors in the fovea. The Photostress Test is a simple technique for testing for the early effects of ARMD. Here, the illumination sources [...] Read more.
Retinal diseases such as Age-Related Macular Degeneration (ARMD) affect nearly one in three elderly patients. ARMD damages the central vision photoreceptors in the fovea. The Photostress Test is a simple technique for testing for the early effects of ARMD. Here, the illumination sources in a novel self-administered Photostress Testing device were modeled for safety and distribution in illumination software. After satisfying the design constraints in the model, a prototype of the illumination system was fabricated and tested to confirm the modeling results. The resultant prototype can be used to aid in the diagnosis of retinal disease and is well within retinal safety levels. Full article
(This article belongs to the Special Issue Optics and Technologies for Ophthalmology and Visual Science)
Show Figures

Graphical abstract

6439 KiB  
Article
FTTA System Demo Using Optical Fiber-Coupled Active Antennas
by Niels Neumann, Robert Trieb, Stephan Frach and Dirk Plettemeier
Photonics 2014, 1(3), 198-210; https://doi.org/10.3390/photonics1030198 - 05 Aug 2014
Cited by 73 | Viewed by 5616
Abstract
The convergence of optical and wireless systems such as Radio-over-Fiber (RoF) networks is the key to coping with the increasing bandwidth demands due to the increasing popularity of video and other high data rate applications. A high level of integration of optical technologies [...] Read more.
The convergence of optical and wireless systems such as Radio-over-Fiber (RoF) networks is the key to coping with the increasing bandwidth demands due to the increasing popularity of video and other high data rate applications. A high level of integration of optical technologies enables simple base stations with a fiber-to-the-antenna (FTTA) approach. In this paper, we present a complete full-duplex RoF–FTTA system consisting of integrated active fiber-coupled optical receiving and transmitting antennas that are directly connected to a standard single mode fiber optical link. Data rates up to 1 Gbit/s could be shown without advanced modulation formats on a 1.5 GHz carrier frequency. The antennas as well as the whole system are explained and the results of the system experiments are discussed. Full article
(This article belongs to the Special Issue Microwave Photonics)
Show Figures

Graphical abstract

3694 KiB  
Review
Monolithically Integrated Ge-on-Si Active Photonics
by Jifeng Liu
Photonics 2014, 1(3), 162-197; https://doi.org/10.3390/photonics1030162 - 02 Jul 2014
Cited by 77 | Viewed by 19899
Abstract
Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap [...] Read more.
Monolithically integrated, active photonic devices on Si are key components in Si-based large-scale electronic-photonic integration for future generations of high-performance, low-power computation and communication systems. Ge has become an interesting candidate for active photonic devices in Si photonics due to its pseudo-direct gap behavior and compatibility with Si complementary metal oxide semiconductor (CMOS) processing. In this paper, we present a review of the recent progress in Ge-on-Si active photonics materials and devices for photon detection, modulation, and generation. We first discuss the band engineering of Ge using tensile strain, n-type doping, Sn alloying, and separate confinement of Γ vs. L electrons in quantum well (QW) structures to transform the material towards a direct band gap semiconductor for enhancing optoelectronic properties. We then give a brief overview of epitaxial Ge-on-Si materials growth, followed by a summary of recent investigations towards low-temperature, direct growth of high crystallinity Ge and GeSn alloys on dielectric layers for 3D photonic integration. Finally, we review the most recent studies on waveguide-integrated Ge-on-Si photodetectors (PDs), electroabsorption modulators (EAMs), and laser diodes (LDs), and suggest possible future research directions for large-scale monolithic electronic-photonic integrated circuits on a Si platform. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop