Next Article in Journal
Analyzing Sub-Threshold Bitcell Topologies and the Effects of Assist Methods on SRAM VMIN
Previous Article in Journal / Special Issue
Analysis of Dynamic Differential Swing Limited Logic for Low-Power Secure Applications
Article Menu

Article Versions

Export Article

Open AccessArticle
J. Low Power Electron. Appl. 2012, 2(2), 127-142; doi:10.3390/jlpea2020127

VLSI Architecture for 8-Point AI-based Arai DCT having Low Area-Time Complexity and Power at Improved Accuracy

1
Department of Electrical and Computer Engineering, University of Akron, Akron, OH 44325, USA
2
Department of Electrical and Computer Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
3
Department of Statistics, Federal University of Pernambuco, Recife, PE 50740-540, Brazil
4
Department of Electrical and Computer Engineering, University of Waterloo, ON N2L 3G1, Canada
*
Author to whom correspondence should be addressed.
Received: 31 December 2011 / Revised: 22 March 2012 / Accepted: 26 March 2012 / Published: 29 March 2012
(This article belongs to the Special Issue Low Power Electronics - Recent Developments)
Download PDF [151 KB, uploaded 29 March 2012]

Abstract

A low complexity digital VLSI architecture for the computation of an algebraic integer (AI) based 8-point Arai DCT algorithm is proposed. AI encoding schemes for exact representation of the Arai DCT transform based on a particularly sparse 2-D AI representation is reviewed, leading to the proposed novel architecture based on a new final reconstruction step (FRS) having lower complexity and higher accuracy compared to the state-of-the-art. This FRS is based on an optimization derived from expansion factors that leads to small integer constant-coefficient multiplications, which are realized with common sub-expression elimination (CSE) and Booth encoding. The reference circuit [1] as well as the proposed architectures for two expansion factors α† = 4.5958 and α′ = 167.2309 are implemented. The proposed circuits show 150% and 300% improvements in the number of DCT coefficients having error ≤ 0:1% compared to [1]. The three designs were realized using both 40 nm CMOS Xilinx Virtex-6 FPGAs and synthesized using 65 nm CMOS general purpose standard cells from TSMC. Post synthesis timing analysis of 65 nm CMOS realizations at 900 mV for all three designs of the 8-point DCT core for 8-bit inputs show potential real-time operation at 2.083 GHz clock frequency leading to a combined throughput of 2.083 billion 8-point Arai DCTs per second. The expansion-factor designs show a 43% reduction in area (A) and 29% reduction in dynamic power (PD) for FPGA realizations. An 11% reduction in area is observed for the ASIC design for α† = 4.5958 for an 8% reduction in total power (PT ). Our second ASIC design having α′ = 167.2309 shows marginal improvements in area and power compared to our reference design but at significantly better accuracy.
Keywords: video processing; algebraic integer quantization; DCT; compression video processing; algebraic integer quantization; DCT; compression
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Edirisuriya, A.; Madanayake, A.; Dimitrov, V.S.; Cintra, R.J.; Adikari, J. VLSI Architecture for 8-Point AI-based Arai DCT having Low Area-Time Complexity and Power at Improved Accuracy. J. Low Power Electron. Appl. 2012, 2, 127-142.

Show more citation formats Show less citations formats

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
J. Low Power Electron. Appl. EISSN 2079-9268 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top