Next Issue
Previous Issue

Table of Contents

Biosensors, Volume 4, Issue 2 (June 2014), Pages 90-188

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-6
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle Hierarchical Thin Film Architectures for Enhanced Sensor Performance: Liquid Crystal-Mediated Electrochemical Synthesis of Nanostructured Imprinted Polymer Films for the Selective Recognition of Bupivacaine
Biosensors 2014, 4(2), 90-110; doi:10.3390/bios4020090
Received: 11 February 2014 / Revised: 15 March 2014 / Accepted: 28 March 2014 / Published: 8 April 2014
Cited by 2 | PDF Full-text (2176 KB) | HTML Full-text | XML Full-text
Abstract
Nanostructured bupivacaine-selective molecularly imprinted 3-aminophenylboronic acid-p-phenylenediamine co-polymer (MIP) films have been prepared on gold-coated quartz (Au/quartz) resonators by electrochemical synthesis under cyclic voltammetric conditions in a liquid crystalline (LC) medium (triton X-100/water). Films prepared in water and in the absence of
[...] Read more.
Nanostructured bupivacaine-selective molecularly imprinted 3-aminophenylboronic acid-p-phenylenediamine co-polymer (MIP) films have been prepared on gold-coated quartz (Au/quartz) resonators by electrochemical synthesis under cyclic voltammetric conditions in a liquid crystalline (LC) medium (triton X-100/water). Films prepared in water and in the absence of template were used for control studies. Infrared spectroscopic studies demonstrated comparable chemical compositions for LC and control polymer films. SEM studies revealed that the topologies of the molecularly imprinted polymer films prepared in the LC medium (LC-MIP) exhibit discernible 40 nm thick nano-fiber structures, quite unlike the polymers prepared in the absence of the LC-phase. The sensitivity of the LC-MIP in a quartz crystal microbalance (QCM) sensor platform was 67.6 ± 4.9 Hz/mM under flow injection analysis (FIA) conditions, which was ≈250% higher than for the sensor prepared using the aqueous medium. Detection was possible at 100 nM (30 ng/mL), and discrimination of bupivacaine from closely related structural analogs was readily achieved as reflected in the corresponding stability constants of the MIP-analyte complexes. The facile fabrication and significant enhancement in sensor sensitivity together highlight the potential of this LC-based imprinting strategy for fabrication of polymeric materials with hierarchical architectures, in particular for use in surface-dependent application areas, e.g., biomaterials or sensing. Full article
(This article belongs to the Special Issue Piezoelectric Biosensors)
Open AccessArticle A Phage Display Screening Derived Peptide with Affinity for the Adeninyl Moiety
Biosensors 2014, 4(2), 137-149; doi:10.3390/bios4020137
Received: 4 March 2014 / Revised: 11 April 2014 / Accepted: 23 April 2014 / Published: 29 April 2014
Cited by 1 | PDF Full-text (913 KB) | HTML Full-text | XML Full-text
Abstract
Phage display screening of a surface-immobilized adenine derivative led to the identification of a heptameric peptide with selectivity for adenine as demonstrated through quartz crystal microbalance (QCM) studies. The peptide demonstrated a concentration dependent affinity for an adeninyl moiety decorated surface (K
[...] Read more.
Phage display screening of a surface-immobilized adenine derivative led to the identification of a heptameric peptide with selectivity for adenine as demonstrated through quartz crystal microbalance (QCM) studies. The peptide demonstrated a concentration dependent affinity for an adeninyl moiety decorated surface (KD of 968 ± 53.3 μM), which highlights the power of piezoelectric sensing in the study of weak interactions. Full article
(This article belongs to the Special Issue Piezoelectric Biosensors)
Open AccessArticle Use of a Parasitic Wasp as a Biosensor
Biosensors 2014, 4(2), 150-160; doi:10.3390/bios4020150
Received: 19 February 2014 / Revised: 16 April 2014 / Accepted: 5 May 2014 / Published: 8 May 2014
Cited by 1 | PDF Full-text (305 KB) | HTML Full-text | XML Full-text
Abstract
Screening cargo for illicit substances is in need of rapid high-throughput inspection systems that accurately identify suspicious cargo. Here we investigate the ability of a parasitic wasp, Microplitis croceipes to detect and respond to methyl benzoate, the volatile component of cocaine, by examining
[...] Read more.
Screening cargo for illicit substances is in need of rapid high-throughput inspection systems that accurately identify suspicious cargo. Here we investigate the ability of a parasitic wasp, Microplitis croceipes to detect and respond to methyl benzoate, the volatile component of cocaine, by examining their response to training concentrations, their sensitivity at low concentrations, and their ability to detect methyl benzoate when two concealment substances (green tea and ground coffee) are added to the testing arena. Utilizing classical associative learning techniques with sucrose as reward, we found that M. croceipes learns individual concentrations of methyl benzoate, and they can generalize this learning to concentrations 100× lower than the training concentration. Their sensitivity to methyl benzoate is very low at an estimated 3 ppb. They are also able to detect methyl benzoate when covered completely by green tea, but were not able to detect methyl benzoate when covered completely by coffee grounds. Habituation to the tea and coffee odors prior to testing improves their responses, resulting in effective detection of methyl benzoate covered by the coffee grounds. With the aid of the portable device called ‘the wasp hound’, the wasps appear to have potential to be effective on-site biosensors for the detection of cocaine. Full article
Figures

Open AccessArticle Polymerization Parameters Influencing the QCM Response Characteristics of BSA MIP
Biosensors 2014, 4(2), 161-171; doi:10.3390/bios4020161
Received: 8 April 2014 / Revised: 23 May 2014 / Accepted: 9 June 2014 / Published: 16 June 2014
Cited by 4 | PDF Full-text (552 KB) | HTML Full-text | XML Full-text
Abstract
Designing Molecularly Imprinted Polymers for sensing proteins is still a somewhat empirical process due to the inherent complexity of protein imprinting. Based on Bovine Serum Albumin as a model analyte, we explored the influence of a range of experimental parameters on the final
[...] Read more.
Designing Molecularly Imprinted Polymers for sensing proteins is still a somewhat empirical process due to the inherent complexity of protein imprinting. Based on Bovine Serum Albumin as a model analyte, we explored the influence of a range of experimental parameters on the final sensor responses. The optimized polymer contains 70% cross linker. Lower amounts lead to higher sensitivity, but also sensor response times substantially increase (to up to 10 h) at constant imprinting effect (signal ratio MIP/NIP on quartz crystal microbalance—QCM). However, by shifting the polymer properties to more hydrophilic by replacing methacrylic acid by acrylic acid, part of the decreased sensitivity can be recovered leading to appreciable sensor responses. Changing polymer morphology by bulk imprinting and nanoparticle approaches has much lower influence on sensitivity. Full article
(This article belongs to the Special Issue Piezoelectric Biosensors)

Review

Jump to: Research

Open AccessReview Recent Advances in Bioprinting and Applications for Biosensing
Biosensors 2014, 4(2), 111-136; doi:10.3390/bios4020111
Received: 18 February 2014 / Revised: 12 April 2014 / Accepted: 18 April 2014 / Published: 24 April 2014
Cited by 13 | PDF Full-text (919 KB) | HTML Full-text | XML Full-text
Abstract
Future biosensing applications will require high performance, including real-time monitoring of physiological events, incorporation of biosensors into feedback-based devices, detection of toxins, and advanced diagnostics. Such functionality will necessitate biosensors with increased sensitivity, specificity, and throughput, as well as the ability to simultaneously
[...] Read more.
Future biosensing applications will require high performance, including real-time monitoring of physiological events, incorporation of biosensors into feedback-based devices, detection of toxins, and advanced diagnostics. Such functionality will necessitate biosensors with increased sensitivity, specificity, and throughput, as well as the ability to simultaneously detect multiple analytes. While these demands have yet to be fully realized, recent advances in biofabrication may allow sensors to achieve the high spatial sensitivity required, and bring us closer to achieving devices with these capabilities. To this end, we review recent advances in biofabrication techniques that may enable cutting-edge biosensors. In particular, we focus on bioprinting techniques (e.g., microcontact printing, inkjet printing, and laser direct-write) that may prove pivotal to biosensor fabrication and scaling. Recent biosensors have employed these fabrication techniques with success, and further development may enable higher performance, including multiplexing multiple analytes or cell types within a single biosensor. We also review recent advances in 3D bioprinting, and explore their potential to create biosensors with live cells encapsulated in 3D microenvironments. Such advances in biofabrication will expand biosensor utility and availability, with impact realized in many interdisciplinary fields, as well as in the clinic. Full article
(This article belongs to the Special Issue Sensors and Analytics for Cell Biology and Tissue Engineering)
Open AccessReview Localized Surface Plasmon Resonance as a Biosensing Platform for Developing Countries
Biosensors 2014, 4(2), 172-188; doi:10.3390/bios4020172
Received: 15 May 2014 / Revised: 9 June 2014 / Accepted: 17 June 2014 / Published: 20 June 2014
Cited by 14 | PDF Full-text (551 KB) | HTML Full-text | XML Full-text
Abstract
The discovery of the phenomena known as localized surface plasmon resonance (LSPR) has provided the basis for many research areas, ranging from materials science to biosensing. LSPR has since been viewed as a transduction platform that could yield affordable, portable devices for a
[...] Read more.
The discovery of the phenomena known as localized surface plasmon resonance (LSPR) has provided the basis for many research areas, ranging from materials science to biosensing. LSPR has since been viewed as a transduction platform that could yield affordable, portable devices for a multitude of applications. This review aims to outline the potential applications within developing countries and the challenges that are likely to be faced before the technology can be effectively employed. Full article
(This article belongs to the Special Issue Low-Cost Biosensors for Developing Countries)

Journal Contact

MDPI AG
Biosensors Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
biosensors@mdpi.com
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Biosensors
Back to Top