Next Issue
Volume 5, September
Previous Issue
Volume 5, March
 
 

Galaxies, Volume 5, Issue 2 (June 2017) – 7 articles

Cover Story (view full-size image): Assembly Pathways and the Growth of Massive Early-Type Galaxies. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
1963 KiB  
Article
Assembly Pathways and the Growth of Massive Early-Type Galaxies
by Duncan Forbes
Galaxies 2017, 5(2), 27; https://doi.org/10.3390/galaxies5020027 - 07 Jun 2017
Cited by 23 | Viewed by 4097
Abstract
Based on data from the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey, I present results on the assembly pathways, dark matter content and halo growth of massive early-type galaxies. Using galaxy starlight information we find that such galaxies had an early dissipative [...] Read more.
Based on data from the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey, I present results on the assembly pathways, dark matter content and halo growth of massive early-type galaxies. Using galaxy starlight information we find that such galaxies had an early dissipative phase followed by a second phase of halo growth from largely minor mergers (and in rare cases major mergers). Thus our result fits in well with the two-phase scenario of galaxy formation. We also used globular cluster radial velocities to measure the enclosed mass within 5 effective radii. The resulting dark matter fractions reveal a few galaxies with very low dark matter fractions that are not captured in the latest cosmological models. Multiple solutions are possible, but none yet is convincing. Translating dark matter fractions into epochs of halo assembly, we show that low mass galaxies tend to grow via gas-rich accretion, while high mass galaxies grow via gas-poor mergers. Full article
(This article belongs to the Special Issue On the Origin (and Evolution) of Baryonic Galaxy Halos)
Show Figures

Figure 1

1908 KiB  
Conference Report
The SLUGGS Survey: Understanding Lenticular Galaxy Formation via Extended Stellar Kinematics
by Sabine Bellstedt
Galaxies 2017, 5(2), 26; https://doi.org/10.3390/galaxies5020026 - 30 May 2017
Cited by 11 | Viewed by 3578
Abstract
We present the latest published and preliminary results from the SLUGGS Survey discussing the formation of lenticular galaxies through analysis of their kinematics. These include a comparison of the measured stellar spin of low-mass lenticular galaxies to the spin of remnant galaxies formed [...] Read more.
We present the latest published and preliminary results from the SLUGGS Survey discussing the formation of lenticular galaxies through analysis of their kinematics. These include a comparison of the measured stellar spin of low-mass lenticular galaxies to the spin of remnant galaxies formed by binary merger simulations to assess whether a merger is a likely formation mechanism for these galaxies. We determine that while a portion of lenticular galaxies have properties consistent with these remnants, others are not, indicating that they are likely “faded spirals”. We also present a modified version of the spin–ellipticity diagram, which utilises radial tracks to be able to identify galaxies with intermediate-scale discs. Such galaxies often have conflicting morphological classifications, depending on whether photometric or kinematic measurements are used. Finally, we present preliminary results on the total mass density profile slopes of lenticular galaxies to assess trends as lower stellar masses are probed. Full article
(This article belongs to the Special Issue On the Origin (and Evolution) of Baryonic Galaxy Halos)
Show Figures

Figure 1

640 KiB  
Article
A Left and Right Truncated Schechter Luminosity Function for Quasars
by Lorenzo Zaninetti
Galaxies 2017, 5(2), 25; https://doi.org/10.3390/galaxies5020025 - 29 May 2017
Cited by 5 | Viewed by 3362
Abstract
The luminosity function for quasars (QSOs) is usually fitted by a Schechter function. The dependence of the number of quasars on the redshift, both in the low and high luminosity regions, requires the inclusion of a lower and upper boundary in the Schechter [...] Read more.
The luminosity function for quasars (QSOs) is usually fitted by a Schechter function. The dependence of the number of quasars on the redshift, both in the low and high luminosity regions, requires the inclusion of a lower and upper boundary in the Schechter function. The normalization of the truncated Schechter function is forced to be the same as that for the Schechter function, and an analytical form for the average value is derived. Three astrophysical applications for QSOs are provided: deduction of the parameters at low redshifts, behavior of the average absolute magnitude at high redshifts, and the location (in redshift) of the photometric maximum as a function of the selected apparent magnitude. The truncated Schechter function with the double power law and an improved Schechter function are compared as luminosity functions for QSOs. The chosen cosmological framework is that of the flat cosmology, for which we provided the luminosity distance, the inverse relation for the luminosity distance, and the distance modulus. Full article
Show Figures

Figure 1

839 KiB  
Conference Report
Dissecting Halo Components in IFU Data
by Michael Merrifield, Evelyn Johnston and Alfonso Aragón-Salamanca
Galaxies 2017, 5(2), 24; https://doi.org/10.3390/galaxies5020024 - 25 May 2017
Cited by 12 | Viewed by 2939
Abstract
While most astronomers are now familiar with tools to decompose images into multiple components such as disks, bulges, and halos, the equivalent techniques for spectral data cubes are still in their infancy. This is unfortunate, as integral field unit (IFU) spectral surveys are [...] Read more.
While most astronomers are now familiar with tools to decompose images into multiple components such as disks, bulges, and halos, the equivalent techniques for spectral data cubes are still in their infancy. This is unfortunate, as integral field unit (IFU) spectral surveys are now producing a mass of data in this format, which we are ill-prepared to analyze effectively. We have therefore been developing new tools to separate out components using this full spectral data. The results of such analyses will prove invaluable in determining not only whether such decompositions have an astrophysical significance, but, where they do, also in determining the relationship between the various elements of a galaxy. Application to a pilot study of IFU data from the cD galaxy NGC 3311 confirms that the technique can separate the stellar halo from the underlying galaxy in such systems, and indicates that, in this case, the halo is older and more metal poor than the galaxy, consistent with it forming from the cannibalism of smaller satellite galaxies. The success of the method bodes well for its application to studying the larger samples of cD galaxies that IFU surveys are currently producing. Full article
(This article belongs to the Special Issue On the Origin (and Evolution) of Baryonic Galaxy Halos)
Show Figures

Figure 1

1468 KiB  
Editorial
A Conference on the Origin (and Evolution) of Baryonic Galaxy Halos
by Duncan Forbes and Ericson Lopez
Galaxies 2017, 5(2), 23; https://doi.org/10.3390/galaxies5020023 - 17 May 2017
Cited by 1 | Viewed by 2729
Abstract
A conference was held in March 2017 in the Galapagos Islands on the topic of The Origin (and Evolution) of Baryonic Galaxy Halos. It attracted some 120 researchers from around the world. They presented 68 talks (nine of which were invited) and 30 [...] Read more.
A conference was held in March 2017 in the Galapagos Islands on the topic of The Origin (and Evolution) of Baryonic Galaxy Halos. It attracted some 120 researchers from around the world. They presented 68 talks (nine of which were invited) and 30 posters over five days. A novel element of the talk schedule was that participants were asked which talks they wanted to hear and the schedule was made up based on their votes and those of the Scientific Organizing Committee SOC . The final talk schedule had 34% of the talks given by women. An emphasis was given to discussion time directly after each talk. Combined with limited/no access to the internet, this resulted in high level of engagement and lively discussions. A prize was given to the poster voted the best by participants. A free afternoon included organized excursions to see the local scenery and wildlife of the Galapagos (e.g., the giant tortoises). Four public talks were given, in Spanish, for the local residents of the town. A post-conference survey was conducted, with most participants agreeing that the conference met their scientific needs and helped to initiate new research directions. Although it was challenging to organize such a large international meeting in such an isolated location as the Galapagos Islands (and much credit goes to the Local Organizing Committee LOC and staff of Quito Astronomical Observatory for their logistical efforts, organizing the meeting for over a year), it was very much a successful conference. We hope it will play a small part in further developing astronomy in Ecuador. Full article
(This article belongs to the Special Issue On the Origin (and Evolution) of Baryonic Galaxy Halos)
Show Figures

Figure 1

659 KiB  
Article
The Disk-Driven Jet of Cygnus A
by Bia Boccardi, Thomas P. Krichbaum and Uwe Bach
Galaxies 2017, 5(2), 22; https://doi.org/10.3390/galaxies5020022 - 28 Apr 2017
Cited by 1 | Viewed by 3626
Abstract
Recently published results from VLBI observations at 3 and 7 millimeters of the radio galaxy Cygnus A are reviewed in this article, and discussed within the model of a prominently stratified jet outflow. At the source redshift ( z = 0.056), mm-VLBI allows [...] Read more.
Recently published results from VLBI observations at 3 and 7 millimeters of the radio galaxy Cygnus A are reviewed in this article, and discussed within the model of a prominently stratified jet outflow. At the source redshift ( z = 0.056), mm-VLBI allows a spatial resolution down to 200 Schwarzschild radii to be achieved, providing an extremely detailed view of the two-sided jet base. Through a study of the kinematic properties of the flow and of its transverse structure, it is shown that the radio emission is produced by an accelerating, mildly relativistic, parabolically expanding disk-wind. The observed transverse stratification, both of the flux density and of the bulk speed, supports the presence of an invisible faster spine close to the jet axis, powered either by the inner regions of the accretion disk or by the spinning black hole. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Show Figures

Graphical abstract

520 KiB  
Article
The Signature of the Blandford-Znajek Mechanism in GRB Light Curves
by Ioannis Contopoulos, Antonios Nathanail and Achillies Strantzalis
Galaxies 2017, 5(2), 21; https://doi.org/10.3390/galaxies5020021 - 12 Apr 2017
Cited by 2 | Viewed by 4022
Abstract
In 1977, Blandford and Znajek showed how the spin energy of a rotating black hole may be extracted electromagnetically through a magnetic field that threads the black hole horizon. A characteristic feature of this mechanism is that, under certain fairly general conditions, the [...] Read more.
In 1977, Blandford and Znajek showed how the spin energy of a rotating black hole may be extracted electromagnetically through a magnetic field that threads the black hole horizon. A characteristic feature of this mechanism is that, under certain fairly general conditions, the energy loss rate decays exponentially. We looked precisely for such behavior in the X-ray light curves of Long and Ultra Long duration Gamma-Ray Bursts (GRBs) observed with the XRT instrument on board the Swift satellite, and found that almost 30% of XRT light curves show an exponential decay before they reach the afterglow plateau. A similar behavior (Fast Rise Exponential Decay-FRED) was observed in γ -rays with the BATSE instrument aboard the CGRO satellite. We consider both of these findings as the signature of the Blandford-Znajek mechanism in action in the central engine of GRBs. Full article
(This article belongs to the Special Issue Gamma-Ray Bursts: Recent Theoretical Models and Observations)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop