Previous Issue

Table of Contents

Life, Volume 7, Issue 4 (December 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
View options order results:
result details:
Displaying articles 1-17
Export citation of selected articles as:

Research

Jump to: Review, Other

Open AccessArticle Prebiotic RNA Network Formation: A Taxonomy of Molecular Cooperation
Life 2017, 7(4), 38; doi:10.3390/life7040038
Received: 15 September 2017 / Revised: 6 October 2017 / Accepted: 11 October 2017 / Published: 16 October 2017
PDF Full-text (2178 KB) | HTML Full-text | XML Full-text
Abstract
Cooperation is essential for evolution of biological complexity. Recent work has shown game theoretic arguments, commonly used to model biological cooperation, can also illuminate the dynamics of chemical systems. Here we investigate the types of cooperation possible in a real RNA system based
[...] Read more.
Cooperation is essential for evolution of biological complexity. Recent work has shown game theoretic arguments, commonly used to model biological cooperation, can also illuminate the dynamics of chemical systems. Here we investigate the types of cooperation possible in a real RNA system based on the Azoarcus ribozyme, by constructing a taxonomy of possible cooperative groups. We construct a computational model of this system to investigate the features of the real system promoting cooperation. We find triplet interactions among genotypes are intrinsically biased towards cooperation due to the particular distribution of catalytic rate constants measured empirically in the real system. For other distributions cooperation is less favored. We discuss implications for understanding cooperation as a driver of complexification in the origin of life. Full article
(This article belongs to the Special Issue The RNA World and the Origin of Life)
Figures

Figure 1

Open AccessArticle A Statistical Approach to Illustrate the Challenge of Astrobiology for Public Outreach
Life 2017, 7(4), 40; doi:10.3390/life7040040
Received: 9 October 2017 / Revised: 24 October 2017 / Accepted: 25 October 2017 / Published: 26 October 2017
PDF Full-text (852 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this study, we attempt to illustrate the competition that constitutes the main challenge of astrobiology, namely the competition between the probability of extraterrestrial life and its detectability. To illustrate this fact, we propose a simple statistical approach based on our knowledge of
[...] Read more.
In this study, we attempt to illustrate the competition that constitutes the main challenge of astrobiology, namely the competition between the probability of extraterrestrial life and its detectability. To illustrate this fact, we propose a simple statistical approach based on our knowledge of the Universe and the Milky Way, the Solar System, and the evolution of life on Earth permitting us to obtain the order of magnitude of the distance between Earth and bodies inhabited by more or less evolved past or present life forms, and the consequences of this probability for the detection of associated biosignatures. We thus show that the probability of the existence of evolved extraterrestrial forms of life increases with distance from the Earth while, at the same time, the number of detectable biosignatures decreases due to technical and physical limitations. This approach allows us to easily explain to the general public why it is very improbable to detect a signal of extraterrestrial intelligence while it is justified to launch space probes dedicated to the search for microbial life in the Solar System. Full article
Figures

Figure 1

Open AccessArticle The Role of Templating in the Emergence of RNA from the Prebiotic Chemical Mixture
Life 2017, 7(4), 41; doi:10.3390/life7040041
Received: 1 August 2017 / Revised: 25 September 2017 / Accepted: 26 October 2017 / Published: 31 October 2017
PDF Full-text (2417 KB) | HTML Full-text | XML Full-text
Abstract
Biological RNA is a uniform polymer in three senses: it uses nucleotides of a single chirality; it uses only ribose sugars and four nucleobases rather than a mixture of other sugars and bases; and it uses only 3′-5′ bonds rather than a mixture
[...] Read more.
Biological RNA is a uniform polymer in three senses: it uses nucleotides of a single chirality; it uses only ribose sugars and four nucleobases rather than a mixture of other sugars and bases; and it uses only 3′-5′ bonds rather than a mixture of different bond types. We suppose that prebiotic chemistry would generate a diverse mixture of potential monomers, and that random polymerization would generate non-uniform strands of mixed chirality, monomer composition, and bond type. We ask what factors lead to the emergence of RNA from this mixture. We show that template-directed replication can lead to the emergence of all the uniform properties of RNA by the same mechanism. We study a computational model in which nucleotides react via polymerization, hydrolysis, and template-directed ligation. Uniform strands act as templates for ligation of shorter oligomers of the same type, whereas mixed strands do not act as templates. The three uniform properties emerge naturally when the ligation rate is high. If there is an exact symmetry, as with the chase of chirality, the uniform property arises via a symmetry-breaking phase transition. If there is no exact symmetry, as with monomer selection and backbone regioselectivity, the uniform property emerges gradually as the rate of template-directed ligation is increased. Full article
(This article belongs to the Special Issue The RNA World and the Origin of Life)
Figures

Figure 1

Open AccessArticle SMORE: Synteny Modulator of Repetitive Elements
Life 2017, 7(4), 42; doi:10.3390/life7040042
Received: 28 August 2017 / Revised: 27 October 2017 / Accepted: 28 October 2017 / Published: 31 October 2017
PDF Full-text (1858 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Several families of multicopy genes, such as transfer ribonucleic acids (tRNAs) and ribosomal RNAs (rRNAs), are subject to concerted evolution, an effect that keeps sequences of paralogous genes effectively identical. Under these circumstances, it is impossible to distinguish orthologs from paralogs on the
[...] Read more.
Several families of multicopy genes, such as transfer ribonucleic acids (tRNAs) and ribosomal RNAs (rRNAs), are subject to concerted evolution, an effect that keeps sequences of paralogous genes effectively identical. Under these circumstances, it is impossible to distinguish orthologs from paralogs on the basis of sequence similarity alone. Synteny, the preservation of relative genomic locations, however, also remains informative for the disambiguation of evolutionary relationships in this situation. In this contribution, we describe an automatic pipeline for the evolutionary analysis of such cases that use genome-wide alignments as a starting point to assign orthology relationships determined by synteny. The evolution of tRNAs in primates as well as the history of the Y RNA family in vertebrates and nematodes are used to showcase the method. The pipeline is freely available. Full article
(This article belongs to the Section Life Sciences)
Figures

Figure 1

Open AccessArticle Evolutionary Conflict Leads to Innovation: Symmetry Breaking in a Spatial Model of RNA-Like Replicators
Life 2017, 7(4), 43; doi:10.3390/life7040043
Received: 28 September 2017 / Revised: 27 October 2017 / Accepted: 30 October 2017 / Published: 2 November 2017
Cited by 1 | PDF Full-text (6759 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Molecules that replicate in trans are vulnerable to evolutionary extinction because they decrease the catalysis of replication to become more available as a template for replication. This problem can be alleviated with higher-level selection that clusters molecules of the same phenotype, favouring those
[...] Read more.
Molecules that replicate in trans are vulnerable to evolutionary extinction because they decrease the catalysis of replication to become more available as a template for replication. This problem can be alleviated with higher-level selection that clusters molecules of the same phenotype, favouring those groups that contain more catalysis. Here, we study a simple replicator model with implicit higher-level selection through space. We ask whether the functionality of such system can be enhanced when molecules reproduce through complementary replication, representing RNA-like replicators. For high diffusion, symmetry breaking between complementary strands occurs: one strand becomes a specialised catalyst and the other a specialised template. In ensemble, such replicators can modulate their catalytic activity depending on their environment, thereby mitigating the conflict between levels of selection. In addition, these replicators are more evolvable, facilitating survival in extreme conditions (i.e., for higher diffusion rates). Our model highlights that evolution with implicit higher-level selection—i.e., as a result of local interactions and spatial patterning—is very flexible. For different diffusion rates, different solutions to the selective conflict arise. Our results support an RNA World by showing that complementary replicators may have various ways to evolve more complexity. Full article
(This article belongs to the Special Issue The RNA World and the Origin of Life)
Figures

Figure 1

Open AccessArticle Chemical Transformations in Proto-Cytoplasmic Media. Phosphorus Coupling in the Silica Hydrogel Phase
Life 2017, 7(4), 45; doi:10.3390/life7040045
Received: 7 August 2017 / Revised: 12 October 2017 / Accepted: 27 October 2017 / Published: 19 November 2017
PDF Full-text (3374 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
It has been proposed that prebiotic chemical studies on the emergence of primitive life would be most relevant when performed in a hydrogel, rather than an aqueous, environment. In this paper we describe the ambient temperature coupling of phosphorus oxyacids [Pi] mediated by
[...] Read more.
It has been proposed that prebiotic chemical studies on the emergence of primitive life would be most relevant when performed in a hydrogel, rather than an aqueous, environment. In this paper we describe the ambient temperature coupling of phosphorus oxyacids [Pi] mediated by Fe(II) under aerobic conditions within a silica hydrogel (SHG) environment. We have chosen to examine SHGs as they have considerable geological precedence as key phases in silicification en route to rock formation. Following a description of the preparation and characterization studies on our SHG formulations, coupling experiments between Pi species are described across multiple permutations of (i) Pi compound; (ii) gel formulation; (iii) metal salt additive; and (iv) pH-modifying agent. The results suggest that successful Pi coupling, indicated by observation of pyrophosphate [PPi(V)] via 31P-NMR spectroscopy, takes place when the following components are present: (i) a mixture of mixture of Pi(III) and Pi(V) or pure PPi(III-V); (ii) Fe(II); (iii) acetic or formic acid (not hydrochloric acid); (iv) aerobic conditions or the presence of H2O2 as an oxidant; and (v) the presence of a gel system. On the basis of these, and aqueous control reactions, we suggest mechanistic possibilities. Full article
(This article belongs to the Special Issue Phosphorus (P) and the Origins of Life)
Figures

Figure 1

Open AccessArticle Cloning and Molecular Characterization of an Alpha-Glucosidase (MalH) from the Halophilic Archaeon Haloquadratum walsbyi
Life 2017, 7(4), 46; doi:10.3390/life7040046
Received: 31 August 2017 / Revised: 15 November 2017 / Accepted: 18 November 2017 / Published: 21 November 2017
PDF Full-text (3799 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
We report the heterologous expression and molecular characterization of the first extremely halophilic alpha-glucosidase (EC 3.2.1.20) from the archaeon Haloquadratum walsbyi. A 2349 bp region (Hqrw_2071) from the Hqr. walsbyi C23 annotated genome was PCR-amplified and the resulting amplicon ligated
[...] Read more.
We report the heterologous expression and molecular characterization of the first extremely halophilic alpha-glucosidase (EC 3.2.1.20) from the archaeon Haloquadratum walsbyi. A 2349 bp region (Hqrw_2071) from the Hqr. walsbyi C23 annotated genome was PCR-amplified and the resulting amplicon ligated into plasmid pET28b(+), expressed in E. coli Rosetta cells, and the resulting protein purified by Ni-NTA affinity chromatography. The recombinant protein showed an estimated molecular mass of 87 kDa, consistent with the expected value of the annotated protein, and an optimal activity for the hydrolysis of α-PNPG was detected at 40 °C, and at pH 6.0. Enzyme activity values were the highest in the presence of 3 M NaCl or 3–4 M KCl. However, specific activity values were two-fold higher in the presence of 3–4 M KCl when compared to NaCl suggesting a cytoplasmic localization. Phylogenetic analyses, with respect to other alpha-glucosidases from members of the class Halobacteria, showed that the Hqr. walsbyi MalH was most similar (up to 41%) to alpha-glucosidases and alpha-xylosidases of Halorubrum. Moreover, computational analyses for the detection of functional domains, active and catalytic sites, as well as 3D structural predictions revealed a close relationship with an E. coli YicI-like alpha-xylosidase of the GH31 family. However, the purified enzyme did not show alpha-xylosidase activity. This narrower substrate range indicates a discrepancy with annotations from different databases and the possibility of specific substrate adaptations of halophilic glucosidases due to high salinity. To our knowledge, this is the first report on the characterization of an alpha-glucosidase from the halophilic Archaea, which could serve as a new model to gain insights into carbon metabolism in this understudied microbial group. Full article
Figures

Figure 1

Open AccessArticle Integral Phylogenomic Approach over Ilex L. Species from Southern South America
Life 2017, 7(4), 47; doi:10.3390/life7040047
Received: 9 October 2017 / Revised: 3 November 2017 / Accepted: 16 November 2017 / Published: 22 November 2017
PDF Full-text (5324 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The use of molecular markers with inadequate variation levels has resulted in poorly resolved phylogenetic relationships within Ilex. Focusing on southern South American and Asian species, we aimed at contributing informative plastid markers. Also, we intended to gain insights into the nature
[...] Read more.
The use of molecular markers with inadequate variation levels has resulted in poorly resolved phylogenetic relationships within Ilex. Focusing on southern South American and Asian species, we aimed at contributing informative plastid markers. Also, we intended to gain insights into the nature of morphological and physiological characters used to identify species. We obtained the chloroplast genomes of I. paraguariensis and I. dumosa, and combined these with all the congeneric plastomes currently available to accomplish interspecific comparisons and multilocus analyses. We selected seven introns and nine IGSs as variable non-coding markers that were used in phylogenomic analyses. Eight extra IGSs were proposed as candidate markers. Southern South American species formed one lineage, except for I. paraguariensis, I. dumosa and I. argentina, which occupied intermediate positions among sampled taxa; Euroasiatic species formed two lineages. Some concordant relationships were retrieved from nuclear sequence data. We also conducted integral analyses, involving a supernetwork of molecular data, and a simultaneous analysis of quantitative and qualitative morphological and phytochemical characters, together with molecular data. The total evidence tree was used to study the evolution of non-molecular data, evidencing fifteen non-ambiguous synapomorphic character states and consolidating the relationships among southern South American species. More South American representatives should be incorporated to elucidate their origin. Full article
(This article belongs to the Special Issue Open Science Phyloinformatics: Resources, Methods, and Analyses)
Figures

Figure 1

Open AccessArticle Effects of Trimetaphosphate on Abiotic Formation and Hydrolysis of Peptides
Life 2017, 7(4), 50; doi:10.3390/life7040050
Received: 24 October 2017 / Revised: 16 November 2017 / Accepted: 28 November 2017 / Published: 30 November 2017
PDF Full-text (3383 KB) | HTML Full-text | XML Full-text
Abstract
The primordial Earth probably had most of the factors needed for the emergence and development of life. It is believed that it had not only water, but also simple inorganic and organic materials. While studies since the 1950s on the origins of organic
[...] Read more.
The primordial Earth probably had most of the factors needed for the emergence and development of life. It is believed that it had not only water, but also simple inorganic and organic materials. While studies since the 1950s on the origins of organic matter have established key roles for amino acids, conditions that would have promoted their condensation to make polymers, such as peptides or proteins, have yet to be fully defined. The condensation of amino acids in a water-rich environment is not thermodynamically favored. Therefore, the efficient formation of peptides requires the presence of a catalyst or the activation of a substrate. In living cells, the biosynthesis of proteins is assisted by enzymes and requires adenosine triphosphate (ATP), a relatively complex organic polyphosphate, which serves as an energy source. Outside the living organism, simpler inorganic polyphosphates can form active aminoacyl–phosphate anhydrides, which suggests the broader potential of phosphorus for enabling the polymerization of amino acids. However, this has yet to be demonstrated. To address this gap, aqueous solutions containing a simple dipeptide, diglycine, and a simple polyphosphate, trimetaphosphate, were dried, and reaction products were analyzed by high performance liquid chromatography and mass spectrometry (HPLC-MS). Different reaction environments, which were defined by the initial solution composition, pH, temperature, and incubation time, were found to affect the distribution and yield of products. Our results collectively provide strong evidence for reactions that both condense and hydrolyze peptides. It is noteworthy that the co-occurrence of reactions that form and cleave peptides are a central feature of Kauffman’s theory for the emergence of autocatalytic sets, which is a key step in the chemical origins of life. Full article
(This article belongs to the Special Issue Phosphorus (P) and the Origins of Life)
Figures

Open AccessArticle Formation and Stability of Prebiotically Relevant Vesicular Systems in Terrestrial Geothermal Environments
Life 2017, 7(4), 51; doi:10.3390/life7040051
Received: 21 October 2017 / Revised: 23 November 2017 / Accepted: 28 November 2017 / Published: 30 November 2017
PDF Full-text (2519 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Terrestrial geothermal fields and oceanic hydrothermal vents are considered as candidate environments for the emergence of life on Earth. Nevertheless, the ionic strength and salinity of oceans present serious limitations for the self-assembly of amphiphiles, a process that is fundamental for the formation
[...] Read more.
Terrestrial geothermal fields and oceanic hydrothermal vents are considered as candidate environments for the emergence of life on Earth. Nevertheless, the ionic strength and salinity of oceans present serious limitations for the self-assembly of amphiphiles, a process that is fundamental for the formation of first protocells. Consequently, we systematically characterized the efficiency of amphiphile assembly, and vesicular stability, in terrestrial geothermal environments, both, under simulated laboratory conditions and in hot spring water samples (collected from Ladakh, India, an Astrobiologically relevant site). Combinations of prebiotically pertinent fatty acids and their derivatives were evaluated for the formation of vesicles in aforesaid scenarios. Additionally, the stability of these vesicles was characterized over multiple dehydration-rehydration cycles, at elevated temperatures. Among the combinations that were tested, mixtures of fatty acid and its glycerol derivatives were found to be the most robust, also resulting in vesicles in all of the hot spring waters that were tested. Importantly, these vesicles were stable at high temperatures, and this fatty acid system retained its vesicle forming propensity, even after multiple cycles of dehydration-rehydration. The remaining systems, however, formed vesicles only in bicine buffer. Our results suggest that certain prebiotic compartments would have had a selective advantage in terrestrial geothermal niches. Significantly, our study highlights the importance of validating results that are obtained under ‘buffered’ laboratory conditions, by verifying their plausibility in prebiotically analogous environments. Full article
(This article belongs to the Special Issue Hydrothermal Vents or Hydrothermal Fields: Challenging Paradigms)
Figures

Figure 1

Open AccessArticle Enrichment of Circular Code Motifs in the Genes of the Yeast Saccharomyces cerevisiae
Life 2017, 7(4), 52; doi:10.3390/life7040052
Received: 9 October 2017 / Revised: 27 November 2017 / Accepted: 27 November 2017 / Published: 3 December 2017
PDF Full-text (2489 KB) | HTML Full-text | XML Full-text
Abstract
A set X of 20 trinucleotides has been found to have the highest average occurrence in the reading frame, compared to the two shifted frames, of genes of bacteria, archaea, eukaryotes, plasmids and viruses. This set X has an interesting mathematical property, since
[...] Read more.
A set X of 20 trinucleotides has been found to have the highest average occurrence in the reading frame, compared to the two shifted frames, of genes of bacteria, archaea, eukaryotes, plasmids and viruses. This set X has an interesting mathematical property, since X is a maximal C 3 self-complementary trinucleotide circular code. Furthermore, any motif obtained from this circular code X has the capacity to retrieve, maintain and synchronize the original (reading) frame. Since 1996, the theory of circular codes in genes has mainly been developed by analysing the properties of the 20 trinucleotides of X , using combinatorics and statistical approaches. For the first time, we test this theory by analysing the X motifs, i.e., motifs from the circular code X , in the complete genome of the yeast Saccharomyces cerevisiae. Several properties of X motifs are identified by basic statistics (at the frequency level), and evaluated by comparison to R motifs, i.e., random motifs generated from 30 different random codes R . We first show that the frequency of X motifs is significantly greater than that of R motifs in the genome of S. cerevisiae. We then verify that no significant difference is observed between the frequencies of X and R motifs in the non-coding regions of S. cerevisiae, but that the occurrence number of X motifs is significantly higher than R motifs in the genes (protein-coding regions). This property is true for all cardinalities of X motifs (from 4 to 20) and for all 16 chromosomes. We further investigate the distribution of X motifs in the three frames of S. cerevisiae genes and show that they occur more frequently in the reading frame, regardless of their cardinality or their length. Finally, the ratio of X genes, i.e., genes with at least one X motif, to non- X genes, in the set of verified genes is significantly different to that observed in the set of putative or dubious genes with no experimental evidence. These results, taken together, represent the first evidence for a significant enrichment of X motifs in the genes of an extant organism. They raise two hypotheses: the X motifs may be evolutionary relics of the primitive codes used for translation, or they may continue to play a functional role in the complex processes of genome decoding and protein synthesis. Full article
Figures

Figure 1

Open AccessFeature PaperArticle Kin Selection in the RNA World
Life 2017, 7(4), 53; doi:10.3390/life7040053
Received: 15 October 2017 / Revised: 17 November 2017 / Accepted: 30 November 2017 / Published: 5 December 2017
PDF Full-text (1201 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Various steps in the RNA world required cooperation. Why did life’s first inhabitants, from polymerases to synthetases, cooperate? We develop kin selection models of the RNA world to answer these questions. We develop a very simple model of RNA cooperation and then elaborate
[...] Read more.
Various steps in the RNA world required cooperation. Why did life’s first inhabitants, from polymerases to synthetases, cooperate? We develop kin selection models of the RNA world to answer these questions. We develop a very simple model of RNA cooperation and then elaborate it to model three relevant issues in RNA biology: (1) whether cooperative RNAs receive the benefits of cooperation; (2) the scale of competition in RNA populations; and (3) explicit replicator diffusion and survival. We show: (1) that RNAs are likely to express partial cooperation; (2) that RNAs will need mechanisms for overcoming local competition; and (3) in a specific example of RNA cooperation, persistence after replication and offspring diffusion allow for cooperation to overcome competition. More generally, we show how kin selection can unify previously disparate answers to the question of RNA world cooperation. Full article
(This article belongs to the Special Issue The RNA World and the Origin of Life)
Figures

Figure 1

Review

Jump to: Research, Other

Open AccessReview Hydrothermal Microflow Technology as a Research Tool for Origin-of-Life Studies in Extreme Earth Environments
Life 2017, 7(4), 37; doi:10.3390/life7040037
Received: 31 August 2017 / Revised: 25 September 2017 / Accepted: 30 September 2017 / Published: 2 October 2017
PDF Full-text (2880 KB) | HTML Full-text | XML Full-text
Abstract
Although studies about the origin of life are a frontier in science and a number of effective approaches have been developed, drawbacks still exist. Examples include: (1) simulation of chemical evolution experiments (which were demonstrated for the first time by Stanley Miller); (2)
[...] Read more.
Although studies about the origin of life are a frontier in science and a number of effective approaches have been developed, drawbacks still exist. Examples include: (1) simulation of chemical evolution experiments (which were demonstrated for the first time by Stanley Miller); (2) approaches tracing back the most primitive life-like systems (on the basis of investigations of present organisms); and (3) constructive approaches for making life-like systems (on the basis of molecular biology), such as in vitro construction of the RNA world. Naturally, simulation experiments of chemical evolution under plausible ancient Earth environments have been recognized as a potentially fruitful approach. Nevertheless, simulation experiments seem not to be sufficient for identifying the scenario from molecules to life. This is because primitive Earth environments are still not clearly defined and a number of possibilities should be taken into account. In addition, such environments frequently comprise extreme conditions when compared to the environments of present organisms. Therefore, we need to realize the importance of accurate and convenient experimental approaches that use practical research tools, which are resistant to high temperature and pressure, to facilitate chemical evolution studies. This review summarizes improvements made in such experimental approaches over the last two decades, focusing primarily on our hydrothermal microflow reactor technology. Microflow reactor systems are a powerful tool for performing simulation experiments in diverse simulated hydrothermal Earth conditions in order to measure the kinetics of formation and degradation and the interactions of biopolymers. Full article
(This article belongs to the Special Issue Hydrothermal Vents or Hydrothermal Fields: Challenging Paradigms)
Figures

Open AccessReview The Impact of Salts on Single Chain Amphiphile Membranes and Implications for the Location of the Origin of Life
Life 2017, 7(4), 44; doi:10.3390/life7040044
Received: 19 September 2017 / Revised: 6 November 2017 / Accepted: 7 November 2017 / Published: 14 November 2017
PDF Full-text (2458 KB) | HTML Full-text | XML Full-text
Abstract
One of the key steps in the origins of life was the formation of a membrane to separate protocells from their environment. These membranes are proposed to have been formed out of single chain amphiphiles, which are less stable than the dialkyl lipids
[...] Read more.
One of the key steps in the origins of life was the formation of a membrane to separate protocells from their environment. These membranes are proposed to have been formed out of single chain amphiphiles, which are less stable than the dialkyl lipids used to form modern membranes. This lack of stability, specifically for decanoate, is often used to refute ocean locations for the origins of life. This review addresses the formation of membranes in hydrothermal-vent like conditions, as well as other environmental constraints. Specifically, single chain amphiphiles can form membranes at high sea salt concentrations (150 g/L), high temperatures (65 °C), and a wide pH range (2 to 10). It additionally discusses the major challenges and advantages of membrane formation in both ocean and fresh water locations. Full article
(This article belongs to the Special Issue Hydrothermal Vents or Hydrothermal Fields: Challenging Paradigms)
Figures

Figure 1

Open AccessReview Ecology and Evolution in the RNA World Dynamics and Stability of Prebiotic Replicator Systems
Life 2017, 7(4), 48; doi:10.3390/life7040048
Received: 30 September 2017 / Revised: 9 November 2017 / Accepted: 13 November 2017 / Published: 27 November 2017
PDF Full-text (4103 KB) | HTML Full-text | XML Full-text
Abstract
As of today, the most credible scientific paradigm pertaining to the origin of life on Earth is undoubtedly the RNA World scenario. It is built on the assumption that catalytically active replicators (most probably RNA-like macromolecules) may have been responsible for booting up
[...] Read more.
As of today, the most credible scientific paradigm pertaining to the origin of life on Earth is undoubtedly the RNA World scenario. It is built on the assumption that catalytically active replicators (most probably RNA-like macromolecules) may have been responsible for booting up life almost four billion years ago. The many different incarnations of nucleotide sequence (string) replicator models proposed recently are all attempts to explain on this basis how the genetic information transfer and the functional diversity of prebiotic replicator systems may have emerged, persisted and evolved into the first living cell. We have postulated three necessary conditions for an RNA World model system to be a dynamically feasible representation of prebiotic chemical evolution: (1) it must maintain and transfer a sufficient diversity of information reliably and indefinitely, (2) it must be ecologically stable and (3) it must be evolutionarily stable. In this review, we discuss the best-known prebiotic scenarios and the corresponding models of string-replicator dynamics and assess them against these criteria. We suggest that the most popular of prebiotic replicator systems, the hypercycle, is probably the worst performer in almost all of these respects, whereas a few other model concepts (parabolic replicator, open chaotic flows, stochastic corrector, metabolically coupled replicator system) are promising candidates for development into coherent models that may become experimentally accessible in the future. Full article
(This article belongs to the Special Issue The RNA World and the Origin of Life)
Figures

Figure 1

Other

Jump to: Research, Review

Open AccessPerspective Origin of the Reductive Tricarboxylic Acid (rTCA) Cycle-Type CO2 Fixation: A Perspective
Life 2017, 7(4), 39; doi:10.3390/life7040039
Received: 15 September 2017 / Revised: 10 October 2017 / Accepted: 17 October 2017 / Published: 23 October 2017
PDF Full-text (1307 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The reductive tricarboxylic acid (rTCA) cycle is among the most plausible candidates for the first autotrophic metabolism in the earliest life. Extant enzymes fixing CO2 in this cycle contain cofactors at the catalytic centers, but it is unlikely that the protein/cofactor system
[...] Read more.
The reductive tricarboxylic acid (rTCA) cycle is among the most plausible candidates for the first autotrophic metabolism in the earliest life. Extant enzymes fixing CO2 in this cycle contain cofactors at the catalytic centers, but it is unlikely that the protein/cofactor system emerged at once in a prebiotic process. Here, we discuss the feasibility of non-enzymatic cofactor-assisted drive of the rTCA reactions in the primitive Earth environments, particularly focusing on the acetyl-CoA conversion to pyruvate. Based on the energetic and mechanistic aspects of this reaction, we propose that the deep-sea hydrothermal vent environments with active electricity generation in the presence of various sulfide catalysts are a promising setting for it to progress. Our view supports the theory of an autotrophic origin of life from primordial carbon assimilation within a sulfide-rich hydrothermal vent. Full article
(This article belongs to the Special Issue Hydrothermal Vents or Hydrothermal Fields: Challenging Paradigms)
Figures

Figure 1

Open AccessConcept Paper What Does “the RNA World” Mean to “the Origin of Life”?
Life 2017, 7(4), 49; doi:10.3390/life7040049
Received: 30 September 2017 / Revised: 30 October 2017 / Accepted: 24 November 2017 / Published: 29 November 2017
PDF Full-text (228 KB) | HTML Full-text | XML Full-text
Abstract
Corresponding to life’s two distinct aspects: Darwinian evolution and self-sustainment, the origin of life should also split into two issues: the origin of Darwinian evolution and the arising of self-sustainment. Because the “self-sustainment” we concern about life should be the self-sustainment of a
[...] Read more.
Corresponding to life’s two distinct aspects: Darwinian evolution and self-sustainment, the origin of life should also split into two issues: the origin of Darwinian evolution and the arising of self-sustainment. Because the “self-sustainment” we concern about life should be the self-sustainment of a relevant system that is “defined” by its genetic information, the self-sustainment could not have arisen before the origin of Darwinian evolution, which was just marked by the emergence of genetic information. The logic behind the idea of the RNA world is not as tenable as it has been believed. That is, genetic molecules and functional molecules, even though not being the same material, could have emerged together in the beginning and launched the evolution—provided that the genetic molecules can “simply” code the functional molecules. However, due to these or those reasons, alternative scenarios are generally much less convincing than the RNA world. In particular, when considering the accumulating experimental evidence that is supporting a de novo origin of the RNA world, it seems now quite reasonable to believe that such a world may have just stood at the very beginning of life on the Earth. Therewith, we acquire a concrete scenario for our attempts to appreciate those fundamental issues that are involved in the origin of life. In the light of those possible scenes included in this scenario, Darwinian evolution may have originated at the molecular level, realized upon a functional RNA. When two or more functional RNAs emerged, for their efficient cooperation, there should have been a selective pressure for the emergence of protocells. But it was not until the appearance of the “unitary-protocell”, which had all of its RNA genes linked into a chromosome, that Darwinian evolution made its full step towards the cellular level—no longer severely constrained by the low-grade evolution at the molecular level. Self-sustainment did not make sense before protocells emerged. The selection pressure that was favoring the exploration of more and more fundamental raw materials resulted in an evolutionary tendency of life to become more and more self-sustained. New functions for the entities to adapt to environments, including those that are involved in the self-sustainment per se, would bring new burdens to the self-sustainment—the advantage of these functions must overweigh the corresponding disadvantage. Full article
(This article belongs to the Special Issue The RNA World and the Origin of Life)
Back to Top