
In this supplementary information, we do three things: derive the fitness

function Equation (10) used in the main paper; calculate the ESS for the fitness

function in Equation (10); more generally, demonstrate the method in solving for

an ESS and ‘closing a model’ (writing relatedness in terms of model parameters).

0.1 Deriving the Fitness Function in the Text

Here, we derive the fitness function in Equation (10). If an individual survives

(with probability k), its fitness is 1; otherwise, with probability (1 − k), its

fitness is equal to its offsprings’ fitnesses. A proportion d compete globally, and

therefore have fitness relative to the global average, which we assume to be 1

(the population is neither growing nor shrinking). A proportion 1 − d remain

locally, and their fitness is relative to the average fitness in the social group.

After diffusion, the number of individuals on a patch is equal to the number

of individuals produced on a patch that stay (with probability 1 − d) plus the

number of individuals arriving from elsewhere (dN) ([? ]). So, the total number

of offspring on a patch after diffusion is:

(1 − d) [N+N (bZ (1 − Z) − cZ)]+dN = N [1+(1 − d) (bZ (1 − Z) − cZ)]. (1)

From this, we can write the fitness function in the text, Equation (10):

w (x, y, Z) = (1 − k) (d) (x (1 − c + by) + (1 − x) (1 + by)) +

(1 − d)
x (1 − c + by) + (1 − x) (1 + by)

1 + (1 − d) (bZ (1 − Z) − cZ)
+ k.

(2)
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0.2 Calculating the ESS

To calculate the ESS for Equation (10), we use the Taylor–Frank approach.

However, the solution is not analytically tractable. Instead, if we assume b and

c to be small, we can write a first-order approximation of Equation (10) as

w (x, y) = (1 − k) [1 − cx + (1 − x) by − (bZ (1 − Z) − cZ) (1 − d)
2
] + k. (3)

We previously showed that relaxing the assumption of small b and c does not

qualitatively alter the results ([? ]). From this, we can use the Taylor–Frank

(1996) approach to solve for the ESS ([? ]. We take the derivative of fitness

with respect to phenotype, solving for x = y = x∗, and candidate ESSs occur

where:

dw

dg
=

∂w

∂x
+ R

∂w

∂y

= −c− bx− (1 − d)
2

−
( c
n

)
− (b (x + (−1 + n)x))

n2
+

b
(

1 − x+(−1+n)x
n

)
n

+

r ∗
(
b (1 − x) − (1 − d)

2

(
−c (−1 + n)

n
− b (−1 + n) (x + (−1 + n)x)

n2
+

b (−1 + n)
(

1 − x+(−1+n)x
n

)
n


= 0.

(4)

Solving for x∗, we get:
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x∗ =
cN − bNR + b (1 − d)

2 − c (1 − d)
2 − bR (1 − d)

2
+ cR (1 − d)

2
+ bNR (1 − d)

2 − cNR (1 − d)
2

b
(
−N −NR + 2 (1 − d)

2 − 2R (1 − d)
2

+ 2NR (1 − d)
2
) ,

(5)

which is the ESS value of cooperation.

0.3 Writing Relatedness in Terms of Model Parameters

Equation (S5) gives the ESS in terms of R and other model parameters, but

we expect R to depend on d, k, and N . Here, we calculate R in terms of those

parameters, though more generally any parameters may impact R, and the fol-

lowing approach readily extends to such cases. We start by determining the

relatedness, at equilibrium, of a focal RNA molecule to a random molecule in

its social group, including itself. This is known as whole-group relatedness (de-

noted by R), because it includes the focal individual, in contrast to others-only

relatedness (R), which does not include the focal individual ([? ]). Our model

requires others-only relatedness, because y is the average of the individuals on

the patch, excluding the focal individual. R is the relatedness between two indi-

viduals drawn randomly from a local group with replacement. We can write this

as the probability that those two individuals are the same individual (1/N), and

thus have relatedness 1, plus the probability that those two individuals are not

the same ((N −1)/N), and thus have the relatedness of two random individuals

drawn without replacement, or others-only relatedness, R:

R =
1

N
+

N − 1

N
R (6)

Equation (S6) is a general equation for relatedness, for any infinite popula-

tion of individuals subdivided into N social groups. Now we take two individuals

(without replacement) on the same patch with relatedness R, and determine the
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relatedness of their representatives in the previous generation. With chance k2,

they are both survivors from the previous generation, in which case their re-

latedness is the same (R). With chance 2k(1 − k), one is a survivor and the

other is a new offspring, which is native with probability (1 − d), in which case

their relatedness is R. Otherwise, with chance (1 − k)2, they are both new

offspring, are both native with probability (1 − d)2, and thus have relatedness

R. Others-only relatedness between two individuals in the current generation is

equal to

Rt = k2Rt−1 + 2k (1 − k) (1 − d)Rt−1 + (1 − k)
2

(1 − d)
2 Rt−1 (7)

Here, Rt is relatedness in the current generation, or time step, and Rt−1 and

Rt−1 are others-only and whole-group relatednesses, respectively, in the previous

one. Note that Equation (S7) was derived assuming that the only population

processes affecting relatedness were survival and diffusion, but a similar recur-

sion could be written taking into account any parameters that affect relatedness.

Setting Rt = Rt−1, we find the equilibrium others-only relatedness. Plugging

into equation (A5), we find the equilibrium value of whole-group relatedness,

R∗, to be:

R∗ =
1 + k

N + kN + 2k (1 − d) − 2kN (1 − d) + (1 − d)
2 − k (1 − d)

2 −N (1 − d)
2

+ kN (1 − d)
2

(8)

This equation for relatedness was identified by Taylor and Irwin 2000 ([? ]).

However, our model in Equation (10) in the text is modelling an others only-

trait, and thus requires others-only relatedness, R. RN gives us the number of

relatives on our patch. Subtracting the focal individual, and dividing by the

total number of remaining individuals (N − 1), gives us R∗:
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R∗ =

N(1+k)
(1+k)N−(N−1)(2k+(1−d)−k(1−d))(1−d) − 1

N − 1
(9)

Plugging into Equation (S5) gives us Equation (11) in the text.
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