Next Article in Journal
Next Article in Special Issue
Previous Article in Journal
Previous Article in Special Issue
Water 2014, 6(6), 1840-1859; doi:10.3390/w6061840
Article

Species-Specific Variations in the Nutritional Quality of Southern Ocean Phytoplankton in Response to Elevated pCO2

1,2,3,4,* , 4
, 1,2,4
, 1,2,4
, 2,3
, 1,4
, 1,2,4
 and 1,2
Received: 6 February 2014; in revised form: 12 May 2014 / Accepted: 4 June 2014 / Published: 17 June 2014
View Full-Text   |   Download PDF [518 KB, updated 18 June 2014; original version uploaded 17 June 2014]
Abstract: Increased seawater pCO2 has the potential to alter phytoplankton biochemistry, which in turn may negatively affect the nutritional quality of phytoplankton as food for grazers. Our aim was to identify how Antarctic phytoplankton, Pyramimonas gelidicola, Phaeocystis antarctica, and Gymnodinium sp., respond to increased pCO2. Cultures were maintained in a continuous culture setup to ensure stable CO2 concentrations. Cells were subjected to a range of pCO2 from ambient to 993 µatm. We measured phytoplankton response in terms of cell size, cellular carbohydrate content, and elemental, pigment and fatty acid composition and content. We observed few changes in phytoplankton biochemistry with increasing CO2 concentration which were species-specific and predominantly included differences in the fatty acid composition. The C:N ratio was unaffected by CO2 concentration in the three species, while carbohydrate content decreased in Pyramimonas gelidicola, but increased in Phaeocystis antarctica. We found a significant reduction in the content of nutritionally important polyunsaturated fatty acids in Pyramimonas gelidicola cultures under high CO2 treatment, while cellular levels of the polyunsaturated fatty acid 20:5ω3, EPA, in Gymnodinium sp. increased. These changes in fatty acid profile could affect the nutritional quality of phytoplankton as food for grazers, however, further research is needed to identify the mechanisms for the observed species-specific changes and to improve our ability to extrapolate laboratory-based experiments on individual species to natural communities.
Keywords: Antarctic phytoplankton; biochemical changes; polyunsaturated fatty acids; nutritional quality; ocean acidification Antarctic phytoplankton; biochemical changes; polyunsaturated fatty acids; nutritional quality; ocean acidification
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Export to BibTeX |
EndNote


MDPI and ACS Style

Wynn-Edwards, C.; King, R.; Davidson, A.; Wright, S.; Nichols, P.D.; Wotherspoon, S.; Kawaguchi, S.; Virtue, P. Species-Specific Variations in the Nutritional Quality of Southern Ocean Phytoplankton in Response to Elevated pCO2. Water 2014, 6, 1840-1859.

AMA Style

Wynn-Edwards C, King R, Davidson A, Wright S, Nichols PD, Wotherspoon S, Kawaguchi S, Virtue P. Species-Specific Variations in the Nutritional Quality of Southern Ocean Phytoplankton in Response to Elevated pCO2. Water. 2014; 6(6):1840-1859.

Chicago/Turabian Style

Wynn-Edwards, Cathryn; King, Rob; Davidson, Andrew; Wright, Simon; Nichols, Peter D.; Wotherspoon, Simon; Kawaguchi, So; Virtue, Patti. 2014. "Species-Specific Variations in the Nutritional Quality of Southern Ocean Phytoplankton in Response to Elevated pCO2." Water 6, no. 6: 1840-1859.


Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert