Next Article in Journal
Soil Erosion and Surface Water Quality Impacts of Natural Gas Development in East Texas, USA
Next Article in Special Issue
Advances in Membrane Distillation for Water Desalination and Purification Applications
Previous Article in Journal
A Mass Balance Model for Designing Green Roof Systems that Incorporate a Cistern for Re-Use
Previous Article in Special Issue
An Experimental Investigation on Inclined Negatively Buoyant Jets
Water 2012, 4(4), 932-943; doi:10.3390/w4040932
Article

Enzymatic Modification of Polyethersulfone Membranes

1,2,3
,
2
,
2
,
1
 and
1,*
Received: 1 October 2012 / Revised: 6 November 2012 / Accepted: 7 November 2012 / Published: 16 November 2012
(This article belongs to the Special Issue Advances in Water Desalination)
View Full-Text   |   Download PDF [415 KB, uploaded 9 June 2015]   |   Browse Figures

Abstract

Enzymatic modification of polyethersulfone (PES) membranes has been found not only feasible, but also an environmentally attractive way to vary surface properties systematically. In this paper, we summarize the effect of modification layers on protein adsorption and bacterial adhesion on PES membranes and surfaces. The enzyme laccase was used to covalently bind (poly)phenolic acids to the membrane, and compared to other membrane modification methods, this method is very mild and did not influence the mechanical strength negatively. Depending on the conditions used during modification, the modification layers were capable of influencing interactions with typical fouling species, such as protein, and to influence attachment of microorganisms. We also show that the modification method can be successfully applied to hollow fiber membranes; and depending on the pore size of the base membrane, proteins were partially rejected by the membrane. In conclusion, we have shown that enzymatic membrane modification is a versatile and economically attractive method that can be used to influence various interactions that normally lead to surface contamination, pore blocking, and considerable flux loss in membranes.
Keywords: membrane modification; polyethersulfone; enzyme; laccase; phenolic acids; brush structure; protein adsorption; bacterial adhesion membrane modification; polyethersulfone; enzyme; laccase; phenolic acids; brush structure; protein adsorption; bacterial adhesion
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote
MDPI and ACS Style

Nady, N.; Franssen, M.C.R.; Zuilhof, H.; Boom, R.M.; Schroën, K. Enzymatic Modification of Polyethersulfone Membranes. Water 2012, 4, 932-943.

View more citation formats

Article Metrics

Comments

Citing Articles

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert