Next Article in Journal
Framework of National Non-Structural Measures for Flash Flood Disaster Prevention in China
Next Article in Special Issue
Golf Course Irrigation with Reclaimed Water in the Mediterranean: A Risk Management Matter
Previous Article in Journal
A Perspective on Sea Level Rise and Coastal Storm Surge from Southern and Eastern Africa: A Case Study Near Durban, South Africa
Previous Article in Special Issue
Economic Assessment of an Integrated Membrane System for Secondary Effluent Polishing for Unrestricted Reuse
Water 2012, 4(1), 260-271; doi:10.3390/w4010260

Treatment of Olive Mill Wastewater with Constructed Wetlands

1,2,* , 3
1 Institute of Iraklio, National Agricultural Research Foundation, P.O. Box 2229, Iraklio 71307, Greece 2 Kapellakis Technical and Real Estate Firm, Venerato Palianis, 70011, Greece 3 Department of Environmental Engineering, Technical University of Crete, Chania 73132, Greece 4 Department of Environmental Engineering, Democritus University of Thrace, Xanthi 67100, Greece
* Author to whom correspondence should be addressed.
Received: 6 February 2012 / Accepted: 17 February 2012 / Published: 12 March 2012
(This article belongs to the Special Issue Water Recycling and Reuse)
View Full-Text   |   Download PDF [222 KB, uploaded 9 June 2015]   |   Browse Figures


The objective of this study was to investigate the application of constructed wetlands as a mean to manage olive mill wastewater (OMW). Two free water surface (FWS) constructed wetlands, one without (CW1) and one with effluent recirculation (CW2), were operated for a two-year period with diluted OMW (1:10) and evaluated in terms of the removal of COD, TSS, TKN, NH4+-N, NO3-N, TP and total phenols. The organic loading rate of CWs was adjusted to 925 kg BOD/ha·d. In CW1 the removal efficiency averaged 80%, 83%, 78%, 80%, and 74% for COD, TSS, TKN, TP, and total phenols, respectively, during the operation period. Effluent recirculation further improved the treatment efficiency which approached 90%, 98%, 87%, 85%, and 87% for COD, TSS, TKN, TP, and total phenols, respectively. Constructed wetlands also showed high removal efficiency for NH4+-N. Nitrate concentration maintained low in both CWs basins, probably due to the prevalence of high denitrification rates that efficiently removed the NO3--N produced by NH4+-N oxidation. Despite the increased removal percentages, pollutant concentration in effluent exceeded the allowable limits for discharge in water bodies, suggesting that additional practices, including enhanced pre-application treatment and/or higher dilution rates, are required to make this practice effective for OMW management.
Keywords: effluent recirculation; free water surface constructed wetlands; nutrient removal; olive mill wastewater; organic load removal; phenols effluent recirculation; free water surface constructed wetlands; nutrient removal; olive mill wastewater; organic load removal; phenols
This is an open access article distributed under the Creative Commons Attribution License (CC BY) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote |
MDPI and ACS Style

Kapellakis, I.E.; Paranychianakis, N.V.; Tsagarakis, K.P.; Angelakis, A.N. Treatment of Olive Mill Wastewater with Constructed Wetlands. Water 2012, 4, 260-271.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here


[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert