Next Article in Journal
Styrene Oxidation to Valuable Compounds over Nanosized FeCo-Based Catalysts: Effect of the Third Metal Addition
Previous Article in Journal
Synthesis of Isoquinolinones via Regioselective Palladium-Catalyzed C–H Activation/Annulation
Previous Article in Special Issue
Well-Shaped Sulfonic Organosilica Nanotubes with High Activity for Hydrolysis of Cellobiose
Article Menu
Issue 11 (November) cover image

Export Article

Open AccessArticle
Catalysts 2017, 7(11), 322; doi:10.3390/catal7110322

Enzymatically-Mediated Co-Production of Cellulose Nanocrystals and Fermentable Sugars

1
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
2
Biomass Conversion and Processing Technologies, InnoTech Alberta, Edmonton, AB T6N 1E4, Canada
3
School of Engineering Science, Lappeenranta University of Technology, P.O. Box 20, FI-53851 Lappeenranta, Finland
*
Author to whom correspondence should be addressed.
Received: 6 October 2017 / Revised: 26 October 2017 / Accepted: 26 October 2017 / Published: 30 October 2017
View Full-Text   |   Download PDF [4168 KB, uploaded 31 October 2017]   |  

Abstract

Cellulose nanocrystals (CNCs) can be extracted from cellulosic materials through the degradation of non-crystalline cellulose domains in the feedstock via acid hydrolysis. However, the sugars released from the hydrolysis process cannot be easily recovered from the acid waste stream. In this study, cellulases were used to preferentially degrade non-crystalline domains with the objectives of recovering sugars and generating a feedstock with concentrated CNC precursors for a more efficient acid hydrolysis process. Filter paper and wood pulp substrates were enzyme-treated for 2–10 h to recover 20–40 wt % glucose. Substantial xylose yield (6–12 wt %) was generated from wood pulp. CNC yields from acid hydrolysis of cellulases-treated filter paper, and wood pulp improved by 8–18% and 58–86%, respectively, when compared with the original substrate. It was thought that CNC precursors accumulated in the cellulases-treated feedstock due to enzymatic digestion of the more accessible non-crystalline celluloses. Therefore, acid hydrolysis from enzyme-treated feedstock will require proportionally less water and reagents resulting in increased efficiency and productivity in downstream processes. This study demonstrates that an enzymatically-mediated process allows recovery of fermentable sugars and improves acid hydrolysis efficiency for CNC production. View Full-Text
Keywords: acid hydrolysis; cellulase; cellulose nanocrystals; fermentable sugars acid hydrolysis; cellulase; cellulose nanocrystals; fermentable sugars
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Beyene, D.; Chae, M.; Dai, J.; Danumah, C.; Tosto, F.; Demesa, A.G.; Bressler, D.C. Enzymatically-Mediated Co-Production of Cellulose Nanocrystals and Fermentable Sugars. Catalysts 2017, 7, 322.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Catalysts EISSN 2073-4344 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top