Next Article in Journal
A Deadline-Aware Scheduling and Forwarding Scheme in Wireless Sensor Networks
Previous Article in Journal
Characterizations and Electrical Modelling of Sensory Samples Formed from Synthesized Vanadium (V) Oxide and Copper Oxide Graphene Quantum Tunneling Composites (GQTC) Applied in Electrotribology
Article Menu

Export Article

Open AccessArticle
Sensors 2016, 16(1), 60; doi:10.3390/s16010060

Estimation of Gaze Detection Accuracy Using the Calibration Information-Based Fuzzy System

Division of Electronics and Electrical Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul 100-715, Korea
Author to whom correspondence should be addressed.
Academic Editor: Vittorio M. N. Passaro
Received: 27 November 2015 / Revised: 30 December 2015 / Accepted: 31 December 2015 / Published: 5 January 2016
(This article belongs to the Section Physical Sensors)


Gaze tracking is a camera-vision based technology for identifying the location where a user is looking. In general, a calibration process is applied at the initial stage of most gaze tracking systems. This process is necessary to calibrate for the differences in the eyeballs and cornea size of the user, as well as the angle kappa, and to find the relationship between the user’s eye and screen coordinates. It is applied on the basis of the information of the user’s pupil and corneal specular reflection obtained while the user is looking at several predetermined positions on a screen. In previous studies, user calibration was performed using various types of markers and marker display methods. However, studies on estimating the accuracy of gaze detection through the results obtained during the calibration process have yet to be carried out. Therefore, we propose the method for estimating the accuracy of a final gaze tracking system with a near-infrared (NIR) camera by using a fuzzy system based on the user calibration information. Here, the accuracy of the final gaze tracking system ensures the gaze detection accuracy during the testing stage of the gaze tracking system. Experiments were performed using a total of four types of markers and three types of marker display methods. From them, it was found that the proposed method correctly estimated the accuracy of the gaze tracking regardless of the various marker and marker display types applied. View Full-Text
Keywords: gaze tracking; NIR camera; calibration; calibration marker and marker display; fuzzy system gaze tracking; NIR camera; calibration; calibration marker and marker display; fuzzy system

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Gwon, S.Y.; Jung, D.; Pan, W.; Park, K.R. Estimation of Gaze Detection Accuracy Using the Calibration Information-Based Fuzzy System. Sensors 2016, 16, 60.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Sensors EISSN 1424-8220 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top