Int. J. Mol. Sci. 2013, 14(8), 15785-15809; doi:10.3390/ijms140815785
Review

Post-Transcriptional Regulation of Iron Homeostasis in Saccharomyces cerevisiae

1email, 2email, 2email and 2,* email
Received: 1 July 2013; in revised form: 15 July 2013 / Accepted: 18 July 2013 / Published: 30 July 2013
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract: Iron is an essential micronutrient for all eukaryotic organisms because it participates as a redox cofactor in a wide variety of biological processes. Recent studies in Saccharomyces cerevisiae have shown that in response to iron deficiency, an RNA-binding protein denoted Cth2 coordinates a global metabolic rearrangement that aims to optimize iron utilization. The Cth2 protein contains two Cx8Cx5Cx3H tandem zinc fingers (TZFs) that specifically bind to adenosine/uridine-rich elements within the 3' untranslated region of many mRNAs to promote their degradation. The Cth2 protein shuttles between the nucleus and the cytoplasm. Once inside the nucleus, Cth2 binds target mRNAs and stimulates alternative 3' end processing. A Cth2/mRNA-containing complex is required for export to the cytoplasm, where the mRNA is degraded by the 5' to 3' degradation pathway. This post-transcriptional regulatory mechanism limits iron utilization in nonessential pathways and activates essential iron-dependent enzymes such as ribonucleotide reductase, which is required for DNA synthesis and repair. Recent findings indicate that the TZF-containing tristetraprolin protein also functions in modulating human iron homeostasis. Elevated iron concentrations can also be detrimental for cells. The Rnt1 RNase III exonuclease protects cells from excess iron by promoting the degradation of a subset of the Fe acquisition system when iron levels rise.
Keywords: Iron; yeast; post-transcriptional regulation; mRNA decay; alternative 3' end processing; Cth1; Cth2; Rnt1
PDF Full-text Download PDF Full-Text [1033 KB, uploaded 19 June 2014 05:02 CEST]

Export to BibTeX |
EndNote


MDPI and ACS Style

Martínez-Pastor, M.T.; Llanos, R.D.; Romero, A.M.; Puig, S. Post-Transcriptional Regulation of Iron Homeostasis in Saccharomyces cerevisiae. Int. J. Mol. Sci. 2013, 14, 15785-15809.

AMA Style

Martínez-Pastor MT, Llanos RD, Romero AM, Puig S. Post-Transcriptional Regulation of Iron Homeostasis in Saccharomyces cerevisiae. International Journal of Molecular Sciences. 2013; 14(8):15785-15809.

Chicago/Turabian Style

Martínez-Pastor, María T.; Llanos, Rosa D.; Romero, Antonia M.; Puig, Sergi. 2013. "Post-Transcriptional Regulation of Iron Homeostasis in Saccharomyces cerevisiae." Int. J. Mol. Sci. 14, no. 8: 15785-15809.

Int. J. Mol. Sci. EISSN 1422-0067 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert