Next Article in Journal
Combinatorial Synthesis of Structurally Diverse Triazole-Bridged Flavonoid Dimers and Trimers
Next Article in Special Issue
Promiscuous Effects of Some Phenolic Natural Products on Inflammation at Least in Part Arise from Their Ability to Modulate the Expression of Global Regulators, Namely microRNAs
Previous Article in Journal
Chemical and Sensory Evaluation of Silicone and Polylactic Acid-Based Remedial Treatments for Elevated Methoxypyrazine Levels in Wine
Previous Article in Special Issue
Anti-Inflammatory Effects and Mechanisms of Action of Coussaric and Betulinic Acids Isolated from Diospyros kaki in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages
Article Menu
Issue 9 (September) cover image

Export Article

Open AccessArticle
Molecules 2016, 21(9), 1240; doi:10.3390/molecules21091240

A Prenylated Xanthone, Cudratricusxanthone A, Isolated from Cudrania tricuspidata Inhibits Lipopolysaccharide-Induced Neuroinflammation through Inhibition of NF-κB and p38 MAPK Pathways in BV2 Microglia

1
Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Korea
2
Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi 100000, Vietnam
3
Hanbang Body-Fluid Research Center, Wonkwang University, Iksan 54538, Korea
*
Author to whom correspondence should be addressed.
Academic Editor: Derek J. McPhee
Received: 28 July 2016 / Revised: 30 August 2016 / Accepted: 11 September 2016 / Published: 16 September 2016
(This article belongs to the Special Issue Natural Products and Inflammation)
View Full-Text   |   Download PDF [1866 KB, uploaded 16 September 2016]   |  

Abstract

Cudrania tricuspidata Bureau (Moraceae) is an important source of traditional Korean and Chinese medicines used to treat neuritis and inflammation. Cudratricusxanthone A (1), a prenylated xanthone, isolated from C. tricuspidata, has a variety of biological and therapeutic activities. The goal of this study was to examine the effects of compound 1 on neuroinflammation and characterize its mechanism of action in lipopolysaccharide (LPS)-stimulated BV2 microglia. Cudratricusxanthone A (1) suppressed the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 enzymes and decreased the production of iNOS-derived nitric oxide and COX-2-derived prostaglandin E2 in LPS-stimulated mouse BV2 microglia. The compound also decreased tumor necrosis factor-α, interleukin (IL)-1β, and IL-12 production; inhibited the phosphorylation and degradation of IκB-α; and blocked the nuclear translocation of p50 and p65 in mouse BV2 microglia induced by LPS. Cudratricusxanthone A (1) had inhibitory effects on nuclear factor kappa B DNA-binding activity. Additionally, it inhibited the p38 mitogen-activated protein kinase signaling pathway. Our data suggests that cudratricusxanthone A (1) may be a useful therapeutic agent in the treatment of neurodegenerative diseases caused by neuroinflammation. View Full-Text
Keywords: Cudrania tricuspidata; cudratricusxanthone A; microglia; neuroinflammation; nuclear factor-kappa B; mitogen-activated protein kinase Cudrania tricuspidata; cudratricusxanthone A; microglia; neuroinflammation; nuclear factor-kappa B; mitogen-activated protein kinase
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Yoon, C.-S.; Kim, D.-C.; Quang, T.H.; Seo, J.; Kang, D.G.; Lee, H.S.; Oh, H.; Kim, Y.-C. A Prenylated Xanthone, Cudratricusxanthone A, Isolated from Cudrania tricuspidata Inhibits Lipopolysaccharide-Induced Neuroinflammation through Inhibition of NF-κB and p38 MAPK Pathways in BV2 Microglia. Molecules 2016, 21, 1240.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top