Next Article in Journal
Native Chemical Ligation: A Boon to Peptide Chemistry
Next Article in Special Issue
Special Issue: Intramolecular Hydrogen Bonding
Previous Article in Journal
Enzyme Molecules in Solitary Confinement
Previous Article in Special Issue
On the Nature of the Transition State Characterizing Gated Molecular Encapsulations
Article Menu

Export Article

Open AccessArticle
Molecules 2014, 19(9), 14446-14460; doi:10.3390/molecules190914446

Solid State Structure and Solution Thermodynamics of Three-Centered Hydrogen Bonds (O∙∙∙H∙∙∙O) Using N-(2-Benzoyl-phenyl) Oxalyl Derivatives as Model Compounds

1
Departamento de Ciencias Básicas, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Av. Acueducto s/n Barrio la Laguna Ticomán, México D.F. 07340, Mexico
2
Laboratorio de Posgrado, Facultad de Ciencias Químicas, Universidad de Colima, Km 9 Carretera Colima-Coquimatlán, Colima 28400, Mexico
*
Authors to whom correspondence should be addressed.
Received: 27 August 2014 / Accepted: 9 September 2014 / Published: 12 September 2014
(This article belongs to the Special Issue Intramolecular Hydrogen Bonding)
View Full-Text   |   Download PDF [1724 KB, uploaded 12 September 2014]   |  

Abstract

Intramolecular hydrogen bond (HB) formation was analyzed in the model compounds N-(2-benzoylphenyl)acetamide, N-(2-benzoylphenyl)oxalamate and N1,N2-bis(2-benzoylphenyl)oxalamide. The formation of three-center hydrogen bonds in oxalyl derivatives was demonstrated in the solid state by the X-ray diffraction analysis of the geometric parameters associated with the molecular structures. The solvent effect on the chemical shift of H6 [δH6(DMSO-d6)–δH6(CDCl3)] and Δδ(ΝΗ)/ΔT measurements, in DMSO-d6 as solvent, have been used to establish the energetics associated with intramolecular hydrogen bonding. Two center intramolecular HB is not allowed in N-(2-benzoylphenyl)acetamide either in the solid state or in DMSO-d6 solution because of the unfavorable steric effects of the o-benzoyl group. The estimated Δ and Δ values for the hydrogen bonding disruption by DMSO-d6 of 28.3(0.1) kJ·mol−1 and 69.1(0.4) J·mol−1·K−1 for oxalamide, are in agreement with intramolecular three-center hydrogen bonding in solution. In the solid, the benzoyl group contributes to develop 1-D and 2-D crystal networks, through C–H∙∙∙A (A = O, π) and dipolar C=O∙∙∙A (A = CO, π) interactions, in oxalyl derivatives. To the best of our knowledge, this is the first example where three-center hydrogen bond is claimed to overcome steric constraints. View Full-Text
Keywords: three-center hydrogen bond; oxalamide; oxalamate; steric effect; solvent effect; proton mobility; cooperativity three-center hydrogen bond; oxalamide; oxalamate; steric effect; solvent effect; proton mobility; cooperativity
Figures

This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Gómez-Castro, C.Z.; Padilla-Martínez, I.I.; García-Báez, E.V.; Castrejón-Flores, J.L.; Peraza-Campos, A.L.; Martínez-Martínez, F.J. Solid State Structure and Solution Thermodynamics of Three-Centered Hydrogen Bonds (O∙∙∙H∙∙∙O) Using N-(2-Benzoyl-phenyl) Oxalyl Derivatives as Model Compounds. Molecules 2014, 19, 14446-14460.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]

Molecules EISSN 1420-3049 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top