Next Article in Journal
Using Exergy to Correlate Energy Research Investments and Efficiencies: Concept and Case Studies
Next Article in Special Issue
Is Encephalopathy a Mechanism to Renew Sulfate in Autism?
Previous Article in Journal
Effects of Convective Heating on Entropy Generation Rate in a Channel with Permeable Walls
Previous Article in Special Issue
Is Endothelial Nitric Oxide Synthase a Moonlighting Protein Whose Day Job is Cholesterol Sulfate Synthesis? Implications for Cholesterol Transport, Diabetes and Cardiovascular Disease
Entropy 2013, 15(1), 234-261; doi:10.3390/e15010234
Concept Paper

Biosemiotic Entropy of the Genome: Mutations and Epigenetic Imbalances Resulting in Cancer

1,* , 2
 and
3
Received: 1 November 2012 / Revised: 30 December 2012 / Accepted: 11 January 2013 / Published: 16 January 2013
(This article belongs to the Special Issue Biosemiotic Entropy: Disorder, Disease, and Mortality)
Download PDF [6400 KB, 24 February 2015; original version 24 February 2015]

Abstract

Biosemiotic entropy involves the deterioration of biological sign systems. The genome is a coded sign system that is connected to phenotypic outputs through the interpretive functions of the tRNA/ribosome machinery. This symbolic sign system (semiosis) at the core of all biology has been termed “biosemiosis”. Layers of biosemiosis and cellular information management are analogous in varying degrees to the semiotics of computer programming, spoken, and written human languages. Biosemiotic entropy — an error or deviation from a healthy state — results from errors in copying functional information (mutations) and errors in the appropriate context or quantity of gene expression (epigenetic imbalance). The concept of biosemiotic entropy is a deeply imbedded assumption in the study of cancer biology. Cells have a homeostatic, preprogrammed, ideal or healthy state that is rooted in genomics, strictly orchestrated by epigenetic regulation, and maintained by DNA repair mechanisms. Cancer is an eminent illustration of biosemiotic entropy, in which the corrosion of genetic information via substitutions, deletions, insertions, fusions, and aberrant regulation results in malignant phenotypes. However, little attention has been given to explicitly outlining the paradigm of biosemiotic entropy in the context of cancer. Herein we distill semiotic theory (from the familiar and well understood spheres of human language and computer code) to draw analogies useful for understanding the operation of biological semiosis at the genetic level. We propose that the myriad checkpoints, error correcting mechanisms, and immunities are all systems whose primary role is to defend against the constant pressure of biosemiotic entropy, which malignancy must shut down in order to achieve advanced stages. In lieu of the narrower tumor suppressor/oncogene model, characterization of oncogenesis into the biosemiotic framework of sign, index, or object entropy may allow for more effective explanatory hypotheses for cancer diagnosis, with consequence in improving profiling and bettering therapeutic outcomes.
Keywords: genetics; epigenetics; semiotics; cancer; biosemiotic entropy; homeostasis; gene mutations; population genetics; chromatin architecture; encode genetics; epigenetics; semiotics; cancer; biosemiotic entropy; homeostasis; gene mutations; population genetics; chromatin architecture; encode
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Share & Cite This Article

Further Mendeley | CiteULike
Export to BibTeX |
EndNote
MDPI and ACS Style

Gryder, B.E.; Nelson, C.W.; Shepard, S.S. Biosemiotic Entropy of the Genome: Mutations and Epigenetic Imbalances Resulting in Cancer. Entropy 2013, 15, 234-261.

View more citation formats

Related Articles

Article Metrics

For more information on the journal, click here

Comments

Cited By

[Return to top]
Entropy EISSN 1099-4300 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert