15 pages, 4650 KiB  
Article
Insights into Sorption–Mineralization Mechanism for Sustainable Granular Composite of MgO-CaO-Al2O3-SiO2-CO2 Based on Nanosized Adsorption Centers and Its Effect on Aqueous Cu(II) Removal
by Alla G. Morozova, Tatiana M. Lonzinger, Vadim A. Skotnikov, Gennady G. Mikhailov, Yury Kapelyushin, Mayeen Uddin Khandaker, Amal Alqahtani, D. A. Bradley, M. I. Sayyed, Daria I. Tishkevich, Denis A. Vinnik and Alex V. Trukhanov
Nanomaterials 2022, 12(1), 116; https://doi.org/10.3390/nano12010116 - 30 Dec 2021
Cited by 4 | Viewed by 2328
Abstract
Although copper is needed for living organisms at low concentrations, it is one of the pollutants that should be monitored along with other heavy metals. A novel and sustainable composite mineralizing sorbent based on MgO-CaO-Al2O3-SiO2-CO2 with [...] Read more.
Although copper is needed for living organisms at low concentrations, it is one of the pollutants that should be monitored along with other heavy metals. A novel and sustainable composite mineralizing sorbent based on MgO-CaO-Al2O3-SiO2-CO2 with nanosized adsorption centers was synthesized using natural calcium–magnesium carbonates and clay aluminosilicates for copper sorption. An organometallic modifier was added as a temporary binder and a source of inovalent ions participating in the reactions of defect formation and activated sintering. The sorbent-mineralizer samples of specified composition and properties showed irreversible sorption of Cu2+ ions by the ion exchange reactions Ca2+ ↔ Cu2+ and Mg2+ ↔ Cu2+. The topochemical reactions of the ion exchange 2OH → CO32−, 2OH → SO42− and CO32− → SO42− occurred at the surface with formation of the mixed calcium–copper carbonates and sulfates structurally connected with aluminosilicate matrix. The reverse migration of ions to the environment is blocked by the subsequent mineralization of the newly formed interconnected aluminosilicate and carbonate structures. Full article
Show Figures

Figure 1

13 pages, 9273 KiB  
Article
Droplet-Based Microfluidic Preparation of Shape-Variable Alginate Hydrogel Magnetic Micromotors
by Cheng Zhang, Yong Wang, Yuduo Chen, Xing Ma and Wenjun Chen
Nanomaterials 2022, 12(1), 115; https://doi.org/10.3390/nano12010115 - 30 Dec 2021
Cited by 6 | Viewed by 3062
Abstract
This article introduces a facile droplet-based microfluidic method for the preparation of Fe3O4-incorporated alginate hydrogel magnetic micromotors with variable shapes. By using droplet-based microfluidics and water diffusion, monodisperse (quasi-)spherical microparticles of sodium alginate and Fe3O4 (Na-Alg/Fe [...] Read more.
This article introduces a facile droplet-based microfluidic method for the preparation of Fe3O4-incorporated alginate hydrogel magnetic micromotors with variable shapes. By using droplet-based microfluidics and water diffusion, monodisperse (quasi-)spherical microparticles of sodium alginate and Fe3O4 (Na-Alg/Fe3O4) are obtained. The diameter varies from 31.9 to 102.7 µm with the initial concentration of Na-Alginate in dispersed fluid ranging from 0.09 to 9 mg/mL. Calcium chloride (CaCl2) is used for gelation, immediately transforming Na-Alg/Fe3O4 microparticles into Ca-Alginate hydrogel microparticles incorporating Fe3O4 nanoparticles, i.e., Ca-Alg/Fe3O4 micromotors. Spherical, droplet-like, and worm-like shapes are yielded depending on the concentration of CaCl2, which is explained by crosslinking and anisotropic swelling during the gelation. The locomotion of Ca-Alg/Fe3O4 micromotors is activated by applying external magnetic fields. Under the rotating magnetic field (5 mT, 1–15 Hz), spherical Ca-Alg/Fe3O4 micromotors exhibit an average advancing velocity up to 158.2 ± 8.6 µm/s, whereas worm-like Ca-Alg/Fe3O4 micromotors could be rotated for potential advancing. Under the magnetic field gradient (3 T/m), droplet-like Ca-Alg/Fe3O4 micromotors are pulled forward with the average velocity of 70.7 ± 2.8 µm/s. This article provides an inspiring and timesaving approach for the preparation of shape-variable hydrogel micromotors without using complex patterns or sophisticated facilities, which holds potential for biomedical applications such as targeted drug delivery. Full article
(This article belongs to the Special Issue Advances in Stimuli-Responsive Nanomaterials)
Show Figures

Figure 1

20 pages, 5821 KiB  
Review
A Review on the Effects of ZnO Nanowire Morphology on the Performance of Interpenetrating Bulk Heterojunction Quantum Dot Solar Cells
by Meibo Xing, Longxiang Wang and Ruixiang Wang
Nanomaterials 2022, 12(1), 114; https://doi.org/10.3390/nano12010114 - 30 Dec 2021
Cited by 8 | Viewed by 3147
Abstract
Interpenetrating bulk heterojunction (IBHJ) quantum dot solar cells (QDSCs) offer a direct pathway for electrical contacts to overcome the trade-off between light absorption and carrier extraction. However, their complex three-dimensional structure creates higher requirements for the optimization of their design due to their [...] Read more.
Interpenetrating bulk heterojunction (IBHJ) quantum dot solar cells (QDSCs) offer a direct pathway for electrical contacts to overcome the trade-off between light absorption and carrier extraction. However, their complex three-dimensional structure creates higher requirements for the optimization of their design due to their more difficult interface defect states control, more complex light capture mechanism, and more advanced QD deposition technology. ZnO nanowire (NW) has been widely used as the electron transport layer (ETL) for this structure. Hence, the optimization of the ZnO NW morphology (such as density, length, and surface defects) is the key to improving the photoelectric performance of these SCs. In this study, the morphology control principles of ZnO NW for different synthetic methods are discussed. Furthermore, the effects of the density and length of the NW on the collection of photocarriers and their light capture effects are investigated. It is indicated that the NW spacing determines the transverse collection of electrons, while the length of the NW and the thickness of the SC often affect the longitudinal collection of holes. Finally, the optimization strategies for the geometrical morphology of and defect passivation in ZnO NWs are proposed to improve the efficiency of IBHJ QDSCs. Full article
(This article belongs to the Topic Electromaterials for Environment & Energy)
Show Figures

Figure 1

13 pages, 5377 KiB  
Article
Polarization-Insensitive Beam Splitter with Variable Split Angles and Ratios Based on Phase Gradient Metasurfaces
by Quan He and Zhe Shen
Nanomaterials 2022, 12(1), 113; https://doi.org/10.3390/nano12010113 - 30 Dec 2021
Cited by 13 | Viewed by 3130
Abstract
The beam splitter is a common and critical element in optical systems. Traditional beam splitters composed of prisms or wave plates are difficult to be applied to miniaturized optical systems because they are bulky and heavy. The realization of the nanoscale beam splitter [...] Read more.
The beam splitter is a common and critical element in optical systems. Traditional beam splitters composed of prisms or wave plates are difficult to be applied to miniaturized optical systems because they are bulky and heavy. The realization of the nanoscale beam splitter with a flexible function has attracted much attention from researchers. Here, we proposed a polarization-insensitive beam splitter with a variable split angle and ratio based on the phase gradient metasurface, which is composed of two types of nanorod arrays with opposite phase gradients. Different split angles are achieved by changing the magnitude of the phase gradient based on the principle of Snell’s law of refraction, and different split ratios are achieved by adding a phase buffer with different areas. In the designed four types of beam splitters for different functions, the split angle is variable in the range of 12–29°, and the split ratio is variable in the range of 0.1–1. The beam splitter has a high beam splitting efficiency above 0.3 at the wavelength of 480–600 nm and a weak polarization dependence. The proposed beam splitter has the advantages of a small size and easy integration, and it can be applied to various optical systems such as multiplexers and interferometers for integrated optical circuits. Full article
(This article belongs to the Special Issue Metalens: Applications and Manufacturing)
Show Figures

Graphical abstract

28 pages, 13003 KiB  
Review
Efficient and Stable Perovskite Solar Cells Based on Inorganic Hole Transport Materials
by Helen Hejin Park
Nanomaterials 2022, 12(1), 112; https://doi.org/10.3390/nano12010112 - 30 Dec 2021
Cited by 29 | Viewed by 5964
Abstract
Although power conversion efficiencies of organic-inorganic lead halide perovskite solar cells (PSCs) are approaching those of single-crystal silicon solar cells, the working device stability due to internal and external factors, such as light, temperature, and moisture, is still a key issue to address. [...] Read more.
Although power conversion efficiencies of organic-inorganic lead halide perovskite solar cells (PSCs) are approaching those of single-crystal silicon solar cells, the working device stability due to internal and external factors, such as light, temperature, and moisture, is still a key issue to address. The current world-record efficiency of PSCs is based on organic hole transport materials, which are usually susceptible to degradation from heat and diffusion of dopants. A simple solution would be to replace the generally used organic hole transport layers (HTLs) with a more stable inorganic material. This review article summarizes recent contributions of inorganic hole transport materials to PSC development, focusing on aspects of device performance and long-term stability. Future research directions of inorganic HTLs in the progress of PSC research and challenges still remaining will also be discussed. Full article
(This article belongs to the Special Issue Applications of Metal Halide Perovskites in Optoelectronic Devices)
Show Figures

Figure 1

10 pages, 5108 KiB  
Article
A Novel Method to Prepare Transparent, Flexible and Thermally Conductive Polyethylene/Boron Nitride Films
by Mingming Yi, Meng Han, Junlin Chen, Zhifeng Hao, Yuanzhou Chen, Yimin Yao and Rong Sun
Nanomaterials 2022, 12(1), 111; https://doi.org/10.3390/nano12010111 - 30 Dec 2021
Cited by 3 | Viewed by 2417
Abstract
The high thermal conductivity and good insulating properties of boron nitride (BN) make it a promising filler for high-performance polymer-based thermal management materials. An easy way to prepare BN-polymer composites is to directly mix BN particles with polymer matrix. However, a high concentration [...] Read more.
The high thermal conductivity and good insulating properties of boron nitride (BN) make it a promising filler for high-performance polymer-based thermal management materials. An easy way to prepare BN-polymer composites is to directly mix BN particles with polymer matrix. However, a high concentration of fillers usually leads to a huge reduction of mechanical strength and optical transmission. Here, we propose a novel method to prepare polyethylene/boron nitride nanoplates (PE/BNNPs) composites through the combination of electrostatic self-assembly and hot pressing. Through this method, the thermal conductivity of the PE/BNNPs composites reach 0.47 W/mK, which gets a 14.6% improvement compared to pure polyethylene film. Thanks to the tight bonding of polyethylene with BNNPs, the tensile strength of the composite film reaches 1.82 MPa, an increase of 173.58% compared to that of pure polyethylene film (0.66 MPa). The fracture stress was also highly enhanced, with an increase of 148.44% compared to pure polyethylene film. Moreover, the addition of BNNPs in PE does not highly reduce its good transmittance, which is preferred for thermal management in devices like light-emitting diodes. This work gives an insight into the preparation strategy of transparent and flexible thermal management materials with high thermal conductivity. Full article
(This article belongs to the Special Issue Highly Thermal Conductive Nanocomposites)
Show Figures

Graphical abstract

14 pages, 2610 KiB  
Review
Recent Progress in Two-Dimensional MoTe2 Hetero-Phase Homojunctions
by Jing Guo and Kai Liu
Nanomaterials 2022, 12(1), 110; https://doi.org/10.3390/nano12010110 - 30 Dec 2021
Cited by 12 | Viewed by 7405
Abstract
With the demand for low contact resistance and a clean interface in high-performance field-effect transistors, two-dimensional (2D) hetero-phase homojunctions, which comprise a semiconducting phase of a material as the channel and a metallic phase of the material as electrodes, have attracted growing attention [...] Read more.
With the demand for low contact resistance and a clean interface in high-performance field-effect transistors, two-dimensional (2D) hetero-phase homojunctions, which comprise a semiconducting phase of a material as the channel and a metallic phase of the material as electrodes, have attracted growing attention in recent years. In particular, MoTe2 exhibits intriguing properties and its phase is easily altered from semiconducting 2H to metallic 1T′ and vice versa, owing to the extremely small energy barrier between these two phases. MoTe2 thus finds potential applications in electronics as a representative 2D material with multiple phases. In this review, we briefly summarize recent progress in 2D MoTe2 hetero-phase homojunctions. We first introduce the properties of the diverse phases of MoTe2, demonstrate the approaches to the construction of 2D MoTe2 hetero-phase homojunctions, and then show the applications of the homojunctions. Lastly, we discuss the prospects and challenges in this research field. Full article
(This article belongs to the Special Issue State-of-the-Art of Nanocomposite Materials in China)
Show Figures

Figure 1

13 pages, 4040 KiB  
Article
Graphene Growth Directly on SiO2/Si by Hot Filament Chemical Vapor Deposition
by Sandra Rodríguez-Villanueva, Frank Mendoza, Alvaro A. Instan, Ram S. Katiyar, Brad R. Weiner and Gerardo Morell
Nanomaterials 2022, 12(1), 109; https://doi.org/10.3390/nano12010109 - 30 Dec 2021
Cited by 6 | Viewed by 2631
Abstract
We report the first direct synthesis of graphene on SiO2/Si by hot-filament chemical vapor deposition. Graphene deposition was conducted at low pressures (35 Torr) with a mixture of methane/hydrogen and a substrate temperature of 970 °C followed by spontaneous cooling to [...] Read more.
We report the first direct synthesis of graphene on SiO2/Si by hot-filament chemical vapor deposition. Graphene deposition was conducted at low pressures (35 Torr) with a mixture of methane/hydrogen and a substrate temperature of 970 °C followed by spontaneous cooling to room temperature. A thin copper-strip was deposited in the middle of the SiO2/Si substrate as catalytic material. Raman spectroscopy mapping and atomic force microscopy measurements indicate the growth of few-layers of graphene over the entire SiO2/Si substrate, far beyond the thin copper-strip, while X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy showed negligible amounts of copper next to the initially deposited strip. The scale of the graphene nanocrystal was estimated by Raman spectroscopy and scanning electron microscopy. Full article
Show Figures

Figure 1

14 pages, 3826 KiB  
Article
Phase Structure and Electrical Properties of Sm-Doped BiFe0.98Mn0.02O3 Thin Films
by Yangyang Wang, Zhaoyang Li, Zhibiao Ma, Lingxu Wang, Xiaodong Guo, Yan Liu, Bingdong Yao, Fengqing Zhang and Luyi Zhu
Nanomaterials 2022, 12(1), 108; https://doi.org/10.3390/nano12010108 - 30 Dec 2021
Cited by 10 | Viewed by 2086
Abstract
Bi1−xSmxFe0.98Mn0.02O3 (x = 0, 0.02, 0.04, 0.06; named BSFMx) (BSFM) films were prepared by the sol-gel method on indium tin oxide (ITO)/glass substrate. The effects of different Sm content on the [...] Read more.
Bi1−xSmxFe0.98Mn0.02O3 (x = 0, 0.02, 0.04, 0.06; named BSFMx) (BSFM) films were prepared by the sol-gel method on indium tin oxide (ITO)/glass substrate. The effects of different Sm content on the crystal structure, phase composition, oxygen vacancy content, ferroelectric property, dielectric property, leakage property, leakage mechanism, and aging property of the BSFM films were systematically analyzed. X-ray diffraction (XRD) and Raman spectral analyses revealed that the sample had both R3c and Pnma phases. Through additional XRD fitting of the films, the content of the two phases of the sample was analyzed in detail, and it was found that the Pnma phase in the BSFMx = 0 film had the lowest abundance. X-ray photoelectron spectroscopy (XPS) analysis showed that the BSFMx = 0.04 film had the lowest oxygen vacancy content, which was conducive to a decrease in leakage current density and an improvement in dielectric properties. The diffraction peak of (110) exhibited the maximum intensity when the doping amount was 4 mol%, and the minimum leakage current density and a large remanent polarization intensity were also observed at room temperature (2Pr = 91.859 μC/cm2). By doping Sm at an appropriate amount, the leakage property of the BSFM films was reduced, the dielectric property was improved, and the aging process was delayed. The performance changes in the BSFM films were further explained from different perspectives, such as phase composition and oxygen vacancy content. Full article
Show Figures

Figure 1

2 pages, 182 KiB  
Editorial
Characterization and Applications of Metal Ferrite Nanocomposites
by Thomas Dippong
Nanomaterials 2022, 12(1), 107; https://doi.org/10.3390/nano12010107 - 30 Dec 2021
Cited by 9 | Viewed by 2261
Abstract
In recent years, nanosized spinel-type ferrites emerged as an important class of nanomaterials due to their high electrical resistivity, low eddy current loss, structural stability, large permeability at high frequency, high coercivity, high cubic magnetocrystalline anisotropy, good mechanical hardness, and chemical stability [...] [...] Read more.
In recent years, nanosized spinel-type ferrites emerged as an important class of nanomaterials due to their high electrical resistivity, low eddy current loss, structural stability, large permeability at high frequency, high coercivity, high cubic magnetocrystalline anisotropy, good mechanical hardness, and chemical stability [...] Full article
(This article belongs to the Special Issue Characterization and Applications of Metal Ferrite Nanocomposites)
23 pages, 4454 KiB  
Article
Characterization of Carbon Nanomaterials Dispersions: Can Metal Decoration of MWCNTs Improve Their Physicochemical Properties?
by Ana T. S. C. Brandão, Sabrina Rosoiu, Renata Costa, A. Fernando Silva, Liana Anicai, Marius Enachescu and Carlos M. Pereira
Nanomaterials 2022, 12(1), 99; https://doi.org/10.3390/nano12010099 - 29 Dec 2021
Cited by 11 | Viewed by 2720
Abstract
A suitable dispersion of carbon materials (e.g., carbon nanotubes (CNTs)) in an appropriate dispersant media, is a prerequisite for many technological applications (e.g., additive purposes, functionalization, mechanical reinforced materials for electrolytes and electrodes for energy storage applications, etc.). Deep eutectic solvents (DES) have [...] Read more.
A suitable dispersion of carbon materials (e.g., carbon nanotubes (CNTs)) in an appropriate dispersant media, is a prerequisite for many technological applications (e.g., additive purposes, functionalization, mechanical reinforced materials for electrolytes and electrodes for energy storage applications, etc.). Deep eutectic solvents (DES) have been considered as a promising “green” alternative, providing a versatile replacement to volatile organic solvents due to their unique physical-chemical properties, being recognized as low-volatility fluids with great dispersant ability. The present work aims to contribute to appraise the effect of the presence of MWCNTs and Ag-functionalized MWCNTs on the physicochemical properties (viscosity, density, conductivity, surface tension and refractive index) of glyceline (choline chloride and glycerol, 1:2), a Type III DES. To benefit from possible synergetic effects, AgMWCNTs were prepared through pulse reverse electrodeposition of Ag nanoparticles into MWCNTs. Pristine MWCNTs were used as reference material and water as reference dispersant media for comparison purposes. The effect of temperature (20 to 60 °C) and concentration on the physicochemical properties of the carbon dispersions (0.2–1.0 mg cm−3) were assessed. In all assessed physicochemical properties, AgMWCNTs outperformed pristine MWCNTs dispersions. A paradoxical effect was found in the viscosity trend in glyceline media, in which a marked decrease in the viscosity was found for the MWCNTs and AgMWCNTs materials at lower temperatures. All physicochemical parameters were statistically analyzed using a two-way analysis of variance (ANOVA), at a 5% level of significance. Full article
Show Figures

Graphical abstract

11 pages, 2697 KiB  
Article
MOFs-Derived Zn-Based Catalysts in Acetylene Acetoxylation
by Mengli Li, Zhuang Xu, Yuhao Chen, Guowang Shen, Xugen Wang and Bin Dai
Nanomaterials 2022, 12(1), 98; https://doi.org/10.3390/nano12010098 - 29 Dec 2021
Cited by 16 | Viewed by 2715
Abstract
Metal–organic frameworks (MOFs)-derived materials with a large specific surface area and rich pore structures are favorable for catalytic performance. In this work, MOFs are successfully prepared. Through pyrolysis of MOFs under nitrogen gas, zinc-based catalysts with different active sites for acetylene acetoxylation are [...] Read more.
Metal–organic frameworks (MOFs)-derived materials with a large specific surface area and rich pore structures are favorable for catalytic performance. In this work, MOFs are successfully prepared. Through pyrolysis of MOFs under nitrogen gas, zinc-based catalysts with different active sites for acetylene acetoxylation are obtained. The influence of the oxygen atom, nitrogen atom, and coexistence of oxygen and nitrogen atoms on the structure and catalytic performance of MOFs-derived catalysts was investigated. According to the results, the catalysts with different catalytic activity are Zn-O-C (33%), Zn-O/N-C (27%), and Zn-N-C (12%). From the measurements of X-ray photoelectron spectroscopy (XPS), it can be confirmed that the formation of different active sites affects the electron cloud density of zinc. The electron cloud density of zinc affects the ability to attract CH3COOH, which makes catalysts different in terms of catalytic activity. Full article
Show Figures

Graphical abstract

3 pages, 184 KiB  
Editorial
Special Issue: Perovskite Nanostructures: From Material Design to Applications
by Athanasia Kostopoulou and Dimitra Vernardou
Nanomaterials 2022, 12(1), 97; https://doi.org/10.3390/nano12010097 - 29 Dec 2021
Cited by 1 | Viewed by 1631
Abstract
In the past decade, perovskite materials have attracted great scientific and technological interest due to their interesting opto-electronic properties. Nanostructuring of the perovskites, due to their reduced dimensions are advantageous in offering large surface area, controlled transport and charge carrier mobility, strong absorption [...] Read more.
In the past decade, perovskite materials have attracted great scientific and technological interest due to their interesting opto-electronic properties. Nanostructuring of the perovskites, due to their reduced dimensions are advantageous in offering large surface area, controlled transport and charge carrier mobility, strong absorption and photoluminescence, and confinement effects. These features, together with the unique tunability in composition, shape, and functionalities in addition to the ability to form efficient, low-cost, and light-active structures make the perovskite nanostructures efficient functional components for multiple applications, ranging from photovoltaics and batteries to lasing and light-emitting diodes. The purpose of this Special Issue is to give an overview of the latest experimental findings concerning the tunability in composition, shape, functionalities, growth conditions, and synthesis procedures of perovskite structures and to identify the critical parameters for producing materials with functional characteristics. Full article
(This article belongs to the Special Issue Perovskite Nanostructures: From Material Design to Applications)
2 pages, 157 KiB  
Editorial
Multiscale Innovative Materials and Structures (MIMS)
by Raffaele Barretta, Domenico De Tommasi and Fernando Fraternali
Nanomaterials 2022, 12(1), 96; https://doi.org/10.3390/nano12010096 - 29 Dec 2021
Viewed by 1355
Abstract
Increasing attention is growing towards advanced multiscale metamaterials and nanostructures, due to recent developments in nanoscience and nanotechnology [...] Full article
(This article belongs to the Special Issue Multiscale Innovative Materials and Structures)
19 pages, 6621 KiB  
Article
Properties of Polysiloxane/Nanosilica Nanodielectrics for Wearable Electronic Devices
by Elena Ruxandra Radu, Denis Mihaela Panaitescu, Laura Andrei, Florin Ciuprina, Cristian Andi Nicolae, Augusta Raluca Gabor and Roxana Truşcă
Nanomaterials 2022, 12(1), 95; https://doi.org/10.3390/nano12010095 - 29 Dec 2021
Cited by 5 | Viewed by 2096
Abstract
Polymer nanodielectrics characterized by good flexibility, processability, low dielectric loss and high dielectric permittivity are materials of interest for wearable electronic devices and intelligent textiles, and are highly in demand in robotics. In this study, an easily scalable and environmentally friendly method was [...] Read more.
Polymer nanodielectrics characterized by good flexibility, processability, low dielectric loss and high dielectric permittivity are materials of interest for wearable electronic devices and intelligent textiles, and are highly in demand in robotics. In this study, an easily scalable and environmentally friendly method was applied to obtain polysiloxane/nanosilica nanocomposites with a large content of nanofiller, of up to 30% by weight. Nanosilica was dispersed both as individual particles and as agglomerates; in nanocomposites with a lower amount of filler, the former prevailed, and at over 20 wt% nanosilica the agglomerates predominated. An improvement of both the tensile strength and modulus was observed for nanocomposites with 5–15 wt% nanosilica, and a strong increase of the storage modulus was observed with the increase of nanofiller concentration. Furthermore, an increase of the storage modulus of up to seven times was observed in the nanocomposites with 30 wt% nanosilica. The tensile modulus was well fitted by models that consider the aggregation of nanoparticles and the role of the interface. The dielectric spectra showed an increase of the real part of the complex relative permittivity with 33% for 30 wt% nanosilica in nanocomposites at a frequency of 1 KHz, whereas the loss tangent values were lower than 0.02 for all tested nanodielectrics in the radio frequency range between 1 KHz and 1 MHz. The polysiloxane–nanosilica nanocomposites developed in this work showed good flexibility; however, they also showed increased stiffness along with a stronger dielectric response than the unfilled polysiloxane, which recommends them as dielectric substrates for wearable electronic devices. Full article
(This article belongs to the Special Issue Next-Generation Nanomaterials: Preparation and Applications)
Show Figures

Figure 1