16 pages, 4467 KB  
Article
Change of Characterization and Film Morphology Based on Acrylic Pressure Sensitive Adhesives by Hydrophilic Derivative Ratio
by Woong Cheol Seok, Jong Tae Leem, Ju Hui Kang, Young Jun Kim, Sangkug Lee and Ho Jun Song
Polymers 2020, 12(7), 1504; https://doi.org/10.3390/polym12071504 - 7 Jul 2020
Cited by 12 | Viewed by 6057
Abstract
Hydrophilic acrylic pressure-sensitive adhesives (PSAs) were synthesized by controlling the contents of 2-ethylhexyl acrylate (EHA), isobornyl acrylate (IBOA), and 2-hydroxyethyl acrylate (HEA); especially, the characteristic change of the HEA content was analyzed. Surface contact angle of acrylic PSA film decreased from 77.87° to [...] Read more.
Hydrophilic acrylic pressure-sensitive adhesives (PSAs) were synthesized by controlling the contents of 2-ethylhexyl acrylate (EHA), isobornyl acrylate (IBOA), and 2-hydroxyethyl acrylate (HEA); especially, the characteristic change of the HEA content was analyzed. Surface contact angle of acrylic PSA film decreased from 77.87° to 70.23° in the case of Acryl-2 to Acryl-8 (below HEA 10 wt %). However, the surface contact angle of Acryl-10 to Acryl-40 (HEA 10 wt % to 40 wt %) increased up to 92.29°, indicating hydrophobicity. All acrylic PSA films showed high adhesive force above 1800 gf/25 mm. According to X-ray diffraction (XRD) measurement, hydrophilic acrylic PSAs exhibited amorphous property and it was confirmed that the morphology of acrylic PSA film was significantly affected by the flexibility of the polymer chain and the strength of hydrogen bonding. The affinity with hydrophilic materials for acrylic PSA films was evaluated by T-type peel test, confirming that the affinity with hydrophilic materials is determined by the hydrophilicity of the acrylic PSA film. The synthesized acrylic PSA film is non-toxic regardless of the hydrophilicity. Full article
(This article belongs to the Collection Polymeric Adhesives)
Show Figures

Graphical abstract

14 pages, 1632 KB  
Article
Injection-Molded Parts of Partially Biobased Polyamide 610 and Biobased Halloysite Nanotubes
by David Marset, Celia Dolza, Teodomiro Boronat, Nestor Montanes, Rafael Balart, Lourdes Sanchez-Nacher and Luis Quiles-Carrillo
Polymers 2020, 12(7), 1503; https://doi.org/10.3390/polym12071503 - 6 Jul 2020
Cited by 25 | Viewed by 3999
Abstract
This works focuses on the development of environmentally friendly composites with a partially biobased polyamide 610 (PA610), containing 63% biobased content, and a natural inorganic filler at the nanoscale, namely, halloysite nanotubes (HNTs). PA610 composites containing 10, 20, and 30 wt% HNTs were [...] Read more.
This works focuses on the development of environmentally friendly composites with a partially biobased polyamide 610 (PA610), containing 63% biobased content, and a natural inorganic filler at the nanoscale, namely, halloysite nanotubes (HNTs). PA610 composites containing 10, 20, and 30 wt% HNTs were obtained by melt extrusion in a twin screw co-rotating extruder. The resulting composites were injection-molded for further characterization. The obtained materials were characterized to obtain reliable data about their mechanical, thermal, and morphological properties. The effect of the HNTs wt% on these properties was evaluated. From a mechanical standpoint, the addition of 30 wt% HNTs gave an increase in tensile modulus of twice the initial value, thus verifying how this type of natural load provides increased stiffness on injection molded parts. The materials prepared with HNTs slightly improved the thermal stability, while a noticeable improvement on thermomechanical resistance over a wide temperature range was observed with increasing HNTs content. The obtained results indicate that high biobased content composites can be obtained with an engineering thermoplastic, i.e., PA610, and a natural inorganic nanotube-shaped filler, i.e., HNTs, with balanced mechanical properties and attractive behavior against high temperature. Full article
(This article belongs to the Special Issue Applied Bio-Based Materials)
Show Figures

Figure 1

21 pages, 2409 KB  
Article
Sequestration of Sulfate Anions from Groundwater by Biopolymer-Metal Composite Materials
by Md. Mehadi Hassan, Mohamed H. Mohamed, Inimfon A. Udoetok, Bernd G. K. Steiger and Lee D. Wilson
Polymers 2020, 12(7), 1502; https://doi.org/10.3390/polym12071502 - 6 Jul 2020
Cited by 28 | Viewed by 4390
Abstract
Binary (Chitosan-Cu(II), CCu) and Ternary (Chitosan-Alginate-Cu(II), CACu) composite materials were synthesized at variable composition: CCu (1:1), CACu1 (1:1:1), CACu2 (1:2:1) and CACu3 (2:1:1). Characterization was carried out via spectroscopic (FTIR, solids C-13 NMR, XPS and Raman), thermal (differential scanning calorimetry (DSC) and TGA), [...] Read more.
Binary (Chitosan-Cu(II), CCu) and Ternary (Chitosan-Alginate-Cu(II), CACu) composite materials were synthesized at variable composition: CCu (1:1), CACu1 (1:1:1), CACu2 (1:2:1) and CACu3 (2:1:1). Characterization was carried out via spectroscopic (FTIR, solids C-13 NMR, XPS and Raman), thermal (differential scanning calorimetry (DSC) and TGA), XRD, point of zero charge and solvent swelling techniques. The materials’ characterization confirmed the successful preparation of the polymer-based composites, along with their variable physico-chemical and adsorption properties. Sulfate anion (sodium sulfate) adsorption from aqueous solution was demonstrated using C and CACu1 at pH 6.8 and 295 K, where the monolayer adsorption capacity (Qm) values were 288.1 and 371.4 mg/g, respectively, where the Sips isotherm model provided the “best-fit” for the adsorption data. Single-point sorption study on three types of groundwater samples (wells 1, 2 and 3) with variable sulfate concentration and matrix composition in the presence of composite materials reveal that CACu3 exhibited greater uptake of sulfate (Qe = 81.5 mg/g; 11.5% removal) from Well-1 and CACu2 showed the lowest sulfate uptake (Qe of 15.7 mg/g; 0.865% removal) from Well-3. Generally, for all groundwater samples, the binary composite material (CCu) exhibited attenuated sorption and removal efficiency relative to the ternary composite materials (CACu). Full article
Show Figures

Graphical abstract

19 pages, 5123 KB  
Article
Investigations on the Mechanical Properties of Glass Fiber/Sisal Fiber/Chitosan Reinforced Hybrid Polymer Sandwich Composite Scaffolds for Bone Fracture Fixation Applications
by Soundhar Arumugam, Jayakrishna Kandasamy, Ain Umaira Md Shah, Mohamed Thariq Hameed Sultan, Syafiqah Nur Azrie Safri, Mohd Shukry Abdul Majid, Adi Azriff Basri and Faizal Mustapha
Polymers 2020, 12(7), 1501; https://doi.org/10.3390/polym12071501 - 6 Jul 2020
Cited by 64 | Viewed by 6032
Abstract
This study aims to explore the mechanical properties of hybrid glass fiber (GF)/sisal fiber (SF)/chitosan (CTS) composite material for orthopedic long bone plate applications. The GF/SF/CTS hybrid composite possesses a unique sandwich structure and comprises GF/CTS/epoxy as the external layers and SF/CTS/epoxy as [...] Read more.
This study aims to explore the mechanical properties of hybrid glass fiber (GF)/sisal fiber (SF)/chitosan (CTS) composite material for orthopedic long bone plate applications. The GF/SF/CTS hybrid composite possesses a unique sandwich structure and comprises GF/CTS/epoxy as the external layers and SF/CTS/epoxy as the inner layers. The composite plate resembles the human bone structure (spongy internal cancellous matrix and rigid external cortical). The mechanical properties of the prepared hybrid sandwich composites samples were evaluated using tensile, flexural, micro hardness, and compression tests. The scanning electron microscopic (SEM) images were studied to analyze the failure mechanism of these composite samples. Besides, contact angle (CA) and water absorption tests were conducted using the sessile drop method to examine the wettability properties of the SF/CTS/epoxy and GF/SF/CTS/epoxy composites. Additionally, the porosity of the GF/SF/CTS composite scaffold samples were determined by using the ethanol infiltration method. The mechanical test results show that the GF/SF/CTS hybrid composites exhibit the bending strength of 343 MPa, ultimate tensile strength of 146 MPa, and compressive strength of 380 MPa with higher Young’s modulus in the bending tests (21.56 GPa) compared to the tensile (6646 MPa) and compressive modulus (2046 MPa). Wettability study results reveal that the GF/SF/CTS composite scaffolds were hydrophobic (CA = 92.41° ± 1.71°) with less water absorption of 3.436% compared to the SF/CTS composites (6.953%). The SF/CTS composites show a hydrophilic character (CA = 54.28° ± 3.06°). The experimental tests prove that the GF/SF/CTS hybrid composite can be used for orthopedic bone fracture plate applications in future. Full article
(This article belongs to the Special Issue Polymers in Biomedical Engineering)
Show Figures

Graphical abstract

17 pages, 6785 KB  
Article
Synthesis and Formulation of PCL-Based Urethane Acrylates for DLP 3D Printers
by Hsuan Chen, Shyh-Yuan Lee and Yuan-Min Lin
Polymers 2020, 12(7), 1500; https://doi.org/10.3390/polym12071500 - 5 Jul 2020
Cited by 54 | Viewed by 12991
Abstract
In this study, three PCL-based polyurethane acrylates were synthesized and further formulated into twelve resins for digital light processing (DLP) 3D printing. Three PCL diols with different molecular weights were synthesized via ring-opening reaction of ε-caprolactone on diethylene glycol, with the catalyst stannous [...] Read more.
In this study, three PCL-based polyurethane acrylates were synthesized and further formulated into twelve resins for digital light processing (DLP) 3D printing. Three PCL diols with different molecular weights were synthesized via ring-opening reaction of ε-caprolactone on diethylene glycol, with the catalyst stannous octoate. Isophorone diisocyanate (IPDI) was reacted with 2-hydroxyethyl acrylate (2-HEA) and the PCL diols form PCL-based polyurethane acrylates. Twelve resins composed of different percentages of PCL-based polyurethane acrylates, poly (ethylene glycol) diacrylate (PEGDA), propylene glycol (PPG) and photo-initiator were further printed from a DLP 3D printer. The viscosities of twelve resins decreased by 10 times and became printable after adding 30% of PEGDA. The degree of conversion for the twelve resins can reach more than 80% after the post-curing process. By changing the amount of PEGDA and PPG, the mechanical properties of the twelve resins could be adjusted. PUA530-PEG-PPG (70:30:0), PUA800-PEG-PPG (70:30:0), and PUA1000-PEG-PPG (70:30:0) were successfully printed into customized tissue scaffolds. Twelve PCL-based polyurethane photo-curable resins with tunable mechanical properties, cytotoxicity, and degradability were successfully prepared. With the DLP 3D printing technique, a complex structure could be achieved. These resins have great potential for customized tissue engineering and other biomedical application. Full article
(This article belongs to the Special Issue Polymeric Materials in 3D and 4D Printing)
Show Figures

Figure 1

12 pages, 4018 KB  
Article
Linearly Sensitive and Flexible Pressure Sensor Based on Porous Carbon Nanotube/Polydimethylsiloxane Composite Structure
by Young Jung, Kyung Kuk Jung, Dong Hwan Kim, Dong Hwa Kwak and Jong Soo Ko
Polymers 2020, 12(7), 1499; https://doi.org/10.3390/polym12071499 - 5 Jul 2020
Cited by 42 | Viewed by 7731
Abstract
We developed a simple, low-cost process to fabricate a flexible pressure sensor with linear sensitivity by using a porous carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite structure (CPCS). The working principle of this pressure sensor is based on the change in electrical resistance caused by [...] Read more.
We developed a simple, low-cost process to fabricate a flexible pressure sensor with linear sensitivity by using a porous carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composite structure (CPCS). The working principle of this pressure sensor is based on the change in electrical resistance caused by the contact/non-contact of the CNT tip on the surface of the pores under pressure. The mechanical and electrical properties of the CPCSs could be quantitatively controlled by adjusting the concentration of CNTs. The fabricated flexible pressure sensor showed linear sensitivity and excellent performance with regard to repeatability, hysteresis, and reliability. Furthermore, we showed that the sensor could be applied for human motion detection, even when attached to curved surfaces. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

29 pages, 18950 KB  
Article
New Procedure for BIM Characterization of Architectural Models Manufactured Using Fused Deposition Modeling and Plastic Materials in 4.0 Advanced Construction Environments
by Daniel Diaz-Perete, Jorge Manuel Mercado-Colmenero, Jose Manuel Valderrama-Zafra and Cristina Martin-Doñate
Polymers 2020, 12(7), 1498; https://doi.org/10.3390/polym12071498 - 4 Jul 2020
Cited by 13 | Viewed by 3771
Abstract
This paper presents a new procedure for the building information modeling (BIM) characterization of structural topologies manufactured with plastic materials and fused deposition modeling (FDM) additive technology. The procedure presented here transforms the architectural geometry into an expanded three-dimensional model, capable of directly [...] Read more.
This paper presents a new procedure for the building information modeling (BIM) characterization of structural topologies manufactured with plastic materials and fused deposition modeling (FDM) additive technology. The procedure presented here transforms the architectural geometry into an expanded three-dimensional model, capable of directly linking the topology of the plastic structure with the technological, functional and economic requirements for working in advanced construction 4.0 environments. The model incorporates a new algorithm whose objective is to recognize the topological surface of the plastic structural part obtaining in a fully automated way the FDM manufacturing time as well as the manufacturing cost. The new algorithm starts from the voxelized geometrical surface of the architectural model, calculating the manufacturing time from the full geometric path traveled by the extruder in a voxel, the extruder’s speed, the print pattern and the layer height. In this way it is possible to obtain a complete digital model capable of managing and analyzing the plastic architectural object in an advanced BIM 4.0 environment. The model presented in this paper was applied to two architectural structures designed for a real urban environment. The final structural geometries have been obtained through topological processes in order to reduce the raw plastic manufacturing material and to improve the plastic structure strength. The architectural elements have been validated structurally by the means of numerical simulations, following the scenario of loads and boundary conditions required for the real project. The displacement maps point to a maximum value of 0.5 mm according to the project requirements. The Von Mises stress fields indicate maximum values of 0.423 and 0.650 MPa, not exceeding in any case the tensile yield strength of the thermoplastic material. Full article
(This article belongs to the Special Issue Polymer Processing and Molding)
Show Figures

Graphical abstract

14 pages, 5393 KB  
Article
Nanostructured Chitosan/Maghemite Composites Thin Film for Potential Optical Detection of Mercury Ion by Surface Plasmon Resonance Investigation
by Nurul Illya Muhamad Fauzi, Yap Wing Fen, Nur Alia Sheh Omar, Silvan Saleviter, Wan Mohd Ebtisyam Mustaqim Mohd Daniyal, Hazwani Suhaila Hashim and Mohd Nasrullah
Polymers 2020, 12(7), 1497; https://doi.org/10.3390/polym12071497 - 4 Jul 2020
Cited by 79 | Viewed by 5167
Abstract
In this study, synthesis and characterization of chitosan/maghemite (Cs/Fe2O3) composites thin film has been described. Its properties were characterized using Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and ultraviolet-visible spectroscopy (UV-Vis). FTIR confirmed the existence of Fe–O [...] Read more.
In this study, synthesis and characterization of chitosan/maghemite (Cs/Fe2O3) composites thin film has been described. Its properties were characterized using Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and ultraviolet-visible spectroscopy (UV-Vis). FTIR confirmed the existence of Fe–O bond, C–N bond, C–C bond, C–O bond, O=C=O bond and O–H bond in Cs/Fe2O3 thin film. The surface morphology of the thin film indicated the relatively smooth and homogenous thin film, and also confirmed the interaction of Fe2O3 with the chitosan. Next, the UV-Vis result showed high absorbance value with an optical band gap of 4.013 eV. The incorporation of this Cs/Fe2O3 thin film with an optical-based method, i.e., surface plasmon resonance spectroscopy showed positive response where mercury ion (Hg2+) can be detected down to 0.01 ppm (49.9 nM). These results validate the potential of Cs/Fe2O3 thin film for optical sensing applications in Hg2+ detection. Full article
(This article belongs to the Special Issue Functional Chitosan-Based Composites)
Show Figures

Figure 1

12 pages, 2093 KB  
Article
Conversion of Starchy Waste Streams into Polyhydroxyalkanoates Using Cupriavidus necator DSM 545
by Silvia Brojanigo, Elettra Parro, Tiziano Cazzorla, Lorenzo Favaro, Marina Basaglia and Sergio Casella
Polymers 2020, 12(7), 1496; https://doi.org/10.3390/polym12071496 - 4 Jul 2020
Cited by 45 | Viewed by 5004
Abstract
Due to oil shortage and environmental problems, synthetic plastics have to be replaced by different biodegradable materials. A promising alternative could be polyhydroxyalkanoates (PHAs), and the low-cost abundant agricultural starchy by-products could be usefully converted into PHAs by properly selected and/or developed microbes. [...] Read more.
Due to oil shortage and environmental problems, synthetic plastics have to be replaced by different biodegradable materials. A promising alternative could be polyhydroxyalkanoates (PHAs), and the low-cost abundant agricultural starchy by-products could be usefully converted into PHAs by properly selected and/or developed microbes. Among the widely available starchy waste streams, a variety of residues have been explored as substrates, such as broken, discolored, unripe rice and white or purple sweet potato waste. Cupriavidus necator DSM 545, a well-known producer of PHAs, was adopted in a simultaneous saccharification and fermentation (SSF) process through an optimized dosage of the commercial amylases cocktail STARGEN™ 002. Broken rice was found to be the most promising carbon source with PHAs levels of up to 5.18 g/L. This research demonstrates that rice and sweet potato waste are low-cost feedstocks for PHAs production, paving the way for the processing of other starchy materials into bioplastics. Full article
(This article belongs to the Special Issue Sustainable Polymers from Biomass)
Show Figures

Graphical abstract

16 pages, 1826 KB  
Article
Complex Temperature and Concentration Dependent Self-Assembly of Poly(2-oxazoline) Block Copolymers
by Loan Trinh Che, Marianne Hiorth, Richard Hoogenboom and Anna-Lena Kjøniksen
Polymers 2020, 12(7), 1495; https://doi.org/10.3390/polym12071495 - 4 Jul 2020
Cited by 10 | Viewed by 3837
Abstract
The effect of polymer concentration on the temperature-induced self-association of a block copolymer comprising a poly(2-ethyl-2-oxazoline) block and a random copolymer block consisting of 2-ethyl-2-oxazoline and 2-n-propyl-2-oxazoline (PEtO80-block-P(EtOxx-stat-PropO40-x) with x = [...] Read more.
The effect of polymer concentration on the temperature-induced self-association of a block copolymer comprising a poly(2-ethyl-2-oxazoline) block and a random copolymer block consisting of 2-ethyl-2-oxazoline and 2-n-propyl-2-oxazoline (PEtO80-block-P(EtOxx-stat-PropO40-x) with x = 0, 4, or 8 were investigated by dynamic light scattering (DLS) and transmittance measurements (turbidimetry). The polymers reveal a complex aggregation behavior with up to three relaxation modes in the DLS data and with a transmittance that first goes through a minimum before it declines at high temperatures. At low temperatures, unassociated polymer chains were found to co-exist with larger aggregates. As the temperature is increased, enhanced association and contraction of the aggregates results in a drop of the transmittance values. The aggregates fragment into smaller micellar-like clusters when the temperature is raised further, causing the samples to become optically clear again. At high temperatures, the polymers aggregate into large compact clusters, and the samples become turbid. Interestingly, very large aggregates were observed at low temperatures when the polymer concentrations were low. The formation of these aggregates was also promoted by a more hydrophilic copolymer structure. The formation of large aggregates with an open structure at conditions where the solvent conditions are improved is probably caused by depletion flocculation of the smaller aggregates. Full article
(This article belongs to the Special Issue Thermoresponsive Polymers)
Show Figures

Figure 1

17 pages, 6215 KB  
Article
Comparative Study of Aromatic and Cycloaliphatic Isocyanate Effects on Physico-Chemical Properties of Bio-Based Polyurethane Acrylate Coatings
by Nurul Huda Mudri, Luqman Chuah Abdullah, Min Min Aung, Mek Zah Salleh, Dayang Radiah Awang Biak and Marwah Rayung
Polymers 2020, 12(7), 1494; https://doi.org/10.3390/polym12071494 - 3 Jul 2020
Cited by 29 | Viewed by 6268
Abstract
Crude jatropha oil (JO) was modified to form jatropha oil-based polyol (JOL) via two steps in a chemical reaction known as epoxidation and hydroxylation. JOL was then reacted with isocyanates to produce JO-based polyurethane resin. In this study, two types of isocyanates, 2,4-toluene [...] Read more.
Crude jatropha oil (JO) was modified to form jatropha oil-based polyol (JOL) via two steps in a chemical reaction known as epoxidation and hydroxylation. JOL was then reacted with isocyanates to produce JO-based polyurethane resin. In this study, two types of isocyanates, 2,4-toluene diisocyanate (2,4-TDI) and isophorone diisocyanate (IPDI) were introduced to produce JPUA-TDI and JPUA-IPDI respectively. 2,4-TDI is categorised as an aromatic isocyanate whilst IPDI is known as a cycloaliphatic isocyanate. Both JPUA-TDI and JPUA-IPDI were then end-capped by the acrylate functional group of 2-hydroxyethyl methacrylate (HEMA). The effects of that isocyanate structure were investigated for their physico, chemical and thermal properties. The changes of the functional groups during each synthesis step were monitored by FTIR analysis. The appearance of urethane peaks was observed at 1532 cm−1, 1718 cm−1 and 3369 cm−1 while acrylate peaks were detected at 815 cm−1 and 1663 cm−1 indicating that JPUA was successfully synthesised. It was found that the molar mass of JPUA-TDI was doubled compared to JPUA-IPDI. Each resin showed a similar degradation pattern analysed by thermal gravimetric analysis (TGA). For the mechanical properties, the JPUA-IPDI-based coating formulation exhibited a higher hardness value but poor adhesion compared to the JPUA-TDI-based coating formulation. Both types of jatropha-based polyurethane acrylate may potentially be used in an ultraviolet (UV) curing system specifically for clear coat surface applications to replace dependency on petroleum-based chemicals. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials)
Show Figures

Figure 1

19 pages, 3542 KB  
Article
Tailoring the Physico-Chemical Properties of Poly(xylitol-dicarboxylate-co-butylene dicarboxylate) Polyesters by Adjusting the Cross-Linking Time
by Marta Piątek-Hnat, Paulina Sładkiewicz, Kuba Bomba, Jakub Pęksiński, Agnieszka Kozłowska, Jacek G. Sośnicki and Tomasz J. Idzik
Polymers 2020, 12(7), 1493; https://doi.org/10.3390/polym12071493 - 3 Jul 2020
Cited by 7 | Viewed by 3019
Abstract
Determining the cross-linking time resulting in the best achievable properties in elastomers is a very important factor when considering their mass production. In this paper, five biodegradable polymers were synthesized—poly(xylitol-dicarboxylate-co-butylene dicarboxylate) polymers, based on xylitol obtained from renewable sources. Five different dicarboxylic acids [...] Read more.
Determining the cross-linking time resulting in the best achievable properties in elastomers is a very important factor when considering their mass production. In this paper, five biodegradable polymers were synthesized—poly(xylitol-dicarboxylate-co-butylene dicarboxylate) polymers, based on xylitol obtained from renewable sources. Five different dicarboxylic acids with even numbers of carbon atoms in the aliphatic chain were used: succinic acid, adipic acid, suberic acid, sebacic acid, and dodecanedioic acid. Samples were taken directly after polycondensation (prepolymer samples) and at different stages of the cross-linking process. Physiochemical properties were determined by a gel fraction test, differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), quasi-static tensile tests, nuclear magnetic resonance spectroscopy (1H NMR and 13C NMR), and an in vitro biodegradation test. The best cross-linking time was determined to be 288h. Properties and degradation time can be tailored for specific applications by adjusting the dicarboxylic acid chain length. Full article
Show Figures

Graphical abstract

15 pages, 4234 KB  
Article
A New Polymer-Based Mechanical Metamaterial with Tailorable Large Negative Poisson’s Ratios
by Shanshi Gao, Weidong Liu, Liangchi Zhang and Asit Kumar Gain
Polymers 2020, 12(7), 1492; https://doi.org/10.3390/polym12071492 - 3 Jul 2020
Cited by 37 | Viewed by 6507
Abstract
Mechanical metamaterials have attracted significant attention due to their programmable internal structure and extraordinary mechanical properties. However, most of them are still in their prototype stage without direct applications. This research developed an easy-to-use mechanical metamaterial with tailorable large negative Poisson’s ratios. This [...] Read more.
Mechanical metamaterials have attracted significant attention due to their programmable internal structure and extraordinary mechanical properties. However, most of them are still in their prototype stage without direct applications. This research developed an easy-to-use mechanical metamaterial with tailorable large negative Poisson’s ratios. This metamaterial was microstructural, with cylindrical-shell-based units and was manufactured by the 3D-printing technique. It was found numerically that the present metamaterial could achieve large negative Poisson’s ratios up to −1.618 under uniaxial tension and −1.657 under uniaxial compression, and the results of the following verification tests agreed with simulation findings. Moreover, stress concentration in this new metamaterial is much smaller than that in most of existing re-entrance metamaterials. Full article
Show Figures

Graphical abstract

23 pages, 3678 KB  
Review
Magnetic Processing of Diamagnetic Materials
by Masafumi Yamato and Tsunehisa Kimura
Polymers 2020, 12(7), 1491; https://doi.org/10.3390/polym12071491 - 3 Jul 2020
Cited by 39 | Viewed by 8956
Abstract
Currently, materials scientists and nuclear magnetic resonance spectroscopists have easy access to high magnetic fields of approximately 10 T supplied by superconducting magnets. Neodymium magnets that generate magnetic fields of approximately 1 T are readily available for laboratory use and are widely used [...] Read more.
Currently, materials scientists and nuclear magnetic resonance spectroscopists have easy access to high magnetic fields of approximately 10 T supplied by superconducting magnets. Neodymium magnets that generate magnetic fields of approximately 1 T are readily available for laboratory use and are widely used in daily life applications, such as mobile phones and electric vehicles. Such common access to magnetic fields—unexpected 30 years ago—has helped researchers discover new magnetic phenomena and use such phenomena to process diamagnetic materials. Although diamagnetism is well known, it is only during the last 30 years that researchers have applied magnetic processing to various classes of diamagnetic materials such as ceramics, biomaterials, and polymers. The magnetic effects that we report herein are largely attributable to the magnetic force, magnetic torque, and magnetic enthalpy that in turn, directly derive from the well-defined magnetic energy. An example of a more complex magnetic effect is orientation of crystalline polymers under an applied magnetic field; researchers do not yet fully understand the crystallization mechanism. Our review largely focuses on polymeric materials. Research topics such as magnetic effect on chiral recognition are interesting yet beyond our scope. Full article
(This article belongs to the Special Issue Magnetic Field in Polymer Research)
Show Figures

Graphical abstract

18 pages, 3146 KB  
Review
Present Status in Polymeric Mouthguards. A Future Area for Additive Manufacturing?
by Ana M. Sousa, Ana C. Pinho, Ana Messias and Ana P. Piedade
Polymers 2020, 12(7), 1490; https://doi.org/10.3390/polym12071490 - 3 Jul 2020
Cited by 31 | Viewed by 11497
Abstract
Athletes from contact sports are more prone to orofacial injuries because of the exposure to possible shocks and collisions derived from physical proximity. The use of protector polymeric mouthguards proved to be useful in the prevention of the described injuries. There are different [...] Read more.
Athletes from contact sports are more prone to orofacial injuries because of the exposure to possible shocks and collisions derived from physical proximity. The use of protector polymeric mouthguards proved to be useful in the prevention of the described injuries. There are different types of mouthguards with varying ranges of protection and prices, but they are all made from polymers and share the same propose: to absorb and dissipate the impact energy resulting from the shocks. As they are used inside the mouth, they should not impair breathing and speaking nor compromise the comfort of the athlete. However, the ideal mouthguard is yet to be created. The choice of the most appropriate polymeric material and the standard required properties have not yet been reported. Regardless of the numerous studies in this field, normalized control parameters for both material characterization and mouthguard fabrication are absent. This paper aims to present a review of the current types of available mouthguards and their properties/characteristics. Moreover, a detailed description of the most common polymers for the fabrication of mouthguards, together with the manufacturing techniques, are discussed. Full article
(This article belongs to the Special Issue Polymer Connect: Polymer Science and Composite Materials)
Show Figures

Figure 1