13 pages, 2300 KB  
Article
The Peptide Salamandrin-I Modulates Components Involved in Pyroptosis and Induces Cell Death in Human Leukemia Cell Line HL-60
by Amandda Évelin Silva-Carvalho, Nakaly Natiely de Oliveira, Julia Viana Lafetá Machado, Daniel Carneiro Moreira, Guilherme Dotto Brand, José Roberto S. A. Leite, Alexandra Plácido, Peter Eaton and Felipe Saldanha-Araujo
Pharmaceutics 2023, 15(7), 1864; https://doi.org/10.3390/pharmaceutics15071864 - 1 Jul 2023
Cited by 3 | Viewed by 1814
Abstract
Amphibian secretions have been extensively investigated for the production of bioactive molecules. Salamandrin-I is an antioxidant peptide, isolated from the skin secretion of the fire salamander, that has induced no toxicity in microglia or erythrocytes. Importantly, the administration of antioxidants may constitute an [...] Read more.
Amphibian secretions have been extensively investigated for the production of bioactive molecules. Salamandrin-I is an antioxidant peptide, isolated from the skin secretion of the fire salamander, that has induced no toxicity in microglia or erythrocytes. Importantly, the administration of antioxidants may constitute an adequate therapeutic approach to cancer treatment. Here, with the purpose of better characterizing the therapeutic potential of salamandrin-I, we investigated whether this antioxidant peptide also exerts anticancer activity, using the human leukemia cell line HL-60 as a cancer model. Salamandrin-I treatment induced a significant reduction in HL-60 proliferation, which was accompanied by cell cycle arrest. Furthermore, the peptide-induced cell death showed a significant increase in the LDH release in HL-60 cells. The cellular toxicity exerted by salamandrin-I is possibly related to pyroptosis, since the HL-60 cells showed loss of mitochondrial membrane potential and hyperexpression of inflammasome components following the peptide treatment. This is the first demonstration of the anticancer potential of the salamandrin-I peptide. Such results are important, as they offer relevant insights into the field of cancer therapy and allow the design of future bioactive molecules using salamandrin-I as a template. Full article
(This article belongs to the Special Issue Peptides and Peptide Mimetics: Potential Tools for Therapy)
Show Figures

Figure 1

12 pages, 1011 KB  
Article
Relationship between Pharmacokinetic Profile and Clinical Efficacy Data of Three Different Forms of Locally Applied Flurbiprofen in the Mouth/Throat
by Vit Perlik, Anuradha Kulasekaran, Graça Coutinho, Martin Votava and Jean-Michel Cardot
Pharmaceutics 2023, 15(7), 1863; https://doi.org/10.3390/pharmaceutics15071863 - 1 Jul 2023
Cited by 5 | Viewed by 3484
Abstract
This study aimed to link pharmacokinetic (PK) data from different flurbiprofen preparations for the treatment of sore throat with published data to elucidate whether early efficacy is due to the local action of flurbiprofen or a systemic effect after absorption of the swallowed [...] Read more.
This study aimed to link pharmacokinetic (PK) data from different flurbiprofen preparations for the treatment of sore throat with published data to elucidate whether early efficacy is due to the local action of flurbiprofen or a systemic effect after absorption of the swallowed drug. Three comparative bioavailability studies conducted in healthy subjects provided data from flurbiprofen 8.75 mg formulations, including spray solution, spray gel, lozenges, and granules. A parallel interstudy comparison was made of PK parameters, including partial AUCs (pAUCs), using an ANOVA model with the calculation of 90% confidence intervals (CI) for the differences between least squares (LS) means for each of the test groups versus the respective reference groups. All three studies showed bioequivalence for the respective product comparisons. The interstudy comparison showed a slower rate of absorption for granules compared to spray solution (reference) based on Tmax, Cmax, and pAUCs for 1 h and 2 h. When AUC0.25h and AUC0.5h were considered, slower rates of absorption were also seen for lozenges and spray gel. The differences correlated with the reported time of onset of action, which is faster for the spray solution (20 min) compared to lozenges (26 min) and granules (30 min). These pAUCs provide useful data that allow for the discrimination between formulations. Moreover, the pAUC values represent <5% of the total AUC, suggesting that the early onset of pain relief is a response to immediate local absorption at the site of action rather than a systemic effect. Full article
Show Figures

Figure 1

38 pages, 1095 KB  
Review
Innovative Strategies for Drug Delivery to the Ocular Posterior Segment
by Andrea Gabai, Marco Zeppieri, Lucia Finocchio and Carlo Salati
Pharmaceutics 2023, 15(7), 1862; https://doi.org/10.3390/pharmaceutics15071862 - 1 Jul 2023
Cited by 24 | Viewed by 5803
Abstract
Innovative and new drug delivery systems (DDSs) have recently been developed to vehicle treatments and drugs to the ocular posterior segment and the retina. New formulations and technological developments, such as nanotechnology, novel matrices, and non-traditional treatment strategies, open new perspectives in this [...] Read more.
Innovative and new drug delivery systems (DDSs) have recently been developed to vehicle treatments and drugs to the ocular posterior segment and the retina. New formulations and technological developments, such as nanotechnology, novel matrices, and non-traditional treatment strategies, open new perspectives in this field. The aim of this mini-review is to highlight promising strategies reported in the current literature based on innovative routes to overcome the anatomical and physiological barriers of the vitreoretinal structures. The paper also describes the challenges in finding appropriate and pertinent treatments that provide safety and efficacy and the problems related to patient compliance, acceptability, effectiveness, and sustained drug delivery. The clinical application of these experimental approaches can help pave the way for standardizing the use of DDSs in developing enhanced treatment strategies and personalized therapeutic options for ocular pathologies. Full article
(This article belongs to the Topic New Challenges in Ocular Drug Delivery)
Show Figures

Figure 1

18 pages, 3566 KB  
Article
Controlled Delivery of Celecoxib—β-Cyclodextrin Complexes from the Nanostructured Titanium Dioxide Layers
by Magdalena Jarosz, Jakub Latosiński, Paweł Gumułka, Monika Dąbrowska, Mariusz Kępczyński, Grzegorz Dariusz Sulka and Małgorzata Starek
Pharmaceutics 2023, 15(7), 1861; https://doi.org/10.3390/pharmaceutics15071861 - 1 Jul 2023
Cited by 5 | Viewed by 2320
Abstract
Considering the potential of nanostructured titanium dioxide layers as drug delivery systems, it is advisable to indicate the possibility of creating a functional drug delivery system based on anodic TiO2 for celecoxib as an alternative anti-inflammatory drug and its inclusion complex with [...] Read more.
Considering the potential of nanostructured titanium dioxide layers as drug delivery systems, it is advisable to indicate the possibility of creating a functional drug delivery system based on anodic TiO2 for celecoxib as an alternative anti-inflammatory drug and its inclusion complex with β-cyclodextrin. First, the optimal composition of celecoxib—β-cyclodextrin complexes was synthesized and determined. The effectiveness of the complexation was quantified using isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR) nuclear magnetic resonance (1H NMR), and scanning electron microscopy (SEM). Then, nanostructured titanium dioxide layers (TiO2) were synthesized using the electrochemical oxidation technique. The TiO2 layers with pore diameters of 60 nm and layer thickness of 1.60 µm were used as drug delivery systems. The samples were modified with pure celecoxib and the β-cyclodextrin-celecoxib complex. The release profiles shown effective drug release from such layers during 24 h. After the initial burst release, the drug was continuously released from the pores. The presented results confirm that the use of nanostructured TiO2 as a drug delivery system can be effectively used in more complicated systems composed of β-cyclodextrin—celecoxib complexes, making such drugs available for pain treatment, e.g., for orthopedic surgeries. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

21 pages, 4321 KB  
Article
Assessment of Different Niosome Formulations for Optogenetic Applications: Morphological and Electrophysiological Effects
by José David Celdrán, Lawrence Humphreys, Desirée González, Cristina Soto-Sánchez, Gema Martínez-Navarrete, Iván Maldonado, Idoia Gallego, Ilia Villate-Beitia, Myriam Sainz-Ramos, Gustavo Puras, José Luis Pedraz and Eduardo Fernández
Pharmaceutics 2023, 15(7), 1860; https://doi.org/10.3390/pharmaceutics15071860 - 1 Jul 2023
Viewed by 2266
Abstract
Gene therapy and optogenetics are becoming promising tools for treating several nervous system pathologies. Currently, most of these approaches use viral vectors to transport the genetic material inside the cells, but viruses present some potential risks, such as marked immunogenicity, insertional mutagenesis, and [...] Read more.
Gene therapy and optogenetics are becoming promising tools for treating several nervous system pathologies. Currently, most of these approaches use viral vectors to transport the genetic material inside the cells, but viruses present some potential risks, such as marked immunogenicity, insertional mutagenesis, and limited insert gene size. In this framework, non-viral nanoparticles, such as niosomes, are emerging as possible alternative tools to deliver genetic material, avoiding the aforementioned problems. To determine their suitability as vectors for optogenetic therapies in this work, we tested three different niosome formulations combined with three optogenetic plasmids in rat cortical neurons in vitro. All niosomes tested successfully expressed optogenetic channels, which were dependent on the ratio of niosome to plasmid, with higher concentrations yielding higher expression rates. However, we found changes in the dendritic morphology and electrophysiological properties of transfected cells, especially when we used higher concentrations of niosomes. Our results highlight the potential use of niosomes for optogenetic applications and suggest that special care must be taken to achieve an optimal balance of niosomes and nucleic acids to achieve the therapeutic effects envisioned by these technologies. Full article
(This article belongs to the Special Issue Supramolecular Systems for Gene and Drug Delivery, 2nd Edition)
Show Figures

Figure 1

15 pages, 288 KB  
Review
Model-Informed Precision Dosing Software Tools for Dosage Regimen Individualization: A Scoping Review
by Paula Del Valle-Moreno, Paloma Suarez-Casillas, Marta Mejías-Trueba, Pablo Ciudad-Gutiérrez, Ana Belén Guisado-Gil, María Victoria Gil-Navarro and Laura Herrera-Hidalgo
Pharmaceutics 2023, 15(7), 1859; https://doi.org/10.3390/pharmaceutics15071859 - 1 Jul 2023
Cited by 20 | Viewed by 5361 | Correction
Abstract
Background: Pharmacokinetic nomograms, equations, and software are considered the main tools available for Therapeutic Drug Monitoring (TDM). Model-informed precision dosing (MIPD) is an advanced discipline of TDM that allows dose individualization, and requires a software for knowledge integration and statistical calculations. Due to [...] Read more.
Background: Pharmacokinetic nomograms, equations, and software are considered the main tools available for Therapeutic Drug Monitoring (TDM). Model-informed precision dosing (MIPD) is an advanced discipline of TDM that allows dose individualization, and requires a software for knowledge integration and statistical calculations. Due to its precision and extensive applicability, the use of these software is widespread in clinical practice. However, the currently available evidence on these tools remains scarce. Objectives: To review and summarize the available evidence on MIPD software tools to facilitate its identification, evaluation, and selection by users. Methods: An electronic literature search was conducted in MEDLINE, EMBASE, OpenAIRE, and BASE before July 2022. The PRISMA-ScR was applied. The main inclusion criteria were studies focused on developing software for use in clinical practice, research, or modelling. Results: Twenty-eight software were classified as MIPD software. Nine are currently unavailable. The remaining 19 software were described in depth. It is noteworthy that all MIPD software used Bayesian statistical methods to estimate drug exposure and all provided a population model by default, except NONMEN. Conclusions: Pharmacokinetic software have become relevant tools for TDM. MIPD software have been compared, facilitating its selection for use in clinical practice. However, it would be interesting to standardize the quality and validate the software tools. Full article
(This article belongs to the Special Issue Therapeutic Drug Monitoring)
25 pages, 1398 KB  
Review
Incretins-Based Therapies and Their Cardiovascular Effects: New Game-Changers for the Management of Patients with Diabetes and Cardiovascular Disease
by Federico Bernardini, Annunziata Nusca, Federica Coletti, Ylenia La Porta, Mariagrazia Piscione, Francesca Vespasiano, Fabio Mangiacapra, Elisabetta Ricottini, Rosetta Melfi, Ilaria Cavallari, Gian Paolo Ussia and Francesco Grigioni
Pharmaceutics 2023, 15(7), 1858; https://doi.org/10.3390/pharmaceutics15071858 - 1 Jul 2023
Cited by 8 | Viewed by 3670
Abstract
Atherosclerosis is the leading cause of death worldwide, especially in patients with type 2 diabetes mellitus (T2D). GLP-1 receptor agonists and DPP-4 inhibitors were demonstrated to play a markedly protective role for the cardiovascular system beyond their glycemic control. Several cardiovascular outcome trials [...] Read more.
Atherosclerosis is the leading cause of death worldwide, especially in patients with type 2 diabetes mellitus (T2D). GLP-1 receptor agonists and DPP-4 inhibitors were demonstrated to play a markedly protective role for the cardiovascular system beyond their glycemic control. Several cardiovascular outcome trials (CVOT) reported the association between using these agents and a significant reduction in cardiovascular events in patients with T2D and a high cardiovascular risk profile. Moreover, recent evidence highlights a favorable benefit/risk profile in myocardial infarction and percutaneous coronary revascularization settings. These clinical effects result from their actions on multiple molecular mechanisms involving the immune system, platelets, and endothelial and vascular smooth muscle cells. This comprehensive review specifically concentrates on these cellular and molecular processes mediating the cardiovascular effects of incretins-like molecules, aiming to improve clinicians’ knowledge and stimulate a more extensive use of these drugs in clinical practice as helpful cardiovascular preventive strategies. Full article
(This article belongs to the Special Issue Effective Therapies for Diabetes)
Show Figures

Figure 1

18 pages, 3569 KB  
Article
Dysregulation of Amino Acid Transporters in a Rat Model of TLR7-Mediated Maternal Immune Activation
by Eliza R. McColl, Jeffrey T. Henderson and Micheline Piquette-Miller
Pharmaceutics 2023, 15(7), 1857; https://doi.org/10.3390/pharmaceutics15071857 - 1 Jul 2023
Cited by 2 | Viewed by 2415
Abstract
Maternal immune activation (MIA) during pregnancy is linked to neurodevelopmental disorders in humans. Similarly, the TLR7 agonist imiquimod alters neurodevelopment in rodents. While the mechanisms underlying MIA-mediated neurodevelopmental changes are unknown, they could involve dysregulation of amino acid transporters essential for neurodevelopment. Therefore, [...] Read more.
Maternal immune activation (MIA) during pregnancy is linked to neurodevelopmental disorders in humans. Similarly, the TLR7 agonist imiquimod alters neurodevelopment in rodents. While the mechanisms underlying MIA-mediated neurodevelopmental changes are unknown, they could involve dysregulation of amino acid transporters essential for neurodevelopment. Therefore, we sought to determine the nature of such transporter changes in both imiquimod-treated rats and human placentas during infection. Pregnant rats received imiquimod on gestational day (GD)14. Transporter expression was measured in placentas and fetal brains via qPCR (GD14.5) and immunoblotting (GD16). To monitor function, fetal brain amino acid levels were measured by HPLC on GD16. Gene expression in the cortex of female fetal brains was further examined by RNAseq on GD19. In human placentas, suspected active infection was associated with decreased ASCT1 and SNAT2 protein expression. Similarly, in imiquimod-treated rats, ASCT1 and SNAT2 protein was also decreased in male placentas, while EAAT2 was decreased in female placentas. CAT3 was increased in female fetal brains. Consistent with this, imiquimod altered amino acid levels in fetal brains, while RNAseq demonstrated changes in expression of several genes implicated in autism. Thus, imiquimod alters amino acid transporter levels in pregnant rats, and similar changes occur in human placentas during active infection. This suggests that changes in expression of amino acid transporters may contribute to effects mediated by MIA toward altered neurodevelopment. Full article
(This article belongs to the Special Issue Drug Transporters: Regulation and Roles in Therapeutic Strategies)
Show Figures

Graphical abstract

29 pages, 5892 KB  
Article
Phenylalanine and Tryptophan-Based Surfactants as New Antibacterial Agents: Characterization, Self-Aggregation Properties, and DPPC/Surfactants Vesicles Formulation
by Zakaria Hafidi, Lourdes Pérez, Mohammed El Achouri and Ramon Pons
Pharmaceutics 2023, 15(7), 1856; https://doi.org/10.3390/pharmaceutics15071856 - 30 Jun 2023
Cited by 8 | Viewed by 3281
Abstract
Cationic surfactants based on phenylalanine (CnPC3NH3Cl) and tryptophan (CnTC3NH3Cl) were synthesized using renewable raw materials as starting compounds and a green synthetic procedure. The synthesis, acid-base equilibrium, aggregation properties, and antibacterial [...] Read more.
Cationic surfactants based on phenylalanine (CnPC3NH3Cl) and tryptophan (CnTC3NH3Cl) were synthesized using renewable raw materials as starting compounds and a green synthetic procedure. The synthesis, acid-base equilibrium, aggregation properties, and antibacterial activity were investigated. Conductivity and fluorescence were used to establish critical micelle concentrations. Micellization of CnPC3NH3Cl and CnTC3NH3Cl occurred in the ranges of 0.42–16.2 mM and 0.29–4.6 mM, respectively. Since those surfactants have some acidic character, the apparent pKa was determined through titrations, observing increasing acidity with increasing chain length and being slightly more acidic with the phenylalanine than the tryptophan derivatives. Both families showed promising antibacterial efficacy against eight different bacterial strains. Molecular docking studies against the enzyme peptidoglycan glycosyltransferase (PDB ID:2OQO) were used to investigate the potential binding mechanism of target surfactant molecules. According to small angle X-ray scattering (SAXS) results, the surfactants incorporate into DPPC (Dipalmitoyl Phosphatidyl Choline) bilayers without strong perturbation up to high surfactant concentration. Some of the C12TC3NH3Cl/DPPC formulations (40%/60% and 20%/80% molar ratios) exhibited good antibacterial activity, while the others were not effective against the tested bacteria. The strong affinity between DPPC and surfactant molecules, as determined by the DFT (density functional theory) method, could be one of the reasons for the loss of antibacterial activity of these cationic surfactants when they are incorporated in vesicles. Full article
(This article belongs to the Special Issue Recent Trends in Nano-Based Drug Delivery Systems)
Show Figures

Figure 1

16 pages, 3063 KB  
Article
Chitosan-Coated SLN: A Potential System for Ocular Delivery of Metronidazole
by Simise S. Sikhondze, Pedzisai A. Makoni, Roderick B. Walker and Sandile M. M. Khamanga
Pharmaceutics 2023, 15(7), 1855; https://doi.org/10.3390/pharmaceutics15071855 - 30 Jun 2023
Cited by 4 | Viewed by 2905
Abstract
Ophthalmic drops for ocular delivery exhibit inadequate residence time, which often requires multiple daily dosing that may result in patient non-adherence. In this study, the development of a once-daily-dosed chitosan-coated metronidazole (MTZ)-loaded solid lipid nanoparticles (SLNs) for ocular delivery was undertaken. Melt emulsification [...] Read more.
Ophthalmic drops for ocular delivery exhibit inadequate residence time, which often requires multiple daily dosing that may result in patient non-adherence. In this study, the development of a once-daily-dosed chitosan-coated metronidazole (MTZ)-loaded solid lipid nanoparticles (SLNs) for ocular delivery was undertaken. Melt emulsification and ultrasonication were used to manufacture MTZ-loaded SLN, which were subsequently coated with chitosan (CS) by mechanical stirring using a 0.1% w/v solution. Gelucire® 48/16 and Transcutol® HP were used as the solid lipid and synthetic solvent, respectively, with Tween® 20 included as a stabilizing agent. The critical quality attributes (CQA) of the optimized CS-coated SLN that was monitored included particle size, polydispersity index, Zeta potential, % entrapment efficiency, % MTZ loading, pH, and osmolarity. The optimized coated nanocarriers were evaluated using laser Doppler anemometry (LDA) and were determined to be stable, with particle sizes in the nanometre range. In vitro mucoadhesion, MTZ release and short-term stability, in addition to the determination of the shape of the optimized CS-coated SLN, were undertaken. The mucoadhesive properties of the optimized CS-coated MTZ-loaded SLN demonstrated increased ocular availability, which may allow dose reduction or longer intervals between doses by improving precorneal retention and ocular availability. Overall, our findings suggest that CS-coated MTZ-loaded SLNs have the potential for clinical application, to enhance ocular delivery through the release of MTZ. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

22 pages, 10879 KB  
Article
Combining Molecular Dynamics Simulations and Biophysical Characterization to Investigate Protein-Specific Excipient Effects on Reteplase during Freeze Drying
by Suk Kyu Ko, Gabriella Björkengren, Carolin Berner, Gerhard Winter, Pernille Harris and Günther H. J. Peters
Pharmaceutics 2023, 15(7), 1854; https://doi.org/10.3390/pharmaceutics15071854 - 30 Jun 2023
Cited by 5 | Viewed by 3132
Abstract
We performed molecular dynamics simulations of Reteplase in the presence of different excipients to study the stabilizing mechanisms and to identify the role of excipients during freeze drying. To simulate the freeze-drying process, we divided the process into five distinct steps: (i) protein–excipient [...] Read more.
We performed molecular dynamics simulations of Reteplase in the presence of different excipients to study the stabilizing mechanisms and to identify the role of excipients during freeze drying. To simulate the freeze-drying process, we divided the process into five distinct steps: (i) protein–excipient formulations at room temperature, (ii) the ice-growth process, (iii)–(iv) the partially solvated and fully dried formulations, and (v) the reconstitution. Furthermore, coarse-grained (CG) simulations were employed to explore the protein-aggregation process in the presence of arginine. By using a coarse-grained representation, we could observe the collective behavior and interactions between protein molecules during the aggregation process. The CG simulations revealed that the presence of arginine prevented intermolecular interactions of the catalytic domain of Reteplase, thus reducing the aggregation propensity. This suggests that arginine played a stabilizing role by interacting with protein-specific regions. From the freeze-drying simulations, we could identify several protein-specific events: (i) collapse of the domain structure, (ii) recovery of the drying-induced damages during reconstitution, and (iii) stabilization of the local aggregation-prone region via direct interactions with excipients. Complementary to the simulations, we employed nanoDSF, size-exclusion chromatography, and CD spectroscopy to investigate the effect of the freeze-drying process on the protein structure and stability. Full article
(This article belongs to the Special Issue Developing Peptide and Protein Drug Formulations)
Show Figures

Graphical abstract

18 pages, 3848 KB  
Article
Interaction of Near-Infrared (NIR)-Light Responsive Probes with Lipid Membranes: A Combined Simulation and Experimental Study
by Hugo A. L. Filipe, André F. Moreira, Sónia P. Miguel, Maximiano P. Ribeiro and Paula Coutinho
Pharmaceutics 2023, 15(7), 1853; https://doi.org/10.3390/pharmaceutics15071853 - 30 Jun 2023
Cited by 1 | Viewed by 2103
Abstract
Cancer is considered a major societal challenge for the next decade worldwide. Developing strategies for simultaneous diagnosis and treatment has been considered a promising tool for fighting cancer. For this, the development of nanomaterials incorporating prototypic near-infrared (NIR)-light responsive probes, such as heptamethine [...] Read more.
Cancer is considered a major societal challenge for the next decade worldwide. Developing strategies for simultaneous diagnosis and treatment has been considered a promising tool for fighting cancer. For this, the development of nanomaterials incorporating prototypic near-infrared (NIR)-light responsive probes, such as heptamethine cyanines, has been showing very promising results. The heptamethine cyanine-incorporating nanomaterials can be used for a tumor’s visualization and, upon interaction with NIR light, can also produce a photothermal/photodynamic effect with a high spatio-temporal resolution and minimal side effects, leading to an improved therapeutic outcome. In this work, we studied the interaction of 12 NIR-light responsive probes with lipid membrane models by molecular dynamics simulations. We performed a detailed characterization of the location, orientation, and local perturbation effects of these molecules on the lipid bilayer. Based on this information, the probes were divided into two groups, predicting a lower and higher perturbation of the lipid bilayer. From each group, one molecule was selected for testing in a membrane leakage assay. The experimental data validate the hypothesis that molecules with charged substituents, which function as two polar anchors for the aqueous phase while spanning the membrane thickness, are more likely to disturb the membrane by the formation of defects and pores, increasing the membrane leakage. The obtained results are expected to contribute to the selection of the most suitable molecules for the desired application or eventually guiding the design of probe modifications for achieving an optimal interaction with tumor cell membranes. Full article
(This article belongs to the Special Issue Recent Advances in Anticancer Photodynamic Therapy)
Show Figures

Figure 1

3 pages, 521 KB  
Correction
Correction: Trenkel, M.; Scherließ, R. Nasal Powder Formulations: In-Vitro Characterisation of the Impact of Powders on Nasal Residence Time and Sensory Effects. Pharmaceutics 2021, 13, 385
by Marie Trenkel and Regina Scherließ
Pharmaceutics 2023, 15(7), 1852; https://doi.org/10.3390/pharmaceutics15071852 - 30 Jun 2023
Viewed by 1149
Abstract
There was an error in the original publication [...] Full article
Show Figures

Figure 5

13 pages, 995 KB  
Article
Enteric-Coated Cysteamine Bitartrate in Cystinosis Patients
by Sabrina Klank, Christina van Stein, Marianne Grüneberg, Chris Ottolenghi, Kerstin K. Rauwolf, Jürgen Grebe, Janine Reunert, Erik Harms and Thorsten Marquardt
Pharmaceutics 2023, 15(7), 1851; https://doi.org/10.3390/pharmaceutics15071851 - 29 Jun 2023
Cited by 4 | Viewed by 2629
Abstract
Cystinosis is a severe inherited metabolic storage disease caused by the lysosomal accumulation of cystine. Lifelong therapy with the drug cysteamine bitartrate is necessary. Cysteamine cleaves intralysosomal cystine, and thereafter, it can exit from the organelle. The need for frequent dosing every 6 [...] Read more.
Cystinosis is a severe inherited metabolic storage disease caused by the lysosomal accumulation of cystine. Lifelong therapy with the drug cysteamine bitartrate is necessary. Cysteamine cleaves intralysosomal cystine, and thereafter, it can exit from the organelle. The need for frequent dosing every 6 h and the high prevalence of gastrointestinal side effects lead to poor therapy adherence. The purpose of our study was to improve cysteamine treatment by comparing the efficacy of two cysteamine formulas. This is highly relevant for the long-term outcome of cystinosis patients. The cystine and cysteamine levels of 17 patients taking immediate-release cysteamine (IR-cysteamine/Cystagon®) and 6 patients taking encapsulated delayed-release cysteamine (EC-cysteamine) were analyzed. The EC-cysteamine levels showed a near-ideal pharmacokinetic profile indicative of delayed release (longer Tmax and Tmin), and the corresponding cystine levels showed few fluctuations. In addition, the Cmax of IR-cysteamine was greater, which was responsible for unbearable side effects (e.g., nausea, vomiting, halitosis, lethargy). Treatment with EC-cysteamine improves the quality of life of cystinosis patients because the frequency of intake can be reduced to 2–3 times daily and it has a more favorable pharmacokinetic profile than IR-cysteamine. In particular, cystinosis patients with no access to the only approved delayed-release cysteamine Procysbi® could benefit from a cost-effective alternative. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

18 pages, 1542 KB  
Review
Practical Considerations for Next-Generation Adjuvant Development and Translation
by William R. Lykins and Christopher B. Fox
Pharmaceutics 2023, 15(7), 1850; https://doi.org/10.3390/pharmaceutics15071850 - 29 Jun 2023
Cited by 6 | Viewed by 4219
Abstract
Over the last several years, there has been increased interest from academia and the pharmaceutical/biotech industry in the development of vaccine adjuvants for new and emerging vaccine modalities. Despite this, vaccine adjuvant development still has some of the longest timelines in the pharmaceutical [...] Read more.
Over the last several years, there has been increased interest from academia and the pharmaceutical/biotech industry in the development of vaccine adjuvants for new and emerging vaccine modalities. Despite this, vaccine adjuvant development still has some of the longest timelines in the pharmaceutical space, from discovery to clinical approval. The reasons for this are manyfold and range from complexities in translation from animal to human models, concerns about safety or reactogenicity, to challenges in sourcing the necessary raw materials at scale. In this review, we will describe the current state of the art for many adjuvant technologies and how they should be approached or applied in the development of new vaccine products. We postulate that there are many factors to be considered and tools to be applied earlier on in the vaccine development pipeline to improve the likelihood of clinical success. These recommendations may require a modified approach to some of the common practices in new product development but would result in more accessible and practical adjuvant-containing products. Full article
(This article belongs to the Special Issue Designing and Developing the Next Generation of Vaccine Adjuvants)
Show Figures

Figure 1