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Abstract: Considering the potential of nanostructured titanium dioxide layers as drug delivery
systems, it is advisable to indicate the possibility of creating a functional drug delivery system based
on anodic TiO2 for celecoxib as an alternative anti-inflammatory drug and its inclusion complex
with β-cyclodextrin. First, the optimal composition of celecoxib—β-cyclodextrin complexes was
synthesized and determined. The effectiveness of the complexation was quantified using isothermal
titration calorimetry (ITC), differential scanning calorimetry (DSC), infrared spectroscopy (FT-IR) nu-
clear magnetic resonance (1H NMR), and scanning electron microscopy (SEM). Then, nanostructured
titanium dioxide layers (TiO2) were synthesized using the electrochemical oxidation technique. The
TiO2 layers with pore diameters of 60 nm and layer thickness of 1.60 µm were used as drug delivery
systems. The samples were modified with pure celecoxib and the β-cyclodextrin-celecoxib complex.
The release profiles shown effective drug release from such layers during 24 h. After the initial burst
release, the drug was continuously released from the pores. The presented results confirm that the
use of nanostructured TiO2 as a drug delivery system can be effectively used in more complicated
systems composed of β-cyclodextrin—celecoxib complexes, making such drugs available for pain
treatment, e.g., for orthopedic surgeries.

Keywords: inclusion complexes; celecoxib; β-cyclodextrin; nanostructured titanium dioxide; drug
delivery

1. Introduction

Celecoxib (CEL) has been recognized for many years as an important drug in treating
postoperative pain. Numerous scientific studies support its effectiveness; therefore, its use
is recommended by many pain-management societies [1]. The main benefit of CEL is a
reduction in the use of opioid drugs. Schroer et al. reported research involving 107 pa-
tients, where the use of CEL for 6 weeks after knee arthroplasty was associated with less
perioperative opioid use and better results on the Visual Analog Scale (VAS) [2,3]. Several
clinical trials led to similar conclusions, for example, a clinical trial called “PIPFORCE”,
which included patients undergoing total knee replacement surgery [4,5]. Another benefit
of the use of coxibs in the confirmed reduction in the incidence of post-operative cognitive
dysfunction and heterotropic ossification after total arthoplasty [6,7].

Currently, CEL is a drug available on the market only as oral tablets. However,
there are attempts to modify the route of administration and the rate and mode of its
release. Tellegen et al. attempted to deliver CEL locally to the intervertebral discs to relieve
inflammation and prevent back pain [8]. Additionally, it was necessary to modify the
release rate. Closing the drug in polyesteramide microspheres resulted in a permanent
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inhibition of inflammation, as evidenced by the reduced production of prostaglandins and
anti-catabolic activity in the nucleus pulposus. In vivo studies in dogs showed that the
controlled release of CEL from the microspheres in the intervertebral disc area prevented
the progression of its degeneration. The Willems’ team also explored the possibility of
the topical application of CEL to the intervertebral discs [9]. In this case, the vehicle
responsible for the sustained release of CEL was a thermoreversible hydrogel. Another
example of topical CEL administration was a study aiming to determine the possibility of
drug release from intraocular lenses [10]. CEL is effective in the treatment of secondary
lens opacities following cataract surgery. Intraocular lenses incubated in CEL solution for
24 h resulted in sustained in vitro drug release at levels sufficient to inhibit the increase
in opacity. Recent studies have shown that CEL may also have antitumor activity, so
research was undertaken to create the possibility of administering the drug intravenously.
Due to the fact that CEL is poorly soluble in water, it must be combined with a carrier
facilitating its solubility. A research team of Xv et al. developed a method of saturating
casein nanoparticles stabilized with phosphatidylcholine with CEL [11]. Studies on rats
have also confirmed the clinical effectiveness of the obtained formulation. Based on the
information presented above, searching for new administration forms of this drug and
modifying its release rate is necessary.

Cyclodextrins (CDs) are cyclic oligosaccharides linked by α-1,4-glycosidic bonds [12].
Due to the hydrophilic outer surface, they are well soluble in water, while the inner space is
hydrophobic and may contain another hydrophobic substance, forming an inclusion com-
plex. They have the capacity to construct inclusion complexes with various guest molecules
on account of their exceptional truncated cone structure [13]. CDs are widely used in phar-
macy, e.g., as drug carriers to modify the bioavailability of biologically active molecules [14],
or to improve their physicochemical properties, including increasing stability or solubil-
ity [15]. Due to these properties, it seems advantageous to use a complex of CD with CEL.
Nagarsenker et al. created solid dispersions of CEL with hydroxypropyl-β-cyclodextrin
(HP-β-CD) by various methods: as a physical mixture, by co-milling, kneading, or co-
evaporation [16]. The kneaded form resulted in the highest dissolution rate and better
release profile compared to pure CEL. In vivo studies in rats revealed that the kneaded
dispersion provided a faster response and was more effective in inhibiting rat-paw edema
compared to CEL alone. Another team studied the solid complexes of CEL and β-CD. Their
formation by lyophilization, evaporation and kneading were compared, and the solubility
tests were performed. A significantly higher rate of dissolution was demonstrated for the
complexes compared to the pure drug and its physical mixture [17]. Jansook et al. created
CEL eye drops. In order to deliver this practically water-insoluble drug to the ocular space,
a triple complex (CEL, β-CD, polymer) was made by sonication [18]. The results indicated
that the obtained mixture resulted in higher drug permeability through a semi-permeable
membrane simulating the vitreous and sclera tissues. Such complexes have also been shown
not to be cytotoxic to human retinal cells. The possibility of the transdermal administration
of CEL was also assessed. The in vivo activity of multi-vesicle liposomes containing the
β-CD, CEL–β-CD inclusion complex was observed by evaluating the anti-inflammatory
effect of rat-paw volumetric edema. The prolonged-action preparation obtained in this way
showed an activity of up to 120 h [19]. In another study, the authors compared chitosan
microparticles, saturated with CEL and CEL in a complex with a β-CD derivative, for
intravesical administration [20]. In an in vitro release study, an immediate full-dose release
was demonstrated for the complex and sustained release of CEL alone. Research proved
that by using different saturations of nanoparticles, it is possible to obtain a modified drug
release rate. One of the main advantages of using complexes with CD is the increase in
the bioavailability of a drug. Rescifina et al. investigated the effect of complexing CEL
with sulfobutyl ether-β-CD to make an inhalable dry powder formulation of gemcitabine
for lung cancer therapy [21]. CEL alone displayed low cytotoxicity to A549 cell lines, and
the complexation increased lung cancer cell death. The presented studies confirm the
advantages of inclusion complexes that improve the physicochemical properties of CEL,
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which positively affect its local action. Without this modification, in many cases it would
be impossible to obtain a local drug effect in many cases.

As mentioned above, CEL may be used in therapies after orthopedic surgeries. In the
case of bone or dental implantations, the standard treatment requires oral or intravenous
administration of the drugs, which requires high dosages and repetitions. This solution
is not ideal for the patient and is ineffective. Therefore, the local delivery of the medica-
ments is being searched. Among different implant materials, titanium and its alloys are
the most commonly used materials in dentistry and orthopedics [22,23]. Such highly bio-
compatible materials have very good mechanical properties and relatively good corrosion
resistance [24]. Due to the passivation process, an oxide layer is formed, facilitating the
connection between cells and the implant surface [25]. The downside of such biomaterials
is that the osseointegration process takes time, which may lead to inflammation or even
implant rejection.

One proposed solution for improving titanium-based implants is forming a nanos-
tructured titanium dioxide layer before implantation [25–27]. Among various available
methods for its synthesis, the electrochemical oxidation (also known as anodization) of
titanium support is one of the most versatile techniques. The main advantage of the an-
odization is that by changing the process conditions, e.g., applied potential, time, and
composition of the electrolyte; one can manufacture oxide layers characterized by designed
morphology, i.e., with a specified pore diameter (Dp), an oxide layer thickness, porosity,
etc. [28,29]. For example, when fluoride ions are added to the electrolyte, nanotubular or
nanoporous oxide layers are obtained. Furthermore, when we change the applied potential
between 30 and 70 V, pore diameters change in the range of around 50 to 80 nm, while
the layer thickness varies from approx. 1.3 to 7.3 µm [29]. Due to the increased possibil-
ities in modifying titanium and titanium-alloy surfaces with oxide layers with versatile
nanotopographies, such materials have been successfully tested for their applicability as
biomaterials [30,31]. It was shown that Ti-based implants modified with a nanostructured
TiO2 layer were characterized by increased biocompatibility and superior osteointegration
compared to non-modified supports. What is more, the cell response to the surface sig-
nificantly depends on the nanotopography of the layers, especially on the pore diameters.
For example, Park et al. show a significant correlation between pore diameter and cell fate
and that the optimal geometry of the nanostructured titanium dioxide layers for the cell’s
growth and differentiation should be between 30 and 50 nm [32]. On the other hand, Bram-
mer et al. presented results where the optimal pore diameter was 100 nm; mesenchymal
stem cells were significantly more elongated and presented with a higher expression of
alkaline phosphatase activity, which proved that nanotubes with higher diameters had
increased bone-forming abilities [33]. That only suggests that nanotopography of the
titanium dioxide layers is extremely important for osteointegration and bone formation
around the implantation site, whereas the nature of this impact is still not explicit.

A cells’ fate depends not on the size and length of the nanostructures alone. Their
presence allows one to fill them with drugs and makes them an excellent on-site delivery
system. Many studies show that nanostructured titanium oxide layers may be used as
efficient drug delivery systems (DDSs) with controlled and prolonged delivery characteris-
tics [34–39]. Similarly to studies on the interaction between cells and TiO2 surface, also in
the case of drug delivery systems, the topography of the nanostructured layers will play an
important role. The pore diameter and depth of the nanotubes/nanopores will impact the
amount of the drug loaded inside the pores and the release kinetics [40–42]. Also, other
parameters like the concentration of the drug, surface wettability, and the nature of the
drug, i.e., its hydrophilicity/hydrophobicity, as well as the molecule’s size, may have an
impact on both the loading and releasing of the molecules from the nanostructured delivery
system [43,44]. Moreover, the surface of titanium dioxide layers may be further modified in
order to inhibit the release of the drugs. Thus, TiO2 layers may be modified with different
polymers [45,46] or other compounds like hydroxyapatite or silane derivatives [47,48] that
will enable the release of the drugs but at a significantly slower rate.
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Considering the potential of nanostructured titanium dioxide layers as DDS and CEL
as an alternative anti-inflammatory therapeutic, this study aimed to show the possibility
of creating a functional DDS based on anodic TiO2 for the CEL and its inclusion complex
with β-CD. To the best of our knowledge, this is the first time such an approach for CEL
delivery has been undertaken. For the presented preliminary studies, titanium dioxide
layers with pore diameters of around 50 nm were used as reservoirs for the delivery of CEL
and CEL–β-CD complexes. The formation of inclusion complexes was optimized, and the
optimal formulation was used for further studies. The loading procedure of both molecules
was optimized, and the delivery of CEL was conducted for 24 h in phosphate-buffered
saline. Our results show that CEL can be delivered to the site using the nanostructured
oxide carrier in the form of an inclusion complex which has enhanced solubility. These
studies are an important step into adapting the method of drug administration to the
systemic circulation (released directly at the postoperative site) to enhance the analgesic
effect or relieve acute pain.

2. Materials and Methods
2.1. Isothermal Titration Calorimetry (ITC) Measurements

The measurements were performed using a Microcal PEAQ-ITC calorimeter (Malvern
Instruments Limited, Worcestershire, UK) equipped with two 200 µL cells. A total of 19
injections of 2 µL each (the first injection of 0.4 µL) of the β-CD solution (15 mM) in the
water-methanol mixture were made to the CEL solution (0.992 mM) in the water-methanol
mixture, injection duration = 4 s, at 25.2 ◦C. The interval between injections was 150 s, and
the stirring speed was 500 rpm. The heats were corrected for the dilution effects determined
in separate experiments. Data were analyzed using MicroCal PEAQ-ITC analysis software.
The “one set of sites” mathematical model was applied to analyze the thermodynamic
parameters.

2.2. Differential Scanning Calorimetry (DSC)

To perform the thermal analysis a Q200 calorimeter (TA Instruments, New Castle, DE,
USA) was used. Test samples weighing 2 mg were closed in aluminum pans (TzeroPan),
and heated from 30 to 180 ◦C in a nitrogen atmosphere. The heating speed was 5 ◦C/min.
An empty pan was used as a reference and physical mixtures were used as control samples.

2.3. Fourier-Transform Infrared Spectroscopy (FT-IR)

The interactions between CEL and β-CD were characterized by FT-IR spectroscopy us-
ing a Thermo Nicolet iS10 FTIR spectrometer (Thermo Scientific, Waltham, MA, USA) with
an ATR accessory (SMART iTX) in the interval of 600–4000 cm−1, at an optical resolution
of 4 cm−1. All the samples (CEL, β-CD, CEL–β-CD) were analyzed after vacuum drying.
The obtained spectra were baseline corrected and normalized using Omnic v9.0 software
(Thermo Scientific).

2.4. Proton Nuclear Magnetic Resonance (1H NMR)

Proton NMR spectra were measured with FT-NMR 500 MHz JEOL instrument (JNM-
ECZR500RS1 v. ECZR). 1H NMR spectra were recorded at temperature 25 ◦C, at 8 scans,
and ROESY (Rotating Frame Overhauser Enhancement Spectroscopy) at 32 scans and 256
repetitions, mixing time 25 ms. Deuterated dimethyl sulfoxide (DMSO-d6) was used for
experiments as a solvent.

2.5. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS)

The microscopic changes of the tested samples were evaluated using SEM and EDS
techniques. CEL, β-CD, and complex powders were mounted on the carbon adhesive tape
and examined under the microscope. For each sample, microphotographs were taken along
with the EDS spectra showing the element distribution.
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2.6. Synthesis of Nanostructured TiO2 on Ti Support

Nanostructured TiO2 on a titanium support (TiO2@Ti) was prepared using the electro-
chemical oxidation (i.e., anodization) method with the procedure commonly used in the
Electrochemistry Group, JU [29]. Briefly, Ti foil was cut into coupons with dimensions of
2 × 1 cm and pressed with the manual press, so the samples were flat. Then, Ti samples
were polished according to the procedure established by Jarosz et al. [49]. Next, polished
Ti coupons were used as anodes in the three-step anodization process carried out in the
ethylene glycol-based electrolyte. The process conditions are given in Table 1.

Table 1. The conditions applied for the anodization process of Ti supports.

Anodization Parameter Value

Temperature 20 ◦C
Potential 40 V

Time of the 1st and 2nd anodization steps 2 h
Time of the 3rd anodization step 10 min

After the process, samples were washed in distilled water, dried in the air, and
weighted.

The topography of the TiO2 samples was evaluated using scanning electron mi-
croscopy (FE-SEM Hitachi S-4700 with Noran system) and evaluated with WSxM 5.0
Develop 9.3 software [50].

The water-contact angle on the tested samples was measured using an OCA25 go-
niometer (DataPhysics) with an automatic dosing system. At least three separate water
droplets (droplet volume was 2 µm) were put on the surface of anodic TiO2, and the con-
tact angle was measured using the provided software. Moreover, the surface energy was
calculated using the water and diiodomethane contact-angle measurements. The Owens,
Wendt, Rabel & Kaelble (OWRK) method was used to calculate the surface energy.

2.7. Modification of TiO2@Ti with Tested Molecules

TiO2@Ti samples were used as drug delivery systems. For that reason, samples were
modified with CEL or inclusion complex (CEL–β-CD) following the loading procedure im-
plemented for other drugs [42,51]. Firstly, the drug solutions with 1 mg/mL concentration
were prepared in methanol and the mixture of methanol and water (1:1 v/v) for CEL and
the complex, respectively. Afterward, portions of 200 µL were pipetted on the surface of
TiO2 and left for the solvent to evaporate. The procedure was repeated 5 times to insert the
total volume of 1 mL of drug solution into the nanostructures. It is worth noting that the
samples were weighted after each cycle to monitor the changes in the mass of the loaded
molecules.

2.8. Drug Release and Determination

Modified TiO2 supports were put in the 15 mL Falcon tubes filled with 10 mL
phosphate-buffered saline (PBS) with a pH of 7.4. Drug release was performed at 37 ◦C
for 24 h, where the whole volume of the medium was gathered at the pre-determined time
points and replaced with the fresh portion of the solution. For each drug, the measure-
ments were performed in triplicates, and the presented results are the mean values of those
measurements.

The determination of the drug concentration was performed using the thin layer-
chromatography technique (TLC). The applied method of coxibs determination was fully
validated according to ICH requirements. The developed conditions allow for obtain-
ing repeatable, accurate, and reliable determinations results, enabling the qualitative and
quantitative analysis of ingredients [52]. Separation was performed on 20 × 10 cm alu-
minum sheets precoated with silica gel 60F254 plates. Samples were applied to the plates
as bands (5 mm wide and 10 mm apart) by a Linomat V sample applicator (CAMAG,
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Switzerland) equipped with a 100 µL syringe (Hamilton, Switzerland) with an application
rate of 200 nL/s. The first application was 10 mm from the bottom edge and 10 mm from
the left edge of the plate. The volume of the applied solution was 50 µL. Plates were taken
into a chromatographic chamber (18 × 16 × 8 cm; Sigma-Aldrich, St. Louis, MO, USA)
previously saturated with mobile phase vapor for 20 min at room temperature. Correct
separation and well-developed peaks were obtained with a mobile phase containing chlo-
roform: acetone: toluene (12:5:2, v/v/v). The development distance was 10 cm over 20 min.
After development, plates were dried at room temperature for about 20 min. Densitometric
detection was performed using a TLC Scanner 3 with winCats 4 software (CAMAG, Mut-
tenz, Switzerland). The radiation source was the deuterium lamp emitting a continuous UV
spectrum between 200 to 400 nm. The scanning speed was 20 mm/s, and the slit dimension
was 4.00 × 0.45 mm. Based on the absorption spectra, the analytical wavelength of 254 nm
was selected for measurements.

3. Results and Discussion

First of all, we decided to form a complex between CEL and β-CD. The process of
optimizing the synthesis conditions led to the selection of the kneading method as the
most effective. The success of the CEL–β-CD complex synthesis was confirmed by thermal
analysis (DSC) and spectroscopic methods (FT-IR, 1H NMR). In the next stage of research,
nanostructured titanium dioxide (TiO2) layers were synthesized and used as a drug delivery
system. TiO2 layers were modified with pure CEL and the β-CD–CEL complex, and then
drug release experiments were conducted.

3.1. Synthesis and Characterization of Celecoxib–β-Cyclodextrin Complexes

Isotermal titration calorimetry (ITC) measurements were used to quantify the associa-
tion of CEL with β-CD. The ITC method measures the heat released when an aliquot of the
β-CD solution is injected into the CEL solution. The ITC data are integrated over time to
obtain the incremental heat versus the β-CD/CEL molar ratio. After correcting for the heat
of dilution, the incremental heat for each injection is fitted to an appropriate equilibrium
binding model to determine the enthalpy of association (∆H), association constant (KA),
and the stoichiometry of association (n) [53–55]. Since measurements are made at a constant
temperature, the change in the Gibbs free energy (∆G) and entropy (∆S) can be calculated
using the standard Equations (1) and (2):

∆G = −RTlnKA (1)

∆S =
∆H − ∆G

T
(2)

Figure 1 depicts a typical thermogram of the β-CD-to-CEL titrations, which reveals
that the association of the drug to β-CD is an exothermic process. Each injection of the
β-CD solution into the drug solution led to a fast exothermic heat flow, but the observed
thermal effect decreased with successive injections. This indicates an equilibrium between
CEL molecules interacting with the CD cavity and those remaining in the water. Titration
curves as a function of β-CD/CEL molar ratio were obtained by integrating the heat pulse
of each injection concerning time and dividing it by the number of moles of the injected
agent (Figure 2). The isotherms were fitted using a single set of the independent binding
sites (SSIS) model [51], yielding the enthalpy change (∆H), the affinity (KA), and the stoi-
chiometry of the β-CD-to-CEL complex (n). Table 2 compiles the calculated thermodynamic
parameters of the CEL association with β-CD. The negative value of ∆G indicates that the
complexation is thermodynamically favorable. The value of the entropy term is positive
and larger than the enthalpy (|T∆S| > |∆H|); therefore, the process involved in the guest–
CD interactions is entropy-driven, indicating hydrophobic interactions between CEL and
β-CD [56]. As indicated by the value of the association constant, the interaction between
the drug and the CD molecules is relatively strong (the stability of the complex is high). In
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addition, the stoichiometry of the complex formed between CEL and β-CD is close to the
ratio of 1:2.
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Table 2. Thermodynamic parameters of the interactions between β-CD and CEL determined by ITC
experiments.

Sample Temperature
(◦C)

N
(Sites)

KA
(M−1) ∆H (kJ/mol) ∆G (kJ/mol) T∆S (kJ/mol) ∆S

(J/K mol)

β–CD 25.2 1.98 495.05 −5.69 −15.4 9.72 32.6

The preliminary ITC experiments allowed us to determine the optimal molar ratios
for forming a complex between CEL and the appropriate CD. The complex was then
prepared using the kneading method, taking 1:2 mol ration of the drug and β-CD. For this
purpose, an appropriate amount of CD was wetted with water in a mortar and kneaded
with a pestle to obtain a thick paste. A relevant amount of CEL was then dissolved in
a small amount of acetone and mixed with CD in the mortar for twenty minutes. The
mixture was dried to a constant weight, and the whole sample was powdered in the
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mortar. This method of preparing complexes is simple to perform, fast, and does not
require expensive equipment. The effectiveness of the correct complex formation was
confirmed during preliminary studies, and the developed methodology is consistent with
the available literature data [16,17]. Thus, in the next stage of our research, the presence of
the resulting CEL–β-CD inclusion complex was confirmed by DSC, FT-IR, 1H NMR, SEM
and EDS techniques.

DSC is a thermal analysis technique used to monitor various physical and chemical
changes in a sample that are dependent on temperature [57]. It is used to study the melting
and recrystallization of crystalline materials. Organic substances exhibit a certain melting
range, the change of which can be correlated with impurities or other crystal ordering.
In our experiments, the analysis of pure CEL, β-CD, and their complexes and physical
mixture were performed by DSC, and registered thermograms are shown in Figure 3.
The thermogram of CEL shows a sharp endothermic peak at 161 ◦C which corresponds
to the decomposition temperature of crystalline CEL [58]. On the other hand, the β-CD
thermogram shows a characteristic peak at 105 ◦C, caused by the evaporation of crystal
water, which is embedded in the structure of CDs. In the case of the prepared complex,
a new endothermic peak was obtained at about 150 ◦C, while in the case of the physical
mixture prepared from CEL and β-CD, two peaks were present at 98 and 161 ◦C, which
came from the individual components of the mixture.
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Further tests (to prepare solid drug–CD binary systems) were also carried out. For
this purpose, solutions of the drug in acetone and CD in water (in appropriate proportions)
were stirred for 1 h and evaporated. In this case, in addition to the peaks corresponding to
the pure components, an additional peak was obtained, around 150 ◦C. A number of tests
of the kneading method were also performed using various solvents for wetting the drug,
e.g., methanol, ethanol, acetonitrile. In each of them, DSC analysis showed drug residues
not being part of the inclusion complex. Attempts were also made to create a solid mixture
by grinding CEL and β-CD in appropriate proportions without first wetting and dissolving
the ingredients, but no changes were observed in the thermogram.

Analysis of the FT-IR spectra of inclusion complexes helps determine host–guest
interactions [59]. After encapsulation of the drug molecule by CD, changes in the spectra
are observed, which result from the reduction in vibrations of free drug molecules, if its
part is enclosed in the empty space of CD molecules [60,61]. The FT-IR spectra of pure
CEL, β-CD and the obtained complex are shown in Figure 4. The following bands are
observed on the β-CD spectra: wide band of stretching vibrations –O–H at about 3300 cm−1,
aliphatic stretching band –C–H at 2920 cm−1, etc. The spectrum of CEL is characterized
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by the following bands: 3200–3300 cm−1 (–N–H stretching), about 2920 cm−1 (–C–H),
1730 cm−1 (–N–H deformation), 1500 cm−1 (C=C), 1275 cm−1 (–C–F), etc. In the region of
approx. 3200–3350 cm−1 of the complex, overlapping of –O–H bands of CD and –N–H of
the drug was observed. The bands at 1275 cm−1 (–C–F stretching vibration) and 1500 cm−1

(C=C stretching vibration) are visible, while the bands at 1730 cm−1 practically completely
disappears, what indicates that this region of the drug molecule is located inside the CD
cavity, and is shielded by the CD molecule. Comparing the FT-IR spectra of CEL, β-CD
and CEL–β-CD, we may notice these changes, especially in the range of 1700–3400 cm−1. It
may indicate the formation of hydrogen bonds between CEL and β-CD.
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NMR spectroscopy is a very useful tool in the study of the formation of inclusion
complexes between CDs and various guest molecules. The drug molecule, which is enclosed
in the hydrophobic cavity of the CD molecule, shows up in the spectrum as a shift of the
drug and CD protons [62]. In general, the resonances of β-CD protons located in or near
the cavity show shifts in the mixture. However, a slight shift can be observed for the
resonance of protons outside the CD [63]. Figure 5 shows the 1H NMR spectra recorded for
pure compounds and their inclusion complexes. Some differences in chemical shift values
may indicate a change in the proton environment after the complex formation. The 1H
NMR spectrum of CEL shows intense signals from protons at chemical shift σ between
7–8 ppm, and for β-CD in this range we notice no signals. However, in the case of the
spectrum recorded for the CEL–β-CD complex, the proton signals in the chemical shift
range 7–8 show very low intensity, which suggests that the process of drug inclusion by
CD took place. The ROE correlation between the proton of the aryl moiety and the proton
of the β-CD moiety can be observed using the ROESY spectrum, which provides a deeper
insight into the stereochemical characteristic of inclusion complexes (Figure 6). It can be
concluded that if the aryl moiety of the drug is included in the cavity of the CD, the ROE
correlation between the protons of this moiety and the intracavitary protons of the β-CD
moiety will be observed for host–guest size matching [63]. Then, it is possible to estimate
the position of the aryl moiety in the β-CD cavity using assigned ROE correlations. The
2D-ROESY spectrum of CEL–β-CD complex given in Figure 6 shows the appearance of the
ROE correlation signal, with coordinates: X 3.31094 ppm, Y 8.07873 ppm. The obtained
results indicate that CEL penetrates into the β-CD cavity and an inclusion complex is
formed.
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Finally, the SEM images of the CEL, β-CD and their complex powders were taken
in order to determine their morphologies. Moreover, their elementary composition was
assessed using EDS technique. The results are shown in Figure 7.
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As can be seen in Figure 7, the tested molecules differ in their microstructure. CEL
is in the form of needles (Figure 7a), whereas β-CD may be described as cauliflower-like
crystals (Figure 7b). What is interesting is that the structure of the complex is more similar



Pharmaceutics 2023, 15, 1861 12 of 18

to that for the pure β-CD, though the crystals are smaller and more uniform (Figure 7c).
This is consistent with the formulation composition, where the ratio between CEL and
β-CD was 1:2. Furthermore, the effectiveness of the complexation process is proven by the
EDS spectra (Figure 7d). The CEL molecule has sulfur and fluorine atoms in its structure,
whereas β-CD has only carbon and oxygen. As can be seen from the spectra, we can see
that peaks from both S and F are present, though the weight percentage is smaller than for
the pure drug. Moreover, the percentage of oxygen increased, compared to the CEL.

Taking into account the results presented above, it can be stated that we were able to
receive a CEL–β-CD inclusion complex by using a kneading method that was further used
for the drug-release experiments.

3.2. Nanostructured TiO2 as a Carrier for CEL–β-CD Complexes

Nanostructured titanium dioxide synthesized in the ethylene glycol-based solution
with the addition of fluoride ions is characterized by the dual nanoporous/nanotubular
structure [29]. The topography of such layers is strictly governed by the anodization
conditions described in detail in our previous papers [29,64,65]. In this work, we used
standard anodization parameters described in Section 2.6, which resulted in obtaining
nanostructured layers characterized by a pore diameter (Dp) of around 60 nm and a layer
thickness of about 1.60 µm (Figure 8a,b). The pore arrangement is close to hexagonal, which
is confirmed by the 2D fast Fourier transforms (FFTs) in the inset in Figure 8a, whereas the
pore distribution is shown in the histogram (Figure 8c). The contact angle measurements
showed that TiO2 layers are hydrophilic with a contact angle equal to 77◦ (Figure 8d). The
results of the topography parameters and values of the contact angle and surface energy
are compiled in Table 3.
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Figure 8. (a,b) FE-SEM microphotographs of the top (a) and cross-section (b) view of nanostructured
TiO2 layer on Ti after anodization at 40 V in the ethylene glycol-based electrolyte. (c) Distribution of
pore diameter and (d) exemplary image of the water droplet on the TiO2 surface during contact angle
measurement.
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Table 3. Topography parameters, contact angle, and surface energy values for the TiO2@Ti nanostruc-
tures.

Pore
Diameter/nm

Layer
Thickness/µm

Water Contact
Angle/◦

Diiodomethane
Contact Angle/◦

Polar
Component/mNm−1

Dispersive
Component/mNm−1

Surface
Energy/mNm−1

50 ± 3 1.60 ± 0.01 77.16 ± 8.47 41.07 ± 4.26 6.86 35.58 42.44

Previously, we used such layers to deliver water-soluble and insoluble molecules, i.e.,
gentamicin and ibuprofen, respectively [51]. We have shown that the delivery of such
molecules is possible and comprises two stages: firstly, the drug is released from the surface
of the carrier (desorption part) and then from the inside of the pores (desorption and
diffusion), which was described mathematically with the DDD model. The release profiles
strictly depend on the solubility of the drug, which we have also shown previously. It
is especially evident at the beginning of the release, where water-soluble molecules (e.g.,
gentamicin) release rapidly during the first minutes of the process (over 90% of the drug),
followed by the continuous release of the rest of the gentamicin for a longer time. On
the other hand, water-insoluble ibuprofen is released at a slower rate. Within the first
hour, almost 80% of the drug is released, followed by a slower but constant release in the
second stage.

In the present work, we wanted to discover how the nanostructured TiO2 layers will
act as carriers for more complex systems, such as CEL and its inclusion complex with
β-CD. We have applied the same procedure of loading the drug inside porous structures as
previously, so the total amount of 1 mL of each solution was pipetted on the TiO2 carriers
in portions of 200 µL [42,51]. After each cycle, the samples were dried in the air so that the
solution would evaporate. Then, samples were cleaned with a paper towel soaked with
ethanol so that the excess of the drug from the surface was removed, stored in the desiccator
overnight, and weighed. Figure 9a shows the deposited molecule’s mass concerning the
solution volume pipetted on the surface. It can be seen that for CEL, the pore saturation
is achieved after 600 µL of the drug is deposited. Afterward, the mass of the drug drops,
which may result from cleaning the surface with ethanol after the drying process. It may
indicate that after the third deposition cycle, the excess of the drug is mainly present on
the surface, and during the cleaning process, not only is the excess removed but also some
of the drug from the inside of the pores. Slightly different behavior is observed for the
inclusion complex. The mass of the deposited molecule increases gradually until it reaches
a plateau, which may indicate that the capacity of the pores is saturated. What is more,
applying the same cleaning process as for pure celecoxib does not change the loading
process, since the complex is soluble in the water-enriched solution. Therefore, cleaning
with ethanol will not dissolve the drug from the inside of the pores as much as for the
CEL. Additionally, we have observed that due to the different solutions used for dissolving
the tested molecules, the different wetting of the TiO2 surface was observed, and thus,
different penetration of the pores. There was significantly less of the drug deposited on the
surface of nanostructured TiO2 in the case of the complex compared to pure CEL. It may
be summarized that by using the CEL complex, the loading process is facilitated due to
its solubility.

The release process was carried out in the PBS with a pH of 7.4 at 37 ◦C for 24 h. The
aliquots were collected at the pre-determined time and refilled with a fresh portion of PBS.
Afterward, the drug concentrations were determined using the TLC method. The release
profiles shown in Figure 9b depict the mean fraction of the drug released in time. The
fraction was calculated according to Equation (3):

F =
mt

m0
(3)

where F is the fraction of the released drug; m0 is the mass of the drug loaded in the TiO2;
and mt—a mass released at the time point.
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As can be seen, the release profiles of CEL and the inclusion complex are similar. There
is a fast release of the drugs from the surface at the beginning of the process, followed by a
constant release from the pores for the rest of the time. Contrary to the previously shown
data for ibuprofen and gentamicin [51], the initial release of CEL is 10%, during the first
30 min, despite the drug form. It is significantly lower than for the release of ibuprofen
and gentamicin from the same carrier. In that case, after 30 min, almost 50% of ibuprofen
and almost 100% of gentamicin were released in the same conditions. The differences
between the pure drug and its complex start to show after 1.5 h of the release process. For
the CEL–β-CD complex, the release is slightly slower than for pure CEL; however, the
differences are not statistically significant. Nonetheless, after 24 h, only 25–30% of the drugs
are released from the pores. Table 4 sums up the masses of the drugs at each stage of the
process—the initially deposited amounts, the masses released during the burst stage of the
process, and the amounts of the drugs released after 24 h.

Table 4. The masses of the drugs loaded and released at the predetermined time points.

Time Celecoxib mg Celecoxib—β-Cyclodextrin mg

0 0.466 ± 0.112 0.350 ± 0.132
30 min 0.052 ± 0.028 0.027 ± 0.014

24 h 0.191 ± 0.076 0.094 ± 0.051

The presented results confirm that nanostructured TiO2 may be used for the release
of CEL and its complex with β-CD. The release profiles differ from those received for
ibuprofen and gentamicin [51], showing a significant decrease in the released amounts of
the drug during the whole process, which may be assigned to the size and structure of the
molecules.

4. Conclusions

In the presented work, we have shown a simple and effective method to form an
inclusion complex between CEL and β-CD, confirmed by the ITC, DSC, FT-IR, 1H NMR,
SEM and EDS measurements. Moreover, we proved that such particles can be efficiently
loaded inside TiO2 nanostructures as drug carriers. The release profiles indicated that both
CEL and the CEL–β-CD complex are released in a dual mode: firstly, there is a burst release
from the surfaces of the carrier (desorption), which is followed by the constant desorption
and diffusion of the drugs from inside of the pores. For the presented set of drugs, there is
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no significant difference between the release profiles; however, the release of the complex is
slightly slower than for pure CEL.

For that reason, there is still a lot to optimize in case of the proposed DDSs, such as the
loading procedure, the capacity of TiO2, as well as the composition of the complexes. How-
ever, the presented preliminary studies showed that there is an alternative administration
route for drugs like CEL that should be further explored in terms of, e.g., novel effective
pain treatments after orthopedic surgeries. The presented results give the information
that the inclusion complexes may be important in the development of various types of
formulations. Not only do they improve solubility of the drugs, but also increase their
bioavailability. Combined with the on-site delivery of the drugs, e.g., from the nanostruc-
tured carriers, it may open a wide range of possibilities, e.g., for their pharmacology and
implantology.
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