20 pages, 2459 KiB  
Article
Unique and Shared Proteome Responses of Rice Plants (Oryza sativa) to Individual Abiotic Stresses
by Fatemeh Habibpourmehraban, Brian J. Atwell and Paul A. Haynes
Int. J. Mol. Sci. 2022, 23(24), 15552; https://doi.org/10.3390/ijms232415552 - 8 Dec 2022
Cited by 10 | Viewed by 2148
Abstract
Food safety of staple crops such as rice is of global concern and is at the top of the policy agenda worldwide. Abiotic stresses are one of the main limitations to optimizing yields for sustainability, food security and food safety. We analyzed proteome [...] Read more.
Food safety of staple crops such as rice is of global concern and is at the top of the policy agenda worldwide. Abiotic stresses are one of the main limitations to optimizing yields for sustainability, food security and food safety. We analyzed proteome changes in Oryza sativa cv. Nipponbare in response to five adverse abiotic treatments, including three levels of drought (mild, moderate, and severe), soil salinization, and non-optimal temperatures. All treatments had modest, negative effects on plant growth, enabling us to identify proteins that were common to all stresses, or unique to one. More than 75% of the total of differentially abundant proteins in response to abiotic stresses were specific to individual stresses, while fewer than 5% of stress-induced proteins were shared across all abiotic constraints. Stress-specific and non-specific stress-responsive proteins identified were categorized in terms of core biological processes, molecular functions, and cellular localization. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Plant Sciences in Australia)
Show Figures

Figure 1

17 pages, 2451 KiB  
Article
ONC201-Induced Mitochondrial Dysfunction, Senescence-like Phenotype, and Sensitization of Cultured BT474 Human Breast Cancer Cells to TRAIL
by Artem Mishukov, Irina Odinokova, Ekaterina Mndlyan, Margarita Kobyakova, Serazhutdin Abdullaev, Vitaly Zhalimov, Xenia Glukhova, Vasiliy Galat, Yekaterina Galat, Anatoly Senotov, Roman Fadeev, Artem Artykov, Marine E. Gasparian, Marina Solovieva, Igor Beletsky and Ekhson Holmuhamedov
Int. J. Mol. Sci. 2022, 23(24), 15551; https://doi.org/10.3390/ijms232415551 - 8 Dec 2022
Cited by 9 | Viewed by 3006
Abstract
ONC201, the anticancer drug, targets and activates mitochondrial ATP-dependent caseinolytic peptidase P (ClpP), a serine protease located in the mitochondrial matrix. Given the promise of ONC201 in cancer treatment, we evaluated its effects on the breast ductal carcinoma cell line (BT474). We showed [...] Read more.
ONC201, the anticancer drug, targets and activates mitochondrial ATP-dependent caseinolytic peptidase P (ClpP), a serine protease located in the mitochondrial matrix. Given the promise of ONC201 in cancer treatment, we evaluated its effects on the breast ductal carcinoma cell line (BT474). We showed that the transient single-dose treatment of BT474 cells by 10 µM ONC201 for a period of less than 48 h induced a reversible growth arrest and a transient activation of an integrated stress response indicated by an increased expression of CHOP, ATF4, and GDF-15, and a reduced number of mtDNA nucleoids. A prolonged exposure to the drug (>48 h), however, initiated an irreversible loss of mtDNA, persistent activation of integrated stress response proteins, as well as cell cycle arrest, inhibition of proliferation, and suppression of the intrinsic apoptosis pathway. Since Natural Killer (NK) cells are quickly gaining momentum in cellular anti-cancer therapies, we evaluated the effect of ONC201 on the activity of the peripheral blood derived NK cells. We showed that following the ONC 201 exposure BT474 cells demonstrated enhanced sensitivity toward human NK cells that mediated killing. Together our data revealed that the effects of a single dose of ONC201 are dependent on the duration of exposure, specifically, while short-term exposure led to reversible changes; long-term exposure resulted in irreversible transformation of cells associated with the senescent phenotype. Our data further demonstrated that when used in combination with NK cells, ONC201 created a synergistic anti-cancer effect, thus suggesting its possible benefit in NK-cell based cellular immunotherapies for cancer treatment. Full article
(This article belongs to the Special Issue Mitochondria and Cancer)
Show Figures

Figure 1

17 pages, 4124 KiB  
Article
Host Cell Binding Mediated by Leptospira interrogans Adhesins
by Maria Beatriz Takahashi, Aline Florencio Teixeira and Ana Lucia Tabet Oller Nascimento
Int. J. Mol. Sci. 2022, 23(24), 15550; https://doi.org/10.3390/ijms232415550 - 8 Dec 2022
Cited by 11 | Viewed by 2319
Abstract
Leptospirosis is a neglected infectious disease with global impact on both humans and animals. The increase in urban development without sanitation planning is one of the main reasons for the disease spreading. The symptoms are similar to those of flu-like diseases, such as [...] Read more.
Leptospirosis is a neglected infectious disease with global impact on both humans and animals. The increase in urban development without sanitation planning is one of the main reasons for the disease spreading. The symptoms are similar to those of flu-like diseases, such as dengue, yellow fever, and malaria, which can result in a misleading clinical diagnosis. The characterization of host–pathogen interactions is important in the development of new vaccines, treatments, and diagnostics. However, the pathogenesis of leptospirosis is not well understood, and many gaps remain to be addressed. Here, we aimed to determine if Leptospira strains, virulent, culture-attenuated, and saprophytic, and the major outer membrane proteins OmpL37, OmpL1, LipL21, LipL41, and LipL46 are able to adhere to different endothelial, epithelial and fibroblast cell lines in vitro. We showed that virulent leptospires robustly bind to all cells compared to the culture-attenuated and saprophytic lines. The recombinant proteins exhibited certain adhesion, but only OmpL1 and LipL41 were able to bind to several cell lines, either in monolayer or in cell suspension. Blocking OmpL1 with polyclonal antibodies caused a decrease in bacterial binding to cells, contrasting with an increase observed when anti-LipL41 antibodies were used. The adhesion of OmpL1 to HMEC-1 and EA.hy926 was inhibited when cells were pre-incubated with collagen IV, suggesting that both compete for the same cell receptor. We present here for the first time the interaction of five leptospiral outer membrane proteins with several cell lines, and we conclude that LipL41 and OmpL1 may have an impact on leptospiral adhesion to mammalian cells and may mediate the colonization process in leptospiral pathogenesis. Full article
(This article belongs to the Special Issue Host-Pathogen Interaction 4.0)
Show Figures

Figure 1

15 pages, 325 KiB  
Review
Lysosomal Acid Lipase Deficiency: Genetics, Screening, and Preclinical Study
by Ryuichi Mashima and Shuji Takada
Int. J. Mol. Sci. 2022, 23(24), 15549; https://doi.org/10.3390/ijms232415549 - 8 Dec 2022
Cited by 6 | Viewed by 3268
Abstract
Lysosomal acid lipase (LAL) is a lysosomal enzyme essential for the degradation of cholesteryl esters through the endocytic pathway. Deficiency of the LAL enzyme encoded by the LIPA gene leads to LAL deficiency (LAL-D) (OMIM 278000), one of the lysosomal storage disorders involving [...] Read more.
Lysosomal acid lipase (LAL) is a lysosomal enzyme essential for the degradation of cholesteryl esters through the endocytic pathway. Deficiency of the LAL enzyme encoded by the LIPA gene leads to LAL deficiency (LAL-D) (OMIM 278000), one of the lysosomal storage disorders involving 50–60 genes. Among the two disease subtypes, the severe disease subtype of LAL-D is known as Wolman disease, with typical manifestations involving hepatomegaly, splenomegaly, vomiting, diarrhea, and hematopoietic abnormalities, such as anemia. In contrast, the mild disease subtype of this disorder is known as cholesteryl ester storage disease, with hypercholesterolemia, hypertriglyceridemia, and high-density lipoprotein disappearance. The prevalence of LAL-D is rare, but several treatment options, including enzyme replacement therapy, are available. Accordingly, a number of screening methodologies have been developed for this disorder. This review summarizes the current discussion on LAL-D, covering genetics, screening, and the tertiary structure of human LAL enzyme and preclinical study for the future development of a novel therapy. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
15 pages, 5362 KiB  
Article
A Recombinant Genotype I Japanese Encephalitis Virus Expressing a Gaussia Luciferase Gene for Antiviral Drug Screening Assay and Neutralizing Antibodies Detection
by Chenxi Li, Xuan Chen, Jingbo Hu, Daoyuan Jiang, Demin Cai and Yanhua Li
Int. J. Mol. Sci. 2022, 23(24), 15548; https://doi.org/10.3390/ijms232415548 - 8 Dec 2022
Cited by 7 | Viewed by 2272
Abstract
Japanese encephalitis virus (JEV) is the major cause of viral encephalitis in humans throughout Asia. In the past twenty years, the emergence of the genotype I (GI) JEV as the dominant genotype in Asian countries has raised a significant threat to public health [...] Read more.
Japanese encephalitis virus (JEV) is the major cause of viral encephalitis in humans throughout Asia. In the past twenty years, the emergence of the genotype I (GI) JEV as the dominant genotype in Asian countries has raised a significant threat to public health security. However, no clinically approved drug is available for the specific treatment of JEV infection, and the commercial vaccines derived from the genotype III JEV strains merely provided partial protection against the GI JEV. Thus, an easy-to-perform platform in high-throughput is urgently needed for the antiviral drug screening and assessment of neutralizing antibodies specific against the GI JEV. In this study, we established a reverse genetics system for the GI JEV strain (YZ-1) using a homologous recombination strategy. Using this reverse genetic system, a gaussia luciferase (Gluc) expression cassette was inserted into the JEV genome to generate a reporter virus (rGI-Gluc). The reporter virus exhibited similar growth kinetics to the parental virus and remained genetically stable for at least ten passages in vitro. Of note, the bioluminescence signal strength of Gluc in the culture supernatants was well correlated with the viral progenies determined by viral titration. Taking advantage of this reporter virus, we established Gluc readout-based assays for antiviral drug screening and neutralizing antibody detection against the GI JEV. These Gluc readout-based assays exhibited comparable performance to the assays using an actual virus and are less time consuming and are applicable for a high-throughput format. Taken together, we generated a GI JEV reporter virus expressing a Gluc gene that could be a valuable tool for an antiviral drug screening assay and neutralization assay. Full article
(This article belongs to the Special Issue Antivirals and Vaccines)
Show Figures

Figure 1

19 pages, 6229 KiB  
Article
TRIAC Treatment Improves Impaired Brain Network Function and White Matter Loss in Thyroid Hormone Transporter Mct8/Oatp1c1 Deficient Mice
by Jonathan Rochus Reinwald, Wolfgang Weber-Fahr, Alejandro Cosa-Linan, Robert Becker, Markus Sack, Claudia Falfan-Melgoza, Natalia Gass, Urs Braun, Christian Clemm von Hohenberg, Jiesi Chen, Steffen Mayerl, Thomas F. Muente, Heike Heuer and Alexander Sartorius
Int. J. Mol. Sci. 2022, 23(24), 15547; https://doi.org/10.3390/ijms232415547 - 8 Dec 2022
Cited by 12 | Viewed by 2537
Abstract
Dysfunctions of the thyroid hormone (TH) transporting monocarboxylate transporter MCT8 lead to a complex X-linked syndrome with abnormal serum TH concentrations and prominent neuropsychiatric symptoms (Allan-Herndon-Dudley syndrome, AHDS). The key features of AHDS are replicated in double knockout mice lacking MCT8 and organic [...] Read more.
Dysfunctions of the thyroid hormone (TH) transporting monocarboxylate transporter MCT8 lead to a complex X-linked syndrome with abnormal serum TH concentrations and prominent neuropsychiatric symptoms (Allan-Herndon-Dudley syndrome, AHDS). The key features of AHDS are replicated in double knockout mice lacking MCT8 and organic anion transporting protein OATP1C1 (Mct8/Oatp1c1 DKO). In this study, we characterize impairments of brain structure and function in Mct8/Oatp1c1 DKO mice using multimodal magnetic resonance imaging (MRI) and assess the potential of the TH analogue 3,3′,5-triiodothyroacetic acid (TRIAC) to rescue this phenotype. Structural and functional MRI were performed in 11-weeks-old male Mct8/Oatp1c1 DKO mice (N = 10), wild type controls (N = 7) and Mct8/Oatp1c1 DKO mice (N = 13) that were injected with TRIAC (400 ng/g bw s.c.) daily during the first three postnatal weeks. Grey and white matter volume were broadly reduced in Mct8/Oatp1c1 DKO mice. TRIAC treatment could significantly improve white matter thinning but did not affect grey matter loss. Network-based statistic showed a wide-spread increase of functional connectivity, while graph analysis revealed an impairment of small-worldness and whole-brain segregation in Mct8/Oatp1c1 DKO mice. Both functional deficits could be substantially ameliorated by TRIAC treatment. Our study demonstrates prominent structural and functional brain alterations in Mct8/Oatp1c1 DKO mice that may underlie the psychomotor deficiencies in AHDS. Additionally, we provide preclinical evidence that early-life TRIAC treatment improves white matter loss and brain network dysfunctions associated with TH transporter deficiency. Full article
(This article belongs to the Special Issue Local Control of Thyroid Hormone Action)
Show Figures

Figure 1

11 pages, 2124 KiB  
Article
Detection and pH-Thermal Characterization of Proteinases Exclusive of Honeybee Worker-Fate Larvae (Apis mellifera L.)
by Simona Sagona, Chiara D’Onofrio, Vincenzo Miragliotta and Antonio Felicioli
Int. J. Mol. Sci. 2022, 23(24), 15546; https://doi.org/10.3390/ijms232415546 - 8 Dec 2022
Viewed by 1507
Abstract
The occurrence of the honeybee caste polyphenism arises when a change in diet is transduced into cellular metabolic responses, resulting in a developmental shift mediated by gene expression. The aim of this investigation was to detect and describe the expression profile of water-soluble [...] Read more.
The occurrence of the honeybee caste polyphenism arises when a change in diet is transduced into cellular metabolic responses, resulting in a developmental shift mediated by gene expression. The aim of this investigation was to detect and describe the expression profile of water-soluble proteases during the ontogenesis of honeybee worker-fate larvae. The extraction of insect homogenates was followed by the electrophoretic separation of the protein extract in polyacrylamide gels under semi-denaturing condition, precast with gelatin, pollen, or royal jelly protein extracts. The worker-fate honeybee larva showed a proteolytic pattern that varied with aging, and a protease with the highest activity at 72 h after hatching was named PS4. PS4 has a molecular weight of 45 kDa, it remained active until cell sealing, and its enzymatic properties suggest a serine-proteinase nature. To define the process that originates a queen-fate larvae, royal jelly and pollen were analysed, but PS4 was not detected in either of them. The effect of food on the PS4 was investigated by mixing crude extracts of queen and worker-fate larvae with pollen and royal jelly, respectively. Only royal jelly inhibited PS4 in worker-fate larvae. Taken together, our data suggest that PS4 could be involved in caste differentiation. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Biology in Italy)
Show Figures

Figure 1

15 pages, 1665 KiB  
Review
Zingiber officinale Rosc. in the Treatment of Metabolic Syndrome Disorders—A Review of In Vivo Studies
by Ewelina Gumbarewicz, Agata Jarząb, Andrzej Stepulak and Wirginia Kukula-Koch
Int. J. Mol. Sci. 2022, 23(24), 15545; https://doi.org/10.3390/ijms232415545 - 8 Dec 2022
Cited by 11 | Viewed by 4317
Abstract
Inflammation is a protective reaction of the innate immune system as a response to imbalances caused by a specific stimulus, a disease or a pathogen. A prolonged inflammatory condition may lead to the development of metabolic syndrome, which affects more than one-fourth of [...] Read more.
Inflammation is a protective reaction of the innate immune system as a response to imbalances caused by a specific stimulus, a disease or a pathogen. A prolonged inflammatory condition may lead to the development of metabolic syndrome, which affects more than one-fourth of the world’s population. This condition leads to the development of multi-organ disorders based on disrupted blood lipid and sugar levels, hypertension and oxidative stress. The review aims to present Zingiber officinale Rosc. as a plant that exhibits a variety of healing properties and restores the organism’s equilibrium. Ginger (GI) rhizomes have been commonly used in traditional medicine to treat arthritis, stomach ache, nonalcoholic fatty liver disease, rheumatism, nervous system syndromes, asthma, diabetes and nausea caused by pregnancy or chemotherapy. This review gathers together data from in vivo experiments related to the application of ginger for the treatment of inflammatory conditions, obesity, diabetes and other related disorders as a consequence of metabolic syndrome, including the confirmed molecular mechanisms of action. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Anti-inflammatory Phytochemicals 2.0)
Show Figures

Figure 1

12 pages, 1537 KiB  
Article
Time-Dependent Effect of Sciatic Nerve Injury on Rat Plasma Lipidome
by Dmitry Senko, Anna Gorovaya, Elena Stekolshchikova, Nickolay Anikanov, Artur Fedianin, Maxim Baltin, Olga Efimova, Daria Petrova, Tatyana Baltina, Mikhail A. Lebedev, Philipp Khaitovich and Anna Tkachev
Int. J. Mol. Sci. 2022, 23(24), 15544; https://doi.org/10.3390/ijms232415544 - 8 Dec 2022
Cited by 3 | Viewed by 2660
Abstract
Neuropathic pain is a condition affecting the quality of life of a substantial part of the population, but biomarkers and treatment options are still limited. While this type of pain is caused by nerve damage, in which lipids play key roles, lipidome alterations [...] Read more.
Neuropathic pain is a condition affecting the quality of life of a substantial part of the population, but biomarkers and treatment options are still limited. While this type of pain is caused by nerve damage, in which lipids play key roles, lipidome alterations related to nerve injury remain poorly studied. Here, we assessed blood lipidome alterations in a common animal model, the rat sciatic nerve crush injury. We analyzed alterations in blood lipid abundances between seven rats with nerve injury (NI) and eight control (CL) rats in a time-course experiment. For these rats, abundances of 377 blood lipid species were assessed at three distinct time points: immediately after, two weeks, and five weeks post injury. Although we did not detect significant differences between NI and CL at the first two time points, 106 lipids were significantly altered in NI five weeks post injury. At this time point, we found increased levels of triglycerides (TGs) and lipids containing esterified palmitic acid (16:0) in the blood plasma of NI animals. Lipids containing arachidonic acid (20:4), by contrast, were significantly decreased after injury, aligning with the crucial role of arachidonic acid reported for NI. Taken together, these results indicate delayed systematic alterations in fatty acid metabolism after nerve injury, potentially reflecting nerve tissue restoration dynamics. Full article
(This article belongs to the Special Issue Lipid Metabolism in Pathology and Health)
Show Figures

Graphical abstract

16 pages, 3221 KiB  
Article
Escherichia coli as a New Platform for the Fast Production of Vault-like Nanoparticles: An Optimized Protocol
by Roger Fernández, Aida Carreño, Rosa Mendoza, Antoni Benito, Neus Ferrer-Miralles, María Virtudes Céspedes and José Luis Corchero
Int. J. Mol. Sci. 2022, 23(24), 15543; https://doi.org/10.3390/ijms232415543 - 8 Dec 2022
Cited by 2 | Viewed by 3261
Abstract
Vaults are protein nanoparticles that are found in almost all eukaryotic cells but are absent in prokaryotic ones. Due to their properties (nanometric size, biodegradability, biocompatibility, and lack of immunogenicity), vaults show enormous potential as a bio-inspired, self-assembled drug-delivery system (DDS). Vault architecture [...] Read more.
Vaults are protein nanoparticles that are found in almost all eukaryotic cells but are absent in prokaryotic ones. Due to their properties (nanometric size, biodegradability, biocompatibility, and lack of immunogenicity), vaults show enormous potential as a bio-inspired, self-assembled drug-delivery system (DDS). Vault architecture is directed by self-assembly of the “major vault protein” (MVP), the main component of this nanoparticle. Recombinant expression (in different eukaryotic systems) of the MVP resulted in the formation of nanoparticles that were indistinguishable from native vaults. Nowadays, recombinant vaults for different applications are routinely produced in insect cells and purified by successive ultracentrifugations, which are both tedious and time-consuming strategies. To offer cost-efficient and faster protocols for nanoparticle production, we propose the production of vault-like nanoparticles in Escherichia coli cells, which are still one of the most widely used prokaryotic cell factories for recombinant protein production. The strategy proposed allowed for the spontaneous encapsulation of the engineered cargo protein within the self-assembled vault-like nanoparticles by simply mixing the clarified lysates of the producing cells. Combined with well-established affinity chromatography purification methods, our approach contains faster, cost-efficient procedures for biofabrication in a well-known microbial cell factory and the purification of “ready-to-use” loaded protein nanoparticles, thereby opening the way to faster and easier engineering and production of vault-based DDSs. Full article
Show Figures

Graphical abstract

15 pages, 2725 KiB  
Article
Improved NMDA Receptor Activation by the Secreted Amyloid-Protein Precursor-α in Healthy Aging: A Role for D-Serine?
by Jean-Marie Billard and Thomas Freret
Int. J. Mol. Sci. 2022, 23(24), 15542; https://doi.org/10.3390/ijms232415542 - 8 Dec 2022
Cited by 2 | Viewed by 2260
Abstract
Impaired activation of the N-methyl-D-aspartate subtype of glutamate receptors (NMDAR) by D-serine is linked to cognitive aging. Whether this deregulation may be used to initiate pharmacological strategies has yet to be considered. To this end, we performed electrophysiological extracellular recordings at CA3/CA1 synapses [...] Read more.
Impaired activation of the N-methyl-D-aspartate subtype of glutamate receptors (NMDAR) by D-serine is linked to cognitive aging. Whether this deregulation may be used to initiate pharmacological strategies has yet to be considered. To this end, we performed electrophysiological extracellular recordings at CA3/CA1 synapses in hippocampal slices from young and aged mice. We show that 0.1 nM of the soluble N-terminal recombinant fragment of the secreted amyloid-protein precursor-α (sAPPα) added in the bath significantly increased NMDAR activation in aged but not adult mice without impacting basal synaptic transmission. In addition, sAPPα rescued the age-related deficit of theta-burst-induced long-term potentiation. Significant NMDAR improvement occurred in adult mice when sAPPα was raised to 1 nM, and this effect was drastically reduced in transgenic mice deprived of D-serine through genetic deletion of the synthesizing enzyme serine racemase. Altogether, these results emphasize the interest to consider sAPPα treatment targeting D-serine-dependent NMDAR deregulation to alleviate cognitive aging. Full article
Show Figures

Graphical abstract

19 pages, 1539 KiB  
Review
Touch DNA Sampling Methods: Efficacy Evaluation and Systematic Review
by Pamela Tozzo, Enrico Mazzobel, Beatrice Marcante, Arianna Delicati and Luciana Caenazzo
Int. J. Mol. Sci. 2022, 23(24), 15541; https://doi.org/10.3390/ijms232415541 - 8 Dec 2022
Cited by 37 | Viewed by 7708
Abstract
Collection and interpretation of “touch DNA” from crime scenes represent crucial steps during criminal investigations, with clear consequences in courtrooms. Although the main aspects of this type of evidence have been extensively studied, some controversial issues remain. For instance, there is no conclusive [...] Read more.
Collection and interpretation of “touch DNA” from crime scenes represent crucial steps during criminal investigations, with clear consequences in courtrooms. Although the main aspects of this type of evidence have been extensively studied, some controversial issues remain. For instance, there is no conclusive evidence indicating which sampling method results in the highest rate of biological material recovery. Thus, this study aimed to describe the actual considerations on touch DNA and to compare three different sampling procedures, which were “single-swab”, “double-swab”, and “other methods” (i.e., cutting out, adhesive tape, FTA® paper scraping), based on the experimental results published in the recent literature. The data analysis performed shows the higher efficiency of the single-swab method in DNA recovery in a wide variety of experimental settings. On the contrary, the double-swab technique and other methods do not seem to improve recovery rates. Despite the apparent discrepancy with previous research, these results underline certain limitations inherent to the sampling procedures investigated. The application of this information to forensic investigations and laboratories could improve operative standard procedures and enhance this almost fundamental investigative tool’s probative value. Full article
(This article belongs to the Special Issue Molecular Biology in Forensic Science: Past, Present and Future)
Show Figures

Figure 1

14 pages, 3242 KiB  
Article
Bitter Taste Receptors and Endocrine Disruptors: Cellular and Molecular Insights from an In Vitro Model of Human Granulosa Cells
by Francesca Paola Luongo, Sofia Passaponti, Alesandro Haxhiu, Maryam Raeispour, Giuseppe Belmonte, Laura Governini, Livio Casarini, Paola Piomboni and Alice Luddi
Int. J. Mol. Sci. 2022, 23(24), 15540; https://doi.org/10.3390/ijms232415540 - 8 Dec 2022
Cited by 11 | Viewed by 2914
Abstract
Endocrine disrupting chemicals (EDCs) are compounds that interfere with the synthesis, transport and binding action of hormones responsible for reproduction and homeostasis. Some EDCs compounds are activators of Taste bitter Receptors, a subclass of taste receptors expressed in many extraoral locations, including sperm [...] Read more.
Endocrine disrupting chemicals (EDCs) are compounds that interfere with the synthesis, transport and binding action of hormones responsible for reproduction and homeostasis. Some EDCs compounds are activators of Taste bitter Receptors, a subclass of taste receptors expressed in many extraoral locations, including sperm and follicular somatic cells. This makes TAS2Rs attractive molecules to study and investigate to shed light on the effect of EDCs on female reproduction and fertility. This study aims to assess the effect of selected EDCs [namely Biochanin A (BCA), caffeine, Daidzein, Genistein and Isoflavone] on hGL5, an immortalized cell line exhibiting characteristics coherent with primary follicular granulosa cells. After demonstrating that this model expresses all the TAS2Rs (TAS2R3, TAS2R4, TAS2R14, TAS2R19, TAS2R43) specifically expressed by the primary human granulosa cells, we demonstrated that BCA and caffeine significantly affect mitochondrial footprint and intracellular lipid content, indicating their contribution in steroidogenesis. Our results showed that bitter taste receptors may be involved in steroidogenesis, thus suggesting an appealing mechanism by which these compounds affect the female reproductive system. Full article
Show Figures

Graphical abstract

15 pages, 2987 KiB  
Article
Immunomodulation of HDAC Inhibitor Entinostat Potentiates the Anticancer Effects of Radiation and PD-1 Blockade in the Murine Lewis Lung Carcinoma Model
by Yeeun Kim, Kyunghee Park, Yeon Jeong Kim, Sung-Won Shin, Yeon Joo Kim, Changhoon Choi and Jae Myoung Noh
Int. J. Mol. Sci. 2022, 23(24), 15539; https://doi.org/10.3390/ijms232415539 - 8 Dec 2022
Cited by 9 | Viewed by 3832
Abstract
Although the combination of radiotherapy and immunotherapy has proven to be effective in lung cancer treatment, it may not be sufficient to fully activate the antitumor immune response. Here, we investigated whether entinostat, a histone deacetylase inhibitor, could improve the efficacy of radiotherapy [...] Read more.
Although the combination of radiotherapy and immunotherapy has proven to be effective in lung cancer treatment, it may not be sufficient to fully activate the antitumor immune response. Here, we investigated whether entinostat, a histone deacetylase inhibitor, could improve the efficacy of radiotherapy and anti-PD-1 in a murine syngeneic LL/2 tumor model. A total of 12 Gy of X-rays administered in two fractions significantly delayed tumor growth in mice, which was further enhanced by oral entinostat administration. Flow cytometry-aided immune cell profiling revealed that entinostat increased radiation-induced infiltration of myeloid-derived suppressor cells and CD8+ T cells with decreased regulatory T-cells (Tregs). Transcriptomics-based immune phenotype prediction showed that entinostat potentiated radiation-activated pathways, such as JAK/STAT3/interferon-gamma (IFN-γ) and PD-1/PD-L1 signaling. Entinostat augmented the antitumor efficacy of radiation and anti-PD-1, which may be related to an increase in IFN-γ-producing CD8+ T-cells with a decrease in Treg cells. Comparative transcriptomic profiling predicted that entinostat increased the number of dendritic cells, B cells, and T cells in tumors treated with radiation and anti-PD-1 by inducing MHC-II genes. In conclusion, our findings provided insights into how entinostat improves the efficacy of ionizing radiation plus anti-PD-1 therapy and offered clues for developing new strategies for clinical trials. Full article
(This article belongs to the Special Issue New Advances in Endocrine-Related Cancer 2022)
Show Figures

Figure 1

12 pages, 4050 KiB  
Article
Competing Routes in the Extraction of Lanthanide Nitrates by 1,10-Phenanthroline-2,9-diamides: An Impact of Structure of Complexes on the Extraction
by Yuri A. Ustynyuk, Nelly I. Zhokhova, Igor P. Gloriozov, Petr I. Matveev, Mariia V. Evsiunina, Pavel S. Lemport, Anton S. Pozdeev, Vladimir G. Petrov, Alexandr V. Yatsenko, Viktor A. Tafeenko and Valentine G. Nenajdenko
Int. J. Mol. Sci. 2022, 23(24), 15538; https://doi.org/10.3390/ijms232415538 - 8 Dec 2022
Cited by 19 | Viewed by 2582
Abstract
The fact of the fracture of the extraction curve of lanthanides by 1,10-phenanthroline-2,9-diamides is explained in terms of the structure of complexes, solvent extraction data and quantum chemical calculations. The solvent extraction proceeds in two competing directions: in the form of neutral complexes [...] Read more.
The fact of the fracture of the extraction curve of lanthanides by 1,10-phenanthroline-2,9-diamides is explained in terms of the structure of complexes, solvent extraction data and quantum chemical calculations. The solvent extraction proceeds in two competing directions: in the form of neutral complexes LLn(NO3)3 and in the form of tight ion pairs {[LLn(NO3)2 H2O]+ (NO3). Full article
(This article belongs to the Collection Feature Papers in Materials Science)
Show Figures

Graphical abstract