Changes in Active Commuting to School in Czech Adolescents in Different Types of Built Environment across a 10-Year Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedures
2.2. Active Commuting
2.3. Built Environment
2.4. Statistical Analysis
3. Results
Attribute | 2001 | 2011 | 2001 vs. 2011 | ||
---|---|---|---|---|---|
N | % | N | % | ∆ a | |
Age categories | |||||
12–14 years | 1656 | 52.3 | 1233 | 40.1 | −23% |
15–17 years | 1508 | 47.7 | 1839 | 59.9 | 26% |
Total sample | 3164 | 100 | 3072 | 100 | |
Mode of transport | |||||
Only walking | 1466 | 46.3 | 769 | 25.0 | −46% |
Bicycle | 88 | 2.8 | 29 | 0.9 | −68% |
City transport | 1468 | 46.4 | 1683 | 54.8 | 18% |
Bus | 73 | 2.3 | 258 | 8.4 | 265% |
Car-passenger | 28 | 0.9 | 110 | 3.6 | 300% |
Others | 41 | 1.3 | 223 | 7.3 | 462% |
Total sample | 3164 | 100 | 3072 | 100 |
Type of WA | 2001 | 2011 | 2001 vs. 2011 | |||||
---|---|---|---|---|---|---|---|---|
N | % of AC | N | % of AC | ∆ a | OR b | 95% CI | p-Value | |
Boys | ||||||||
Low | 508 | 38.8 | 599 | 15.0 | −61% | 0.279 | 0.210–0.372 | <0.001 |
High | 1079 | 55.8 | 936 | 36.0 | −35% | 0.446 | 0.373–0.533 | <0.001 |
All areas | 1587 | 50.3 | 1535 | 27.8 | −45% | 0.380 | 0.328–0.441 | <0.001 |
Girls | ||||||||
Low | 489 | 36.0 | 596 | 14.1 | −61% | 0.292 | 0.217–0.392 | <0.001 |
High | 1088 | 53.2 | 941 | 30.5 | −43% | 0.386 | 0.321–0.463 | <0.001 |
All areas | 1577 | 47.9 | 1537 | 24.1 | −50% | 0.346 | 0.297–0.404 | <0.001 |
Total sample | ||||||||
Low | 997 | 37.4 | 1 195 | 14.6 | −61% | 0.285 | 0.232–0.350 | <0.001 |
High | 2167 | 54.5 | 1877 | 33.2 | −39% | 0.416 | 0.366–0.473 | <0.001 |
All areas | 3164 | 49.1 | 3072 | 26.0 | −47% | 0.365 | 0.327–0.404 | <0.001 |
Type of WA | 2001 | 2011 | 2001 vs. 2011 | |||||
---|---|---|---|---|---|---|---|---|
N | % of Walkers | N | % of Walkers | ∆ a | OR b | 95% CI | p-Value | |
Boys | ||||||||
Low | 508 | 34.4 | 599 | 13.5 | −61% | 0.298 | 0.221–0.401 | <0.001 |
High | 1079 | 51.0 | 936 | 34.3 | −33% | 0.502 | 0.419–0.601 | <0.001 |
All areas | 1587 | 45.7 | 1535 | 26.2 | −43% | 0.422 | 0.363–0.490 | <0.001 |
Girls | ||||||||
Low | 489 | 34.8 | 596 | 13.9 | −60% | 0.304 | 0.226–0.409 | <0.001 |
High | 1088 | 52.5 | 941 | 30.2 | −42% | 0.391 | 0.326–0.470 | <0.001 |
All areas | 1577 | 47.0 | 1537 | 23.9 | −49% | 0.354 | 0.304–0.413 | <0.001 |
Total sample | ||||||||
Low | 997 | 34.6 | 1195 | 13.7 | −60% | 0.301 | 0.244–0.371 | <0.001 |
High | 2167 | 51.7 | 1877 | 32.2 | −38% | 0.444 | 0.390–0.505 | <0.001 |
All areas | 3164 | 46.3 | 3072 | 25.0 | −46% | 0.387 | 0.347–0.431 | <0.001 |
Type of WA | 2001 | 2011 | 2001 vs. 2011 | |||||
---|---|---|---|---|---|---|---|---|
N | % of Cyclists | N | % of Cyclists | ∆ a | OR b | 95% CI | p-Value | |
Boys | ||||||||
Low | 508 | 4.3 | 599 | 1.5 | −65% | 0.337 | 0.154–0.739 | 0.007 |
High | 1079 | 4.8 | 936 | 1.7 | −65% | 0.343 | 0.195–0.606 | <0.001 |
All areas | 1587 | 4.7 | 1535 | 1.6 | −66% | 0.339 | 0.214–0.536 | <0.001 |
Girls | ||||||||
Low | 489 | 1.2 | 596 | 0.2 | −83% | 0.432 | 0.114–1.632 | 0.216 |
High | 1088 | 0.7 | 941 | 0.3 | −57% | 0.135 | 0.016–1.128 | 0.064 |
All areas | 1577 | 0.9 | 1537 | 0.3 | −67% | 0.291 | 0.096–0.887 | 0.030 |
Total sample | ||||||||
Low | 997 | 2.8 | 1195 | 0.8 | −71% | 0.292 | 0.141–0.604 | 0.001 |
High | 2167 | 2.8 | 1877 | 1.0 | −64% | 0.359 | 0.214–0.604 | <0.001 |
All areas | 3164 | 2.8 | 3072 | 0.9 | −68% | 0.333 | 0.218–0.508 | <0.001 |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Centers for Disease Control and Prevention. State Indicator Report on Physical Activity, 2014; U.S. Department of Health and Human Services: Atlanta, GA, USA, 2014. [Google Scholar]
- Sallis, J.F.; Frank, L.D.; Saelens, B.E.; Kraft, M.K. Active transportation and physical activity: Opportunities for collaboration on transportation and public opportunities health research. Transp. Res. Part A Policy Pract. 2004, 38, 249–268. [Google Scholar] [CrossRef]
- Lindstrom, M. Means of transportation to work and overweight and obesity: A population-based study in southern Sweden. Prev. Med. 2008, 46, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.B.; Harro, M.; Sardinha, L.B.; Froberg, K.; Ekelund, U.; Brage, S.; Anderssen, S.A. Physical activity and clustered cardiovascular risk in children: A cross-sectional study (the European youth heart study). Lancet 2006, 368, 299–304. [Google Scholar] [CrossRef]
- Southward, E.F.; Page, A.S.; Wheeler, B.W.; Cooper, A.R. Contribution of the school journey to daily physical activity in children aged 11–12 years. Am. J. Prev. Med. 2012, 43, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.D.; Greenwald, M.J.; Winkelman, S.; Chapman, J.; Kavage, S. Carbonless footprints: Promoting health and climate stabilization through active transportation. Prev. Med. 2010, 50, S99–S105. [Google Scholar] [CrossRef] [PubMed]
- Ewing, R.; Cervero, R. Travel and the built environment. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Van Dyck, D.; Deforche, B.; Cardon, G.; de Bourdeaudhuij, I. Neighbourhood walkability and its particular importance for adults with a preference for passive transport. Health Place 2009, 15, 496–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badland, H.; Schofield, G. Transport, urban design, and physical activity: An evidence-based update. Transp. Res. Part D Transp. Environ. 2005, 10, 177–196. [Google Scholar] [CrossRef]
- Witten, K.; Blakely, T.; Bagheri, N.; Badland, H.; Ivory, V.; Pearce, J.; Mavoa, S.; Hinckson, E.; Schofield, G. Neighborhood built environment and transport and leisure physical activity: Findings using objective exposure and outcome measures in New Zealand. Environ. Health Perspect. 2012, 120, 971–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerr, J.; Rosenberg, D.; Sallis, J.F.; Saelens, B.E.; Frank, L.D.; Conway, T.L. Active commuting to school: Associations with environment and parental concerns. Med. Sci. Sport Exerc. 2006, 38, 787–794. [Google Scholar] [CrossRef] [PubMed]
- Timperio, A.; Ball, K.; Salmon, J.; Roberts, R.; Giles-Corti, B.; Simmons, D.; Baur, L.A.; Crawford, D. Personal, family, social, and environmental correlates of active commuting to school. Am. J. Prev. Med. 2006, 30, 45–51. [Google Scholar] [CrossRef] [PubMed]
- McMillan, T.E. The relative influence of urban form on a child’s travel mode to school. Transp. Res. Part A Policy Pract. 2007, 41, 69–79. [Google Scholar] [CrossRef]
- Boarnet, M.G.; Day, K.; Anderson, C.; McMillan, T.; Alfonzo, M. California’s safe routes to school program—Impacts on walking, bicycling, and pedestrian safety. J. Am. Plan. Assoc. 2005, 71, 301–317. [Google Scholar] [CrossRef]
- Wahlgren, L.; Schantz, P. Bikeability and methodological issues using the active commuting route environment scale (acres) in a metropolitan setting. BMC Med. Res. Methodol. 2011, 11. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.D.; Sallis, J.F.; Saelens, B.E.; Leary, L.; Cain, K.; Conway, T.L.; Hess, P.M. The development of a walkability index: Application to the neighborhood quality of life study. Brit. J. Sport Med. 2010, 44, 924–933. [Google Scholar] [CrossRef] [PubMed]
- Leslie, E.; Coffee, N.; Frank, L.D.; Owen, N.; Bauman, A.; Hugo, G. Walkability of local communities: Using geographic information systems to objectively assess relevant environmental attributes. Health Place 2007, 13, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Dygryn, J.; Mitas, J.; Stelzer, J. The influence of built environment on walkability using geographic information system. J. Hum. Kinet. 2010, 24, 93–99. [Google Scholar] [CrossRef]
- Sigmundova, D.; Sigmund, E.; Hamrik, Z.; Kalman, M. Trends of overweight and obesity, physical activity and sedentary behaviour in Czech schoolchildren: HBSC study. Eur. J. Public Health 2014, 24, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.A.; Frank, L.D.; Schipperijn, J.; Smith, G.; Chapman, J.; Christiansen, L.B.; Coffee, N.; Salvo, D.; du Toit, L.; Dygrýn, J.; et al. International variation in neighborhood walkability, transit, and recreation environments using geographic information systems: The IPEN adult study. Int. J. Health Geogr. 2014, 13. [Google Scholar] [CrossRef] [PubMed]
- Kalman, M.; Hamrik, Z.; Sigmund, E.; Sigmundová, D.; Salonna, F. Physical activity of Czech adolescents: Findings from the HBSC 2010 study. Acta Gymnica 2015, 45, 3–11. [Google Scholar] [CrossRef]
- McDonald, N.C. Active transportation to school—Trends among US schoolchildren, 1969–2001. Am. J. Prev. Med. 2007, 32, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Van der Ploeg, H.P.; Merom, D.; Corpuz, G.; Bauman, A.E. Trends in Australian children traveling to school 1971–2003: Burning petrol or carbohydrates? Prev. Med. 2008, 46, 60–62. [Google Scholar] [CrossRef] [PubMed]
- Buliung, R.N.; Mitra, R.; Faulkner, G. Active school transportation in the greater Toronto area, Canada: An exploration of trends in space and time (1986–2006). Prev. Med. 2009, 48, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Black, C.; Collins, A.; Snell, M. Encouraging walking: The case of journey-to-school trips in compact urban areas. Urban Stud. 2001, 38, 1121–1141. [Google Scholar] [CrossRef]
- Chillon, P.; Martinez-Gomez, D.; Ortega, F.B.; Perez-Lopez, I.J.; Diaz, L.E.; Veses, A.M.; Veiga, O.L.; Marcos, A.; Delgado-Fernandez, M. Six-year trend in active commuting to school in Spanish adolescents. Int. J. Behav. Med. 2013, 20, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Tudor-Locke, C.; Ainsworth, B.E.; Popkin, B.M. Active commuting to school—An overlooked source of childrens’ physical activity? Sports Med. 2001, 31, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Hume, C.; Timperio, A.; Salmon, J.; Carver, A.; Giles-Corti, B.; Crawford, D. Walking and cycling to school predictors of increases among children and adolescents. Am. J. Prev. Med. 2009, 36, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Dalton, M.A.; Longacre, M.R.; Drake, K.M.; Gibson, L.; Adachi-Mejia, A.M.; Swain, K.; Xie, H.; Owens, P.M. Built environment predictors of active travel to school among rural adolescents. Am. J. Prev. Med. 2011, 40, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Larsen, K.; Gilliland, J.; Hess, P.; Tucker, P.; Irwin, J.; He, M. The influence of the physical environment and sociodemographic characteristics on children’s mode of travel to and from school. Am. J. Public Health 2009, 99, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Evenson, K.R.; Huston, S.L.; McMillen, B.J.; Bors, P.; Ward, D.S. Statewide prevalence and correlates of walking and bicycling to school. Arch. Pediatr. Adolesc. Med. 2003, 157, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Van Dyck, D.; de Bourdeaudhuij, I.; Cardon, G.; Deforche, B. Criterion distances and correlates of active transportation to school in Belgian older adolescents. Int. J. Behav. Nutr. Phys. Act. 2010, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buehler, R.; Pucher, J.; Merom, D.; Bauman, A. Active travel in Germany and the U.S. Contributions of daily walking and cycling to physical activity. Am. J. Prev. Med. 2011, 41, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Frank, L.D.; Sallis, J.F.; Conway, T.L.; Chapman, J.; Saelens, B.E.; Bachman, W. Many pathways from land use to health—Associations between neighborhood walkability and active transportation, body mass index, and air quality. J. Am. Plan. Assoc. 2006, 72, 75–87. [Google Scholar] [CrossRef]
- Panter, J.R.; Jones, A.P.; van Sluijs, E.M.F. Environmental determinants of active travel in youth: A review and framework for future research. Int. J. Behav. Nutr. Phy. Act. 2008, 5. [Google Scholar] [CrossRef] [PubMed]
- Pavelka, J.; Sigmundová, D.; Hamřík, Z.; Kalman, M. Active transport among Czech school-aged children. Acta Univ. Palacki. Olomuc. Gymn. 2012, 42, 17–26. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dygrýn, J.; Mitáš, J.; Gába, A.; Rubín, L.; Frömel, K. Changes in Active Commuting to School in Czech Adolescents in Different Types of Built Environment across a 10-Year Period. Int. J. Environ. Res. Public Health 2015, 12, 12988-12998. https://doi.org/10.3390/ijerph121012988
Dygrýn J, Mitáš J, Gába A, Rubín L, Frömel K. Changes in Active Commuting to School in Czech Adolescents in Different Types of Built Environment across a 10-Year Period. International Journal of Environmental Research and Public Health. 2015; 12(10):12988-12998. https://doi.org/10.3390/ijerph121012988
Chicago/Turabian StyleDygrýn, Jan, Josef Mitáš, Aleš Gába, Lukáš Rubín, and Karel Frömel. 2015. "Changes in Active Commuting to School in Czech Adolescents in Different Types of Built Environment across a 10-Year Period" International Journal of Environmental Research and Public Health 12, no. 10: 12988-12998. https://doi.org/10.3390/ijerph121012988
APA StyleDygrýn, J., Mitáš, J., Gába, A., Rubín, L., & Frömel, K. (2015). Changes in Active Commuting to School in Czech Adolescents in Different Types of Built Environment across a 10-Year Period. International Journal of Environmental Research and Public Health, 12(10), 12988-12998. https://doi.org/10.3390/ijerph121012988