Reliability Analysis and Evaluation of Automotive Systems

A special issue of Vehicles (ISSN 2624-8921).

Deadline for manuscript submissions: 24 November 2024 | Viewed by 5473

Special Issue Editor


E-Mail Website
Guest Editor
School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
Interests: electric vehicle; automotive engineering; failure modes and effects analysis (FMEA); durability and reliability design

Special Issue Information

Dear Colleagues,

The automotive industry is rapidly evolving with the integration of advanced technologies, such as autonomous driving, electric propulsion, and connected vehicles. With these advancements, the reliability of automotive systems becomes crucial for ensuring safety, performance, and customer satisfaction. This Special Issue aims to explore the latest research and advancements in the reliability analysis and evaluation of automotive systems.

The objective of this Special Issue is to connect researchers, engineers, and practitioners from academia and industry to share their knowledge, experiences, and innovative approaches in the field of automotive system reliability. We invite original research articles, review papers, and case studies that address various aspects of reliability analysis, evaluation, and improvement in automotive systems.

We encourage researchers and experts in the field to contribute their valuable insights and findings to this Special Issue. By gathering and disseminating the latest research, this Special Issue will contribute to the advancement of reliability analysis and evaluation in automotive systems, ultimately enhancing the safety and performance of vehicles on the road.

Dr. Lihui Zhao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Vehicles is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • failure modes and effects analysis (FMEA)
  • fault tree analysis (FTA)
  • reliability testing
  • prognostics and health management (PHM)
  • risk assessment
  • failure prediction
  • maintenance strategies
  • warranty analysis
  • quality control
  • reliability modeling and simulation

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 4388 KiB  
Article
An Analysis of the Correct Frequency of the Service Inspections of German Passenger Cars—A Case Study on Kazakhstan and Poland
by Saltanat Nurkusheva, Michał Bembenek, Maciej Berdychowski, Bożena Gajdzik and Radosław Wolniak
Vehicles 2024, 6(1), 553-570; https://doi.org/10.3390/vehicles6010025 - 19 Mar 2024
Viewed by 562
Abstract
This article presents a case study on estimating the real service inspection intervals for German-brand passenger cars in Kazakhstan and Poland. This study aimed to identify disparities between the official recommendations of manufacturers for car maintenance and the real data collected in these [...] Read more.
This article presents a case study on estimating the real service inspection intervals for German-brand passenger cars in Kazakhstan and Poland. This study aimed to identify disparities between the official recommendations of manufacturers for car maintenance and the real data collected in these two countries. The following passenger cars were examined: Audi A6, Q5, and Q8; Porsche Cayenne and Cayenne coupe; and Volkswagen Passat, Polo, Teramont, Tiguan, Touareg, Arteon, Golf, T-Cross, Tiguan all space, Touran, T-Roc, and Up. To assess the difference between real and recommended values, the manufacturer criteria of a recommended mileage of 15,000 and 30,000 km or a time frame of 365 and 730 days to the first service inspection were applied. The data analysis showed that in Kazakhstan, 31.4% of cars did not meet the warranty conditions, while in Poland, it was 21.0%. The dominant criterion that was not met was the time criterion. The assessment of these factors emphasizes the importance of customizing vehicle maintenance schedules to the specific conditions and driving behaviors prevalent in each country. The practical contribution of the article lies in uncovering the discrepancies between official manufacturer recommendations for car maintenance and the actual data collected in Kazakhstan and Poland. By identifying specific models, Volkswagen Touareg and Tiguan in Kazakhstan and Volkswagen Up in Poland, for which the maintenance intervals deviated significantly from those recommended, this study offers valuable insights for optimizing service schedules and improving the efficiency of maintenance practices in these countries. From a scientific perspective, this article contributes by providing empirical evidence of real-world maintenance behaviors for German-brand passenger cars. Full article
(This article belongs to the Special Issue Reliability Analysis and Evaluation of Automotive Systems)
Show Figures

Figure 1

43 pages, 2987 KiB  
Article
Strengthening Automotive Cybersecurity: A Comparative Analysis of ISO/SAE 21434-Compliant Automatic Collision Notification (ACN) Systems
by Biagio Boi, Tarush Gupta, Marcelo Rinhel, Iuliana Jubea, Rahamatullah Khondoker, Christian Esposito and Bruno Miguel Sousa
Vehicles 2023, 5(4), 1760-1802; https://doi.org/10.3390/vehicles5040096 - 04 Dec 2023
Viewed by 1762
Abstract
The increasing usage of autonomous and automatic systems within the automotive industry is steering us towards a more interconnected world. This enhanced interconnectivity fosters a more streamlined driving experience, reduces costs, and provides timely driver assistance. The electric/electronic (EE) architectures of modern vehicles [...] Read more.
The increasing usage of autonomous and automatic systems within the automotive industry is steering us towards a more interconnected world. This enhanced interconnectivity fosters a more streamlined driving experience, reduces costs, and provides timely driver assistance. The electric/electronic (EE) architectures of modern vehicles are inherently complex due to the multitude of components they encompass. Contemporary architectures reveal that these components converge at an electronic control unit (ECU) called the central gateway, which could potentially represent a single point of failure. While this central unit is typically adequately safeguarded, the same cannot be said for the connected components, which often remain vulnerable to cyber threats. The ISO/SAE 21434 standard paved the way for automotive cybersecurity and could be used in parallel with other standards such as ISO 26262 and ISO PAS 21488. Automatic collision notification (ACN) is one of the most typical systems in a vehicle, and limited effort has been dedicated to identifying the most suitable architecture for this feature. This paper addresses the existing security and privacy gap of this feature by conducting a comparative analysis of security threats in two distinct ACN architectures. Notably, despite ACN architectures exhibiting inherent similarities, the primary distinction between the two architectures lies in their strategies for crash estimation and detection, followed by subsequent communication with emergency response teams. A rigorous security assessment was conducted using the ISO/SAE 21434 standard, employing the TARA and STRIDE methodologies through the Ansys medini analyze software. This analysis identified an average of 310 threats per architecture, including a significant number of high-level threats (11.8% and 15%, respectively), highlighting the importance of a comprehensive evaluation. Full article
(This article belongs to the Special Issue Reliability Analysis and Evaluation of Automotive Systems)
Show Figures

Figure 1

15 pages, 4429 KiB  
Article
NR Sidelink Performance Evaluation for Enhanced 5G-V2X Services
by Mehnaz Tabassum, Felipe Henrique Bastos, Aurenice Oliveira and Aldebaro Klautau
Vehicles 2023, 5(4), 1692-1706; https://doi.org/10.3390/vehicles5040092 - 24 Nov 2023
Cited by 1 | Viewed by 2769
Abstract
The Third Generation Partnership Project (3GPP) has specified Cellular Vehicle-to-Everything (C-V2X) radio access technology in Releases 15–17, with an emphasis on facilitating direct communication between vehicles through the interface, sidelink PC5. This interface provides end-to-end network slicing functionality together with a stable cloud-native [...] Read more.
The Third Generation Partnership Project (3GPP) has specified Cellular Vehicle-to-Everything (C-V2X) radio access technology in Releases 15–17, with an emphasis on facilitating direct communication between vehicles through the interface, sidelink PC5. This interface provides end-to-end network slicing functionality together with a stable cloud-native core network. The performance of direct vehicle-to-vehicle (V2V) communications has been improved by using the sidelink interface, which allows for a network infrastructure bypass. Sidelink transmissions make use of orthogonal resources that are either centrally allocated (Mode 1, Release 14) or chosen by the vehicles themselves (Mode 2, Release 14). With growing interest in connected and autonomous vehicles, the advancement in radio access technologies that facilitate dependable and low-latency vehicular communications is becoming more significant. This is especially necessary when there are heavy traffic conditions and patterns. We thoroughly examined the New Radio (NR) sidelink’s performance based on 3GPP Releases 15–17 under various vehicle densities, speeds, and distance settings. Thus, by evaluating sidelink’s strengths and drawbacks, we are able to optimize resource allocation to obtain maximum coverage in urban areas. The performance evaluation was conducted on Network Simulator 3 (NS3.34/5G-LENA) utilizing various network metrics such as average packet reception rate, throughput, and latency. Full article
(This article belongs to the Special Issue Reliability Analysis and Evaluation of Automotive Systems)
Show Figures

Figure 1

Back to TopTop