sensors-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1179 KiB  
Article
Toward Modular and Flexible Open RAN Implementations in 6G Networks: Traffic Steering Use Case and O-RAN xApps
by Marcin Dryjański, Łukasz Kułacz and Adrian Kliks
Sensors 2021, 21(24), 8173; https://doi.org/10.3390/s21248173 - 7 Dec 2021
Cited by 46 | Viewed by 7148
Abstract
The development of cellular wireless systems has entered the phase when 5G networks are being deployed and the foundations of 6G solutions are being identified. However, in parallel to this, another technological breakthrough is observed, as the concept of open radio access networks [...] Read more.
The development of cellular wireless systems has entered the phase when 5G networks are being deployed and the foundations of 6G solutions are being identified. However, in parallel to this, another technological breakthrough is observed, as the concept of open radio access networks is coming into play. Together with advancing network virtualization and programmability, this may reshape the way the functionalities and services related to radio access are designed, leading to modular and flexible implementations. This paper overviews the idea of open radio access networks and presents ongoing O-RAN Alliance standardization activities in this context. The whole analysis is supported by a study of the traffic steering use case implemented in a modular way, following the open networking approach. Full article
(This article belongs to the Special Issue Next Generation Radio Communication Technologies)
Show Figures

Figure 1

20 pages, 11035 KiB  
Review
Recent Progress in Devices Based on Magnetoelectric Composite Thin Films
by Deepak Rajaram Patil, Ajeet Kumar and Jungho Ryu
Sensors 2021, 21(23), 8012; https://doi.org/10.3390/s21238012 - 30 Nov 2021
Cited by 17 | Viewed by 3375
Abstract
The strain-driven interfacial coupling between the ferromagnetic and ferroelectric constituents of magnetoelectric (ME) composites makes them potential candidates for novel multifunctional devices. ME composites in the form of thin-film heterostructures show promising applications in miniaturized ME devices. This article reports the recent advancement [...] Read more.
The strain-driven interfacial coupling between the ferromagnetic and ferroelectric constituents of magnetoelectric (ME) composites makes them potential candidates for novel multifunctional devices. ME composites in the form of thin-film heterostructures show promising applications in miniaturized ME devices. This article reports the recent advancement in ME thin-film devices, such as highly sensitive magnetic field sensors, ME antennas, integrated tunable ME inductors, and ME band-pass filters, is discussed. (Pb1−xZrx)TiO3 (PZT), Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), Aluminium nitride (AlN), and Al1−xScxN are the most commonly used piezoelectric constituents, whereas FeGa, FeGaB, FeCo, FeCoB, and Metglas (FeCoSiB alloy) are the most commonly used magnetostrictive constituents in the thin film ME devices. The ME field sensors offer a limit of detection in the fT/Hz1/2 range at the mechanical resonance frequency. However, below resonance, different frequency conversion techniques with AC magnetic or electric fields or the delta-E effect are used. Noise floors of 1–100 pT/Hz1/2 at 1 Hz were obtained. Acoustically actuated nanomechanical ME antennas operating at a very-high frequency as well as ultra-high frequency (0.1–3 GHz) range, were introduced. The ME antennas were successfully miniaturized by a few orders smaller in size compared to the state-of-the-art conventional antennas. The designed antennas exhibit potential application in biomedical devices and wearable antennas. Integrated tunable inductors and band-pass filters tuned by electric and magnetic field with a wide operating frequency range are also discussed along with miniaturized ME energy harvesters. Full article
(This article belongs to the Special Issue Magnetoelectric Thin-Film Based Devices)
Show Figures

Figure 1

24 pages, 4032 KiB  
Article
A Convolutional Neural Network-Based Intelligent Medical System with Sensors for Assistive Diagnosis and Decision-Making in Non-Small Cell Lung Cancer
by Xiangbing Zhan, Huiyun Long, Fangfang Gou, Xun Duan, Guangqian Kong and Jia Wu
Sensors 2021, 21(23), 7996; https://doi.org/10.3390/s21237996 - 30 Nov 2021
Cited by 25 | Viewed by 2767
Abstract
In many regions of the world, early diagnosis of non-small cell lung cancer (NSCLC) is a major challenge due to the large population and lack of medical resources, which is difficult toeffectively address via limited physician manpower alone. Therefore, we developed a convolutional [...] Read more.
In many regions of the world, early diagnosis of non-small cell lung cancer (NSCLC) is a major challenge due to the large population and lack of medical resources, which is difficult toeffectively address via limited physician manpower alone. Therefore, we developed a convolutional neural network (CNN)-based assisted diagnosis and decision-making intelligent medical system with sensors. This system analyzes NSCLC patients’ medical records using sensors to assist staging a diagnosis and provides recommended treatment plans to physicians. To address the problem of unbalanced case samples across pathological stages, we used transfer learning and dynamic sampling techniques to reconstruct and iteratively train the model to improve the accuracy of the prediction system. In this paper, all data for training and testing the system were obtained from the medical records of 2,789,675 patients with NSCLC, which were recorded in three hospitals in China over a five-year period. When the number of case samples reached 8000, the system achieved an accuracy rate of 0.84, which is already close to that of the doctors (accuracy: 0.86). The experimental results proved that the system can quickly and accurately analyze patient data and provide decision information support for physicians. Full article
(This article belongs to the Collection Medical Applications of Sensor Systems and Devices)
Show Figures

Figure 1

20 pages, 3312 KiB  
Article
Robust Data Association Using Fusion of Data-Driven and Engineered Features for Real-Time Pedestrian Tracking in Thermal Images
by Mircea Paul Muresan, Sergiu Nedevschi and Radu Danescu
Sensors 2021, 21(23), 8005; https://doi.org/10.3390/s21238005 - 30 Nov 2021
Cited by 21 | Viewed by 2508
Abstract
Object tracking is an essential problem in computer vision that has been extensively researched for decades. Tracking objects in thermal images is particularly difficult because of the lack of color information, low image resolution, or high similarity between objects of the same class. [...] Read more.
Object tracking is an essential problem in computer vision that has been extensively researched for decades. Tracking objects in thermal images is particularly difficult because of the lack of color information, low image resolution, or high similarity between objects of the same class. One of the main challenges in multi-object tracking, also referred to as the data association problem, is finding the correct correspondences between measurements and tracks and adapting the object appearance changes over time. We addressed this challenge of data association for thermal images by proposing three contributions. The first contribution consisted of the creation of a data-driven appearance score using five Siamese Networks, which operate on the image detection and on parts of it. Secondly, we engineered an original edge-based descriptor that improves the data association process. Lastly, we proposed a dataset consisting of pedestrian instances that were recorded in different scenarios and are used for training the Siamese Networks. The data-driven part of the data association score offers robustness, while feature engineering offers adaptability to unknown scenarios and their combination leads to a more powerful tracking solution. Our approach had a running time of 25 ms and achieved an average precision of 86.2% on publicly available benchmarks, containing real-world scenarios, as shown in the evaluation section. Full article
(This article belongs to the Special Issue Thermal Imaging Sensors and Their Applications)
Show Figures

Figure 1

22 pages, 5463 KiB  
Article
Dynamic Object Tracking on Autonomous UAV System for Surveillance Applications
by Li-Yu Lo, Chi Hao Yiu, Yu Tang, An-Shik Yang, Boyang Li and Chih-Yung Wen
Sensors 2021, 21(23), 7888; https://doi.org/10.3390/s21237888 - 27 Nov 2021
Cited by 39 | Viewed by 6704
Abstract
The ever-burgeoning growth of autonomous unmanned aerial vehicles (UAVs) has demonstrated a promising platform for utilization in real-world applications. In particular, a UAV equipped with a vision system could be leveraged for surveillance applications. This paper proposes a learning-based UAV system for achieving [...] Read more.
The ever-burgeoning growth of autonomous unmanned aerial vehicles (UAVs) has demonstrated a promising platform for utilization in real-world applications. In particular, a UAV equipped with a vision system could be leveraged for surveillance applications. This paper proposes a learning-based UAV system for achieving autonomous surveillance, in which the UAV can be of assistance in autonomously detecting, tracking, and following a target object without human intervention. Specifically, we adopted the YOLOv4-Tiny algorithm for semantic object detection and then consolidated it with a 3D object pose estimation method and Kalman filter to enhance the perception performance. In addition, UAV path planning for a surveillance maneuver is integrated to complete the fully autonomous system. The perception module is assessed on a quadrotor UAV, while the whole system is validated through flight experiments. The experiment results verified the robustness, effectiveness, and reliability of the autonomous object tracking UAV system in performing surveillance tasks. The source code is released to the research community for future reference. Full article
Show Figures

Figure 1

15 pages, 5112 KiB  
Article
A Wearable Electrochemical Gas Sensor for Ammonia Detection
by Martina Serafini, Federica Mariani, Isacco Gualandi, Francesco Decataldo, Luca Possanzini, Marta Tessarolo, Beatrice Fraboni, Domenica Tonelli and Erika Scavetta
Sensors 2021, 21(23), 7905; https://doi.org/10.3390/s21237905 - 27 Nov 2021
Cited by 22 | Viewed by 5225
Abstract
The next future strategies for improved occupational safety and health management could largely benefit from wearable and Internet of Things technologies, enabling the real-time monitoring of health-related and environmental information to the wearer, to emergency responders, and to inspectors. The aim of this [...] Read more.
The next future strategies for improved occupational safety and health management could largely benefit from wearable and Internet of Things technologies, enabling the real-time monitoring of health-related and environmental information to the wearer, to emergency responders, and to inspectors. The aim of this study is the development of a wearable gas sensor for the detection of NH3 at room temperature based on the organic semiconductor poly(3,4-ethylenedioxythiophene) (PEDOT), electrochemically deposited iridium oxide particles, and a hydrogel film. The hydrogel composition was finely optimised to obtain self-healing properties, as well as the desired porosity, adhesion to the substrate, and stability in humidity variations. Its chemical structure and morphology were characterised by infrared spectroscopy and scanning electron microscopy, respectively, and were found to play a key role in the transduction process and in the achievement of a reversible and selective response. The sensing properties rely on a potentiometric-like mechanism that significantly differs from most of the state-of-the-art NH3 gas sensors and provides superior robustness to the final device. Thanks to the reliability of the analytical response, the simple two-terminal configuration and the low power consumption, the PEDOT:PSS/IrOx Ps/hydrogel sensor was realised on a flexible plastic foil and successfully tested in a wearable configuration with wireless connectivity to a smartphone. The wearable sensor showed stability to mechanical deformations and good analytical performances, with a sensitivity of 60 ± 8 μA decade−1 in a wide concentration range (17–7899 ppm), which includes the safety limits set by law for NH3 exposure. Full article
(This article belongs to the Special Issue Wearable and Unobtrusive Technologies for Healthcare Monitoring)
Show Figures

Graphical abstract

11 pages, 903 KiB  
Article
Validation of a Sensor-Based Gait Analysis System with a Gold-Standard Motion Capture System in Patients with Parkinson’s Disease
by Verena Jakob, Arne Küderle, Felix Kluge, Jochen Klucken, Bjoern M. Eskofier, Jürgen Winkler, Martin Winterholler and Heiko Gassner
Sensors 2021, 21(22), 7680; https://doi.org/10.3390/s21227680 - 18 Nov 2021
Cited by 24 | Viewed by 4145
Abstract
Digital technologies provide the opportunity to analyze gait patterns in patients with Parkinson’s Disease using wearable sensors in clinical settings and a home environment. Confirming the technical validity of inertial sensors with a 3D motion capture system is a necessary step for the [...] Read more.
Digital technologies provide the opportunity to analyze gait patterns in patients with Parkinson’s Disease using wearable sensors in clinical settings and a home environment. Confirming the technical validity of inertial sensors with a 3D motion capture system is a necessary step for the clinical application of sensor-based gait analysis. Therefore, the objective of this study was to compare gait parameters measured by a mobile sensor-based gait analysis system and a motion capture system as the gold standard. Gait parameters of 37 patients were compared between both systems after performing a standardized 5 × 10 m walking test by reliability analysis using intra-class correlation and Bland–Altman plots. Additionally, gait parameters of an age-matched healthy control group (n = 14) were compared to the Parkinson cohort. Gait parameters representing bradykinesia and short steps showed excellent reliability (ICC > 0.96). Shuffling gait parameters reached ICC > 0.82. In a stridewise synchronization, no differences were observed for gait speed, stride length, stride time, relative stance and swing time (p > 0.05). In contrast, heel strike, toe off and toe clearance significantly differed between both systems (p < 0.01). Both gait analysis systems distinguish Parkinson patients from controls. Our results indicate that wearable sensors generate valid gait parameters compared to the motion capture system and can consequently be used for clinically relevant gait recordings in flexible environments. Full article
(This article belongs to the Special Issue Inertial Sensors for Clinically Relevant Mobility Outcome Measures)
Show Figures

Figure 1

22 pages, 4119 KiB  
Review
Recent Progress in Smart Electronic Nose Technologies Enabled with Machine Learning Methods
by  Zhenyi Ye, Yuan Liu and Qiliang Li
Sensors 2021, 21(22), 7620; https://doi.org/10.3390/s21227620 - 16 Nov 2021
Cited by 46 | Viewed by 8930
Abstract
Machine learning methods enable the electronic nose (E-Nose) for precise odor identification with both qualitative and quantitative analysis. Advanced machine learning methods are crucial for the E-Nose to gain high performance and strengthen its capability in many applications, including robotics, food engineering, environment [...] Read more.
Machine learning methods enable the electronic nose (E-Nose) for precise odor identification with both qualitative and quantitative analysis. Advanced machine learning methods are crucial for the E-Nose to gain high performance and strengthen its capability in many applications, including robotics, food engineering, environment monitoring, and medical diagnosis. Recently, many machine learning techniques have been studied, developed, and integrated into feature extraction, modeling, and gas sensor drift compensation. The purpose of feature extraction is to keep robust pattern information in raw signals while removing redundancy and noise. With the extracted feature, a proper modeling method can effectively use the information for prediction. In addition, drift compensation is adopted to relieve the model accuracy degradation due to the gas sensor drifting. These recent advances have significantly promoted the prediction accuracy and stability of the E-Nose. This review is engaged to provide a summary of recent progress in advanced machine learning methods in E-Nose technologies and give an insight into new research directions in feature extraction, modeling, and sensor drift compensation. Full article
Show Figures

Figure 1

28 pages, 18628 KiB  
Article
Highly-Optimized Radar-Based Gesture Recognition System with Depthwise Expansion Module
by Mateusz Chmurski, Gianfranco Mauro, Avik Santra, Mariusz Zubert and Gökberk Dagasan
Sensors 2021, 21(21), 7298; https://doi.org/10.3390/s21217298 - 2 Nov 2021
Cited by 15 | Viewed by 3565
Abstract
The increasing integration of technology in our daily lives demands the development of more convenient human–computer interaction (HCI) methods. Most of the current hand-based HCI strategies exhibit various limitations, e.g., sensibility to variable lighting conditions and limitations on the operating environment. Further, the [...] Read more.
The increasing integration of technology in our daily lives demands the development of more convenient human–computer interaction (HCI) methods. Most of the current hand-based HCI strategies exhibit various limitations, e.g., sensibility to variable lighting conditions and limitations on the operating environment. Further, the deployment of such systems is often not performed in resource-constrained contexts. Inspired by the MobileNetV1 deep learning network, this paper presents a novel hand gesture recognition system based on frequency-modulated continuous wave (FMCW) radar, exhibiting a higher recognition accuracy in comparison to the state-of-the-art systems. First of all, the paper introduces a method to simplify radar preprocessing while preserving the main information of the performed gestures. Then, a deep neural classifier with the novel Depthwise Expansion Module based on the depthwise separable convolutions is presented. The introduced classifier is optimized and deployed on the Coral Edge TPU board. The system defines and adopts eight different hand gestures performed by five users, offering a classification accuracy of 98.13% while operating in a low-power and resource-constrained environment. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 6041 KiB  
Article
Evaluation of the Path-Tracking Accuracy of a Three-Wheeled Omnidirectional Mobile Robot Designed as a Personal Assistant
by Jordi Palacín, Elena Rubies, Eduard Clotet and David Martínez
Sensors 2021, 21(21), 7216; https://doi.org/10.3390/s21217216 - 29 Oct 2021
Cited by 23 | Viewed by 3196
Abstract
This paper presents the empirical evaluation of the path-tracking accuracy of a three-wheeled omnidirectional mobile robot that is able to move in any direction while simultaneously changing its orientation. The mobile robot assessed in this paper includes a precise onboard LIDAR for obstacle [...] Read more.
This paper presents the empirical evaluation of the path-tracking accuracy of a three-wheeled omnidirectional mobile robot that is able to move in any direction while simultaneously changing its orientation. The mobile robot assessed in this paper includes a precise onboard LIDAR for obstacle avoidance, self-location and map creation, path-planning and path-tracking. This mobile robot has been used to develop several assistive services, but the accuracy of its path-tracking system has not been specifically evaluated until now. To this end, this paper describes the kinematics and path-planning procedure implemented in the mobile robot and empirically evaluates the accuracy of its path-tracking system that corrects the trajectory. In this paper, the information gathered by the LIDAR is registered to obtain the ground truth trajectory of the mobile robot in order to estimate the path-tracking accuracy of each experiment conducted. Circular and eight-shaped trajectories were assessed with different translational velocities. In general, the accuracy obtained in circular trajectories is within a short range, but the accuracy obtained in eight-shaped trajectories worsens as the velocity increases. In the case of the mobile robot moving at its nominal translational velocity, 0.3 m/s, the root mean square (RMS) displacement error was 0.032 m for the circular trajectory and 0.039 m for the eight-shaped trajectory; the absolute maximum displacement errors were 0.077 m and 0.088 m, with RMS errors in the angular orientation of 6.27° and 7.76°, respectively. Moreover, the external visual perception generated by these error levels is that the trajectory of the mobile robot is smooth, with a constant velocity and without perceiving trajectory corrections. Full article
Show Figures

Figure 1

19 pages, 6874 KiB  
Review
Recent Progress in Self-Powered Sensors Based on Triboelectric Nanogenerators
by Junpeng Wu, Yang Zheng and Xiaoyi Li
Sensors 2021, 21(21), 7129; https://doi.org/10.3390/s21217129 - 27 Oct 2021
Cited by 33 | Viewed by 4593
Abstract
The emergence of the Internet of Things (IoT) has subverted people’s lives, causing the rapid development of sensor technologies. However, traditional sensor energy sources, like batteries, suffer from the pollution problem and the limited lifetime for powering widely implemented electronics or sensors. Therefore, [...] Read more.
The emergence of the Internet of Things (IoT) has subverted people’s lives, causing the rapid development of sensor technologies. However, traditional sensor energy sources, like batteries, suffer from the pollution problem and the limited lifetime for powering widely implemented electronics or sensors. Therefore, it is essential to obtain self-powered sensors integrated with renewable energy harvesters. The triboelectric nanogenerator (TENG), which can convert the surrounding mechanical energy into electrical energy based on the surface triboelectrification effect, was born of this background. This paper systematically introduces the working principle of the TENG-based self-powered sensor, including the triboelectrification effect, Maxwell’s displacement current, and quantitative analysis method. Meanwhile, this paper also reviews the recent application of TENG in different fields and summarizes the future development and current problems of TENG. We believe that there will be a rise of TENG-based self-powered sensors in the future. Full article
(This article belongs to the Special Issue Flexible and Stretchable Sensor Technology)
Show Figures

Figure 1

13 pages, 1482 KiB  
Article
Extremely Sensitive Microwave Microfluidic Dielectric Sensor Using a Transmission Line Loaded with Shunt LC Resonators
by Haneen Abdelwahab, Amir Ebrahimi, Francisco J. Tovar-Lopez, Grzegorz Beziuk and Kamran Ghorbani
Sensors 2021, 21(20), 6811; https://doi.org/10.3390/s21206811 - 13 Oct 2021
Cited by 26 | Viewed by 3019
Abstract
In this paper, a very high sensitivity microwave-based planar microfluidic sensor is presented. Sensitivity enhancement is achieved and described theoretically and experimentally by eliminating any extra parasitic capacitance not contributing to the sensing mechanism. The sensor consists of a microstrip transmission line loaded [...] Read more.
In this paper, a very high sensitivity microwave-based planar microfluidic sensor is presented. Sensitivity enhancement is achieved and described theoretically and experimentally by eliminating any extra parasitic capacitance not contributing to the sensing mechanism. The sensor consists of a microstrip transmission line loaded with a series connected shunt LC resonator. A microfluidic channel is attached to the area of the highest electric field concentration. The electric field distribution and, therefore, the resonance characteristics are modified by applying microfluidic dielectric samples to the sensing area. The sensor performance and working principle are described through a circuit model analysis. A device prototype is fabricated, and experimental measurements using water/ethanol and water/methanol solutions are presented for validation of the sensing mathematical model. Full article
(This article belongs to the Special Issue State-of-the-Art Technologies in Microwave Sensors)
Show Figures

Figure 1

21 pages, 7684 KiB  
Article
Comprehensive mPoint: A Method for 3D Point Cloud Generation of Human Bodies Utilizing FMCW MIMO mm-Wave Radar
by Guangcheng Zhang, Xiaoyi Geng and Yueh-Jaw Lin
Sensors 2021, 21(19), 6455; https://doi.org/10.3390/s21196455 - 27 Sep 2021
Cited by 16 | Viewed by 5454
Abstract
In this paper, comprehensive mPoint, a method for generating 3D (range, azimuth, and elevation) point cloud of human targets using a Frequency-Modulated Continuous Wave (FMCW) signal and Multi-Input Multi-Output (MIMO) millimeter wave radar is proposed. Distinct from the TI-mPoint method proposed by TI [...] Read more.
In this paper, comprehensive mPoint, a method for generating 3D (range, azimuth, and elevation) point cloud of human targets using a Frequency-Modulated Continuous Wave (FMCW) signal and Multi-Input Multi-Output (MIMO) millimeter wave radar is proposed. Distinct from the TI-mPoint method proposed by TI technology, a comprehensive mPoint method considering both the static and dynamic characteristics of radar reflected signals is utilized to generate a high precision point cloud, resulting in more comprehensive information of the target being detected. The radar possessing 60–64 GHz FMCW signal with two sets of different dimensional antennas is utilized in order to experimentally verify the results of the methodology. By using the proposed process, the point cloud data of human targets can be obtained based on six different postures of the underlying human body. The human posture cube and point cloud accuracy rates are defined in the paper in order to quantitively and qualitatively evaluate the quality of the generated point cloud. Benefitting from the proposed comprehensive mPoint, evidence shows that the point number and the accuracy rate of the generated point cloud compared with those from the popular TI-mPoint can be largely increased by 86% and 42%, respectively. In addition, the noise level of multipath reflection can be effectively reduced. Moreover, the length of the algorithm running time is only 1.6% longer than that of the previous method as a slight tradeoff. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

25 pages, 53263 KiB  
Review
Research Progress of Small Molecule Fluorescent Probes for Detecting Hypochlorite
by Zhi-Guo Song, Qing Yuan, Pengcheng Lv and Kun Chen
Sensors 2021, 21(19), 6326; https://doi.org/10.3390/s21196326 - 22 Sep 2021
Cited by 27 | Viewed by 4187
Abstract
Hypochlorous acid (HOCl) generates from the reaction between hydrogen peroxide and chloride ions via myeloperoxidase (MPO)-mediated in vivo. As very important reactive oxygen species (ROS), hypochlorous acid (HOCl)/hypochlorite (OCl) play a crucial role in a variety of physiological and pathological processes. [...] Read more.
Hypochlorous acid (HOCl) generates from the reaction between hydrogen peroxide and chloride ions via myeloperoxidase (MPO)-mediated in vivo. As very important reactive oxygen species (ROS), hypochlorous acid (HOCl)/hypochlorite (OCl) play a crucial role in a variety of physiological and pathological processes. However, excessive or misplaced production of HOCl/OCl can cause variety of tissue damage and human diseases. Therefore, rapid, sensitive, and selective detection of OCl is very important. In recent years, the fluorescent probe method for detecting hypochlorous acid has been developed rapidly due to its simple operation, low toxicity, high sensitivity, and high selectivity. In this review, the progress of recently discovered fluorescent probes for the detection of hypochlorous acid was summarized with the aim to provide useful information for further design of better fluorescent probes. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

32 pages, 1082 KiB  
Review
Deep Learning Methods for Remote Heart Rate Measurement: A Review and Future Research Agenda
by Chun-Hong Cheng, Kwan-Long Wong, Jing-Wei Chin, Tsz-Tai Chan and Richard H. Y. So
Sensors 2021, 21(18), 6296; https://doi.org/10.3390/s21186296 - 20 Sep 2021
Cited by 40 | Viewed by 10821
Abstract
Heart rate (HR) is one of the essential vital signs used to indicate the physiological health of the human body. While traditional HR monitors usually require contact with skin, remote photoplethysmography (rPPG) enables contactless HR monitoring by capturing subtle light changes of skin [...] Read more.
Heart rate (HR) is one of the essential vital signs used to indicate the physiological health of the human body. While traditional HR monitors usually require contact with skin, remote photoplethysmography (rPPG) enables contactless HR monitoring by capturing subtle light changes of skin through a video camera. Given the vast potential of this technology in the future of digital healthcare, remote monitoring of physiological signals has gained significant traction in the research community. In recent years, the success of deep learning (DL) methods for image and video analysis has inspired researchers to apply such techniques to various parts of the remote physiological signal extraction pipeline. In this paper, we discuss several recent advances of DL-based methods specifically for remote HR measurement, categorizing them based on model architecture and application. We further detail relevant real-world applications of remote physiological monitoring and summarize various common resources used to accelerate related research progress. Lastly, we analyze the implications of research findings and discuss research gaps to guide future explorations. Full article
(This article belongs to the Special Issue Contactless Sensors for Healthcare)
Show Figures

Figure 1

39 pages, 6617 KiB  
Article
Towards Fully Autonomous UAVs: A Survey
by Taha Elmokadem and Andrey V. Savkin
Sensors 2021, 21(18), 6223; https://doi.org/10.3390/s21186223 - 16 Sep 2021
Cited by 39 | Viewed by 9797
Abstract
Unmanned Aerial Vehicles have undergone rapid developments in recent decades. This has made them very popular for various military and civilian applications allowing us to reach places that were previously hard to reach in addition to saving time and lives. A highly desirable [...] Read more.
Unmanned Aerial Vehicles have undergone rapid developments in recent decades. This has made them very popular for various military and civilian applications allowing us to reach places that were previously hard to reach in addition to saving time and lives. A highly desirable direction when developing unmanned aerial vehicles is towards achieving fully autonomous missions and performing their dedicated tasks with minimum human interaction. Thus, this paper provides a survey of some of the recent developments in the field of unmanned aerial vehicles related to safe autonomous navigation, which is a very critical component in the whole system. A great part of this paper focus on advanced methods capable of producing three-dimensional avoidance maneuvers and safe trajectories. Research challenges related to unmanned aerial vehicle development are also highlighted. Full article
(This article belongs to the Special Issue Smart Sensors for Remotely Operated Robots)
Show Figures

Figure 1

22 pages, 3826 KiB  
Article
Development of a Low-Cost System for the Accurate Measurement of Structural Vibrations
by Seyedmilad Komarizadehasl, Behnam Mobaraki, Haiying Ma, Jose-Antonio Lozano-Galant and Jose Turmo
Sensors 2021, 21(18), 6191; https://doi.org/10.3390/s21186191 - 15 Sep 2021
Cited by 35 | Viewed by 4924
Abstract
Nowadays, engineers are widely using accelerometers to record the vibration of structures for structural verification purposes. The main obstacle for using these data acquisition systems is their high cost, which limits its use to unique structures with a relatively high structural health monitoring [...] Read more.
Nowadays, engineers are widely using accelerometers to record the vibration of structures for structural verification purposes. The main obstacle for using these data acquisition systems is their high cost, which limits its use to unique structures with a relatively high structural health monitoring budget. In this paper, a Cost Hyper-Efficient Arduino Product (CHEAP) has been developed to accurately measure structural accelerations. CHEAP is a system that is composed of five low-cost accelerometers that are connected to an Arduino microcontroller as their data acquisition system. Test results show that CHEAP not only has a significantly lower price (14 times cheaper in the worst-case scenario) compared with other systems used for comparison but also shows better accuracy on low frequencies for low acceleration amplitudes. Moreover, the final output results of Fast Fourier Transformation (FFT) assessments showed a better observable resolution for CHEAP than the studied control systems. Full article
Show Figures

Figure 1

27 pages, 5692 KiB  
Article
Making the PI and PID Controller Tuning Inspired by Ziegler and Nichols Precise and Reliable
by Mikulas Huba, Stefan Chamraz, Pavol Bistak and Damir Vrancic
Sensors 2021, 21(18), 6157; https://doi.org/10.3390/s21186157 - 14 Sep 2021
Cited by 36 | Viewed by 4681
Abstract
This paper deals with the design of a DC motor speed control implemented by an embedded controller. The design is simple and brings some important changes to the traditional Ziegler–Nichols tuning. The design also includes a novel anti-windup implementation of the controller and [...] Read more.
This paper deals with the design of a DC motor speed control implemented by an embedded controller. The design is simple and brings some important changes to the traditional Ziegler–Nichols tuning. The design also includes a novel anti-windup implementation of the controller and an integrated noise-reduction filter design. The proposed tuning method considers all important aspects of the control, such as pre-processing of the measured signals and filtering (to attenuate the measurement noise), time delays of the process, modeling and identification of the process, and constraints on the control signal. Three important aspects of designing PI and PID controllers for processes with noisy output on Arduino-type embedded computers are considered. First, it deals with the integrated design of the input filter and the controller parameters, since both are interdependent. Secondly, the method of setting the controllers from step responses by Ziegler and Nichols is modified for the case of digital signal processing (without drawing the tangent), while it recommends the suitability of its modification in terms of the use of both integral and static models. Third, the most suitable anti-windup solution for the given controller structure is proposed. In summary, the paper shows that an appropriate design of the embedded controller can achieve excellent closed-loop performance even in a noisy process environment with limited control signals. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

31 pages, 2169 KiB  
Review
A Comprehensive Review of Techniques for Processing and Analyzing Fetal Heart Rate Signals
by Alfonso Maria Ponsiglione, Carlo Cosentino, Giuseppe Cesarelli, Francesco Amato and Maria Romano
Sensors 2021, 21(18), 6136; https://doi.org/10.3390/s21186136 - 13 Sep 2021
Cited by 60 | Viewed by 5005
Abstract
The availability of standardized guidelines regarding the use of electronic fetal monitoring (EFM) in clinical practice has not effectively helped to solve the main drawbacks of fetal heart rate (FHR) surveillance methodology, which still presents inter- and intra-observer variability as well as uncertainty [...] Read more.
The availability of standardized guidelines regarding the use of electronic fetal monitoring (EFM) in clinical practice has not effectively helped to solve the main drawbacks of fetal heart rate (FHR) surveillance methodology, which still presents inter- and intra-observer variability as well as uncertainty in the classification of unreassuring or risky FHR recordings. Given the clinical relevance of the interpretation of FHR traces as well as the role of FHR as a marker of fetal wellbeing autonomous nervous system development, many different approaches for computerized processing and analysis of FHR patterns have been proposed in the literature. The objective of this review is to describe the techniques, methodologies, and algorithms proposed in this field so far, reporting their main achievements and discussing the value they brought to the scientific and clinical community. The review explores the following two main approaches to the processing and analysis of FHR signals: traditional (or linear) methodologies, namely, time and frequency domain analysis, and less conventional (or nonlinear) techniques. In this scenario, the emerging role and the opportunities offered by Artificial Intelligence tools, representing the future direction of EFM, are also discussed with a specific focus on the use of Artificial Neural Networks, whose application to the analysis of accelerations in FHR signals is also examined in a case study conducted by the authors. Full article
(This article belongs to the Special Issue Sensors for Heart Rate Monitoring)
Show Figures

Figure 1

29 pages, 435 KiB  
Review
A Survey of Human Activity Recognition in Smart Homes Based on IoT Sensors Algorithms: Taxonomies, Challenges, and Opportunities with Deep Learning
by Damien Bouchabou, Sao Mai Nguyen, Christophe Lohr, Benoit LeDuc and Ioannis Kanellos
Sensors 2021, 21(18), 6037; https://doi.org/10.3390/s21186037 - 9 Sep 2021
Cited by 80 | Viewed by 6926
Abstract
Recent advances in Internet of Things (IoT) technologies and the reduction in the cost of sensors have encouraged the development of smart environments, such as smart homes. Smart homes can offer home assistance services to improve the quality of life, autonomy, and health [...] Read more.
Recent advances in Internet of Things (IoT) technologies and the reduction in the cost of sensors have encouraged the development of smart environments, such as smart homes. Smart homes can offer home assistance services to improve the quality of life, autonomy, and health of their residents, especially for the elderly and dependent. To provide such services, a smart home must be able to understand the daily activities of its residents. Techniques for recognizing human activity in smart homes are advancing daily. However, new challenges are emerging every day. In this paper, we present recent algorithms, works, challenges, and taxonomy of the field of human activity recognition in a smart home through ambient sensors. Moreover, since activity recognition in smart homes is a young field, we raise specific problems, as well as missing and needed contributions. However, we also propose directions, research opportunities, and solutions to accelerate advances in this field. Full article
(This article belongs to the Special Issue Multi-Sensor for Human Activity Recognition)
Show Figures

Figure 1

36 pages, 36030 KiB  
Article
Green IoT and Edge AI as Key Technological Enablers for a Sustainable Digital Transition towards a Smart Circular Economy: An Industry 5.0 Use Case
by Paula Fraga-Lamas, Sérgio Ivan Lopes and Tiago M. Fernández-Caramés
Sensors 2021, 21(17), 5745; https://doi.org/10.3390/s21175745 - 26 Aug 2021
Cited by 120 | Viewed by 16252
Abstract
Internet of Things (IoT) can help to pave the way to the circular economy and to a more sustainable world by enabling the digitalization of many operations and processes, such as water distribution, preventive maintenance, or smart manufacturing. Paradoxically, IoT technologies and paradigms [...] Read more.
Internet of Things (IoT) can help to pave the way to the circular economy and to a more sustainable world by enabling the digitalization of many operations and processes, such as water distribution, preventive maintenance, or smart manufacturing. Paradoxically, IoT technologies and paradigms such as edge computing, although they have a huge potential for the digital transition towards sustainability, they are not yet contributing to the sustainable development of the IoT sector itself. In fact, such a sector has a significant carbon footprint due to the use of scarce raw materials and its energy consumption in manufacturing, operating, and recycling processes. To tackle these issues, the Green IoT (G-IoT) paradigm has emerged as a research area to reduce such carbon footprint; however, its sustainable vision collides directly with the advent of Edge Artificial Intelligence (Edge AI), which imposes the consumption of additional energy. This article deals with this problem by exploring the different aspects that impact the design and development of Edge-AI G-IoT systems. Moreover, it presents a practical Industry 5.0 use case that illustrates the different concepts analyzed throughout the article. Specifically, the proposed scenario consists in an Industry 5.0 smart workshop that looks for improving operator safety and operation tracking. Such an application case makes use of a mist computing architecture composed of AI-enabled IoT nodes. After describing the application case, it is evaluated its energy consumption and it is analyzed the impact on the carbon footprint that it may have on different countries. Overall, this article provides guidelines that will help future developers to face the challenges that will arise when creating the next generation of Edge-AI G-IoT systems. Full article
(This article belongs to the Special Issue Wireless Sensing and Networking for the Internet of Things)
Show Figures

Figure 1

17 pages, 4639 KiB  
Article
Enhanced Breathing Pattern Detection during Running Using Wearable Sensors
by Eric Harbour, Michael Lasshofer, Matteo Genitrini and Hermann Schwameder
Sensors 2021, 21(16), 5606; https://doi.org/10.3390/s21165606 - 20 Aug 2021
Cited by 20 | Viewed by 3857
Abstract
Breathing pattern (BP) is related to key psychophysiological and performance variables during exercise. Modern wearable sensors and data analysis techniques facilitate BP analysis during running but are lacking crucial validation steps in their deployment. Thus, we sought to evaluate a wearable garment with [...] Read more.
Breathing pattern (BP) is related to key psychophysiological and performance variables during exercise. Modern wearable sensors and data analysis techniques facilitate BP analysis during running but are lacking crucial validation steps in their deployment. Thus, we sought to evaluate a wearable garment with respiratory inductance plethysmography (RIP) sensors in combination with a custom-built algorithm versus a reference spirometry system to determine its concurrent validity in detecting flow reversals (FR) and BP. Twelve runners completed an incremental running protocol to exhaustion with synchronized spirometry and RIP sensors. An algorithm was developed to filter, segment, and enrich the RIP data for FR and BP estimation. The algorithm successfully identified over 99% of FR with an average time lag of 0.018 s (−0.067,0.104) after the reference system. Breathing rate (BR) estimation had low mean absolute percent error (MAPE = 2.74 [0.00,5.99]), but other BP components had variable accuracy. The proposed system is valid and practically useful for applications of BP assessment in the field, especially when measuring abrupt changes in BR. More studies are needed to improve BP timing estimation and utilize abdominal RIP during running. Full article
Show Figures

Figure 1

13 pages, 3904 KiB  
Article
Distinguishing Drones from Birds in a UAV Searching Laser Scanner Based on Echo Depolarization Measurement
by Jacek Wojtanowski, Marek Zygmunt, Tadeusz Drozd, Marcin Jakubaszek, Marek Życzkowski and Michał Muzal
Sensors 2021, 21(16), 5597; https://doi.org/10.3390/s21165597 - 19 Aug 2021
Cited by 12 | Viewed by 2505
Abstract
Widespread availability of drones is associated with many new fascinating possibilities, which were reserved in the past for few. Unfortunately, this technology also has many negative consequences related to illegal activities (surveillance, smuggling). For this reason, particularly sensitive areas should be equipped with [...] Read more.
Widespread availability of drones is associated with many new fascinating possibilities, which were reserved in the past for few. Unfortunately, this technology also has many negative consequences related to illegal activities (surveillance, smuggling). For this reason, particularly sensitive areas should be equipped with sensors capable of detecting the presence of even miniature drones from as far away as possible. A few techniques currently exist in this field; however, all have significant drawbacks. This study addresses a novel approach for small (<5 kg) drones detection technique based on a laser scanning and a method to discriminate UAVs from birds. The latter challenge is fundamental in minimizing the false alarm rate in each drone monitoring equipment. The paper describes the developed sensor and its performance in terms of drone vs. bird discrimination. The idea is based on simple cross-polarization ratio analysis of the optical echo received as a result of laser backscattering on the detected object. The obtained experimental results show that the proposed method does not always guarantee 100 percent discrimination efficiency, but provides certain confidence level distribution. Nevertheless, due to the hardware simplicity, this approach seems to be a valuable addition to the developed anti-drone laser scanner. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

11 pages, 1818 KiB  
Article
Non-Layered Gold-Silicon and All-Silicon Frequency-Selective Metasurfaces for Potential Mid-Infrared Sensing Applications
by Octavian Dănilă, Doina Mănăilă-Maximean, Ana Bărar and Valery A. Loiko
Sensors 2021, 21(16), 5600; https://doi.org/10.3390/s21165600 - 19 Aug 2021
Cited by 19 | Viewed by 2105
Abstract
We report simulations on the spectral behavior of non-layered gold-silicon and all-silicon frequency-selective metasurfaces in an asymmetric element configuration in the mid-infrared spectral window of 5–5.8 μm. The non-layered layout is experimentally feasible due to recent technological advances such as nano-imprint and [...] Read more.
We report simulations on the spectral behavior of non-layered gold-silicon and all-silicon frequency-selective metasurfaces in an asymmetric element configuration in the mid-infrared spectral window of 5–5.8 μm. The non-layered layout is experimentally feasible due to recent technological advances such as nano-imprint and nano-stencil lithography, and the spectral window was chosen due to the multitude of applications in sensing and imaging. The architecture exhibits significant resonance in the window of interest as well as extended tunability by means of variation of cell element sizes and relative coordinates. The results indicate that the proposed metasurface architecture is a viable candidate for mid-infrared absorbers, sensors and imaging systems. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

21 pages, 6148 KiB  
Article
A Clinically Interpretable Computer-Vision Based Method for Quantifying Gait in Parkinson’s Disease
by Samuel Rupprechter, Gareth Morinan, Yuwei Peng, Thomas Foltynie, Krista Sibley, Rimona S. Weil, Louise-Ann Leyland, Fahd Baig, Francesca Morgante, Ro’ee Gilron, Robert Wilt, Philip Starr, Robert A. Hauser and Jonathan O’Keeffe
Sensors 2021, 21(16), 5437; https://doi.org/10.3390/s21165437 - 12 Aug 2021
Cited by 28 | Viewed by 5550
Abstract
Gait is a core motor function and is impaired in numerous neurological diseases, including Parkinson’s disease (PD). Treatment changes in PD are frequently driven by gait assessments in the clinic, commonly rated as part of the Movement Disorder Society (MDS) Unified PD Rating [...] Read more.
Gait is a core motor function and is impaired in numerous neurological diseases, including Parkinson’s disease (PD). Treatment changes in PD are frequently driven by gait assessments in the clinic, commonly rated as part of the Movement Disorder Society (MDS) Unified PD Rating Scale (UPDRS) assessment (item 3.10). We proposed and evaluated a novel approach for estimating severity of gait impairment in Parkinson’s disease using a computer vision-based methodology. The system we developed can be used to obtain an estimate for a rating to catch potential errors, or to gain an initial rating in the absence of a trained clinician—for example, during remote home assessments. Videos (n=729) were collected as part of routine MDS-UPDRS gait assessments of Parkinson’s patients, and a deep learning library was used to extract body key-point coordinates for each frame. Data were recorded at five clinical sites using commercially available mobile phones or tablets, and had an associated severity rating from a trained clinician. Six features were calculated from time-series signals of the extracted key-points. These features characterized key aspects of the movement including speed (step frequency, estimated using a novel Gamma-Poisson Bayesian model), arm swing, postural control and smoothness (or roughness) of movement. An ordinal random forest classification model (with one class for each of the possible ratings) was trained and evaluated using 10-fold cross validation. Step frequency point estimates from the Bayesian model were highly correlated with manually labelled step frequencies of 606 video clips showing patients walking towards or away from the camera (Pearson’s r=0.80, p<0.001). Our classifier achieved a balanced accuracy of 50% (chance = 25%). Estimated UPDRS ratings were within one of the clinicians’ ratings in 95% of cases. There was a significant correlation between clinician labels and model estimates (Spearman’s ρ=0.52, p<0.001). We show how the interpretability of the feature values could be used by clinicians to support their decision-making and provide insight into the model’s objective UPDRS rating estimation. The severity of gait impairment in Parkinson’s disease can be estimated using a single patient video, recorded using a consumer mobile device and within standard clinical settings; i.e., videos were recorded in various hospital hallways and offices rather than gait laboratories. This approach can support clinicians during routine assessments by providing an objective rating (or second opinion), and has the potential to be used for remote home assessments, which would allow for more frequent monitoring. Full article
Show Figures

Figure 1

17 pages, 2786 KiB  
Article
Non-Invasive Detection and Staging of Colorectal Cancer Using a Portable Electronic Nose
by Heena Tyagi, Emma Daulton, Ayman S. Bannaga, Ramesh P. Arasaradnam and James A. Covington
Sensors 2021, 21(16), 5440; https://doi.org/10.3390/s21165440 - 12 Aug 2021
Cited by 21 | Viewed by 4306
Abstract
Electronic noses (e-nose) offer potential for the detection of cancer in its early stages. The ability to analyse samples in real time, at a low cost, applying easy–to-use and portable equipment, gives e-noses advantages over other technologies, such as Gas Chromatography-Mass Spectrometry (GC-MS). [...] Read more.
Electronic noses (e-nose) offer potential for the detection of cancer in its early stages. The ability to analyse samples in real time, at a low cost, applying easy–to-use and portable equipment, gives e-noses advantages over other technologies, such as Gas Chromatography-Mass Spectrometry (GC-MS). For diseases such as cancer with a high mortality, a technology that can provide fast results for use in routine clinical applications is important. Colorectal cancer (CRC) is among the highest occurring cancers and has high mortality rates, if diagnosed late. In our study, we investigated the use of portable electronic nose (PEN3), with further analysis using GC-TOF-MS, for the analysis of gases and volatile organic compounds (VOCs) to profile the urinary metabolome of colorectal cancer. We also compared the different cancer stages with non-cancers using the PEN3 and GC-TOF-MS. Results obtained from PEN3, and GC-TOF-MS demonstrated high accuracy for the separation of CRC and non-cancer. PEN3 separated CRC from non-cancerous group with 0.81 AUC (Area Under the Curve). We used data from GC-TOF-MS to obtain a VOC profile for CRC, which identified 23 potential biomarker VOCs for CRC. Thus, the PEN3 and GC-TOF-MS were found to successfully separate the cancer group from the non-cancer group. Full article
Show Figures

Graphical abstract

16 pages, 3517 KiB  
Article
The Algorithm of Determining an Anti-Collision Manoeuvre Trajectory Based on the Interpolation of Ship’s State Vector
by Piotr Borkowski, Zbigniew Pietrzykowski and Janusz Magaj
Sensors 2021, 21(16), 5332; https://doi.org/10.3390/s21165332 - 6 Aug 2021
Cited by 16 | Viewed by 2934
Abstract
The determination of a ship’s safe trajectory in collision situations at sea is one of the basic functions in autonomous navigation of ships. While planning a collision avoiding manoeuvre in open waters, the navigator has to take into account the ships manoeuvrability and [...] Read more.
The determination of a ship’s safe trajectory in collision situations at sea is one of the basic functions in autonomous navigation of ships. While planning a collision avoiding manoeuvre in open waters, the navigator has to take into account the ships manoeuvrability and hydrometeorological conditions. To this end, the ship’s state vector is predicted—position coordinates, speed, heading, and other movement parameters—at fixed time intervals for different steering scenarios. One possible way to solve this problem is a method using the interpolation of the ship’s state vector based on the data from measurements conducted during the sea trials of the ship. This article presents the interpolating function within any convex quadrilateral with the nodes being its vertices. The proposed function interpolates the parameters of the ship’s state vector for the specified point of a plane, where the values in the interpolation nodes are data obtained from measurements performed during a series of turning circle tests, conducted for different starting conditions and various rudder settings. The proposed method of interpolation was used in the process of determining the anti-collision manoeuvre trajectory. The mechanism is based on the principles of a modified Dijkstra algorithm, in which the graph takes the form of a regular network of points. The transition between the graph vertices depends on the safe passing level of other objects and the degree of departure from the planned route. The determined shortest path between the starting vertex and the target vertex is the optimal solution for the discrete space of solutions. The algorithm for determining the trajectory of the anti-collision manoeuvre was implemented in autonomous sea-going vessel technology. This article presents the results of laboratory tests and tests conducted under quasi-real conditions using physical ship models. The experiments confirmed the effective operation of the developed algorithm of the determination of the anti-collision manoeuvre trajectory in the technological framework of autonomous ship navigation. Full article
(This article belongs to the Special Issue Sensors and Sensor's Fusion in Autonomous Vehicles)
Show Figures

Figure 1

30 pages, 2696 KiB  
Review
Surface Plasmonic Sensors: Sensing Mechanism and Recent Applications
by Qilin Duan, Yineng Liu, Shanshan Chang, Huanyang Chen and Jin-hui Chen
Sensors 2021, 21(16), 5262; https://doi.org/10.3390/s21165262 - 4 Aug 2021
Cited by 60 | Viewed by 12718
Abstract
Surface plasmonic sensors have been widely used in biology, chemistry, and environment monitoring. These sensors exhibit extraordinary sensitivity based on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) effects, and they have found commercial applications. In this review, we present recent [...] Read more.
Surface plasmonic sensors have been widely used in biology, chemistry, and environment monitoring. These sensors exhibit extraordinary sensitivity based on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) effects, and they have found commercial applications. In this review, we present recent progress in the field of surface plasmonic sensors, mainly in the configurations of planar metastructures and optical-fiber waveguides. In the metastructure platform, the optical sensors based on LSPR, hyperbolic dispersion, Fano resonance, and two-dimensional (2D) materials integration are introduced. The optical-fiber sensors integrated with LSPR/SPR structures and 2D materials are summarized. We also introduce the recent advances in quantum plasmonic sensing beyond the classical shot noise limit. The challenges and opportunities in this field are discussed. Full article
(This article belongs to the Special Issue Surface Plasmon Sensors)
Show Figures

Figure 1

27 pages, 6343 KiB  
Article
Attention-Based Multi-Scale Convolutional Neural Network (A+MCNN) for Multi-Class Classification in Road Images
by Elham Eslami and Hae-Bum Yun
Sensors 2021, 21(15), 5137; https://doi.org/10.3390/s21155137 - 29 Jul 2021
Cited by 29 | Viewed by 6554
Abstract
Automated pavement distress recognition is a key step in smart infrastructure assessment. Advances in deep learning and computer vision have improved the automated recognition of pavement distresses in road surface images. This task remains challenging due to the high variation of defects in [...] Read more.
Automated pavement distress recognition is a key step in smart infrastructure assessment. Advances in deep learning and computer vision have improved the automated recognition of pavement distresses in road surface images. This task remains challenging due to the high variation of defects in shapes and sizes, demanding a better incorporation of contextual information into deep networks. In this paper, we show that an attention-based multi-scale convolutional neural network (A+MCNN) improves the automated classification of common distress and non-distress objects in pavement images by (i) encoding contextual information through multi-scale input tiles and (ii) employing a mid-fusion approach with an attention module for heterogeneous image contexts from different input scales. A+MCNN is trained and tested with four distress classes (crack, crack seal, patch, pothole), five non-distress classes (joint, marker, manhole cover, curbing, shoulder), and two pavement classes (asphalt, concrete). A+MCNN is compared with four deep classifiers that are widely used in transportation applications and a generic CNN classifier (as the control model). The results show that A+MCNN consistently outperforms the baselines by 1∼26% on average in terms of the F-score. A comprehensive discussion is also presented regarding how these classifiers perform differently on different road objects, which has been rarely addressed in the existing literature. Full article
(This article belongs to the Special Issue Artificial Intelligence and Their Applications in Smart Cities)
Show Figures

Figure 1

16 pages, 5957 KiB  
Article
Non-Contact Respiratory Monitoring Using an RGB Camera for Real-World Applications
by Chiara Romano, Emiliano Schena, Sergio Silvestri and Carlo Massaroni
Sensors 2021, 21(15), 5126; https://doi.org/10.3390/s21155126 - 29 Jul 2021
Cited by 27 | Viewed by 3580
Abstract
Respiratory monitoring is receiving growing interest in different fields of use, ranging from healthcare to occupational settings. Only recently, non-contact measuring systems have been developed to measure the respiratory rate (fR) over time, even in unconstrained environments. Promising methods rely [...] Read more.
Respiratory monitoring is receiving growing interest in different fields of use, ranging from healthcare to occupational settings. Only recently, non-contact measuring systems have been developed to measure the respiratory rate (fR) over time, even in unconstrained environments. Promising methods rely on the analysis of video-frames features recorded from cameras. In this work, a low-cost and unobtrusive measuring system for respiratory pattern monitoring based on the analysis of RGB images recorded from a consumer-grade camera is proposed. The system allows (i) the automatized tracking of the chest movements caused by breathing, (ii) the extraction of the breathing signal from images with methods based on optical flow (FO) and RGB analysis, (iii) the elimination of breathing-unrelated events from the signal, (iv) the identification of possible apneas and, (v) the calculation of fR value every second. Unlike most of the work in the literature, the performances of the system have been tested in an unstructured environment considering user-camera distance and user posture as influencing factors. A total of 24 healthy volunteers were enrolled for the validation tests. Better performances were obtained when the users were in sitting position. FO method outperforms in all conditions. In the fR range 6 to 60 breaths/min (bpm), the FO allows measuring fR values with bias of −0.03 ± 1.38 bpm and −0.02 ± 1.92 bpm when compared to a reference wearable system with the user at 2 and 0.5 m from the camera, respectively. Full article
(This article belongs to the Special Issue Wearable and Unobtrusive Technologies for Healthcare Monitoring)
Show Figures

Figure 1

28 pages, 9839 KiB  
Article
Monitoring Soil and Ambient Parameters in the IoT Precision Agriculture Scenario: An Original Modeling Approach Dedicated to Low-Cost Soil Water Content Sensors
by Pisana Placidi, Renato Morbidelli, Diego Fortunati, Nicola Papini, Francesco Gobbi and Andrea Scorzoni
Sensors 2021, 21(15), 5110; https://doi.org/10.3390/s21155110 - 28 Jul 2021
Cited by 65 | Viewed by 7463
Abstract
A low power wireless sensor network based on LoRaWAN protocol was designed with a focus on the IoT low-cost Precision Agriculture applications, such as greenhouse sensing and actuation. All subsystems used in this research are designed by using commercial components and free or [...] Read more.
A low power wireless sensor network based on LoRaWAN protocol was designed with a focus on the IoT low-cost Precision Agriculture applications, such as greenhouse sensing and actuation. All subsystems used in this research are designed by using commercial components and free or open-source software libraries. The whole system was implemented to demonstrate the feasibility of a modular system built with cheap off-the-shelf components, including sensors. The experimental outputs were collected and stored in a database managed by a virtual machine running in a cloud service. The collected data can be visualized in real time by the user with a graphical interface. The reliability of the whole system was proven during a continued experiment with two natural soils, Loamy Sand and Silty Loam. Regarding soil parameters, the system performance has been compared with that of a reference sensor from Sentek. Measurements highlighted a good agreement for the temperature within the supposed accuracy of the adopted sensors and a non-constant sensitivity for the low-cost volumetric water contents (VWC) sensor. Finally, for the low-cost VWC sensor we implemented a novel procedure to optimize the parameters of the non-linear fitting equation correlating its analog voltage output with the reference VWC. Full article
(This article belongs to the Special Issue Wireless Sensing and Networking for the Internet of Things)
Show Figures

Figure 1

13 pages, 3051 KiB  
Article
Printed Circuit Board Defect Detection Using Deep Learning via A Skip-Connected Convolutional Autoencoder
by Jungsuk Kim, Jungbeom Ko, Hojong Choi and Hyunchul Kim
Sensors 2021, 21(15), 4968; https://doi.org/10.3390/s21154968 - 21 Jul 2021
Cited by 79 | Viewed by 13180
Abstract
As technology evolves, more components are integrated into printed circuit boards (PCBs) and the PCB layout increases. Because small defects on signal trace can cause significant damage to the system, PCB surface inspection is one of the most important quality control processes. Owing [...] Read more.
As technology evolves, more components are integrated into printed circuit boards (PCBs) and the PCB layout increases. Because small defects on signal trace can cause significant damage to the system, PCB surface inspection is one of the most important quality control processes. Owing to the limitations of manual inspection, significant efforts have been made to automate the inspection by utilizing high resolution CCD or CMOS sensors. Despite the advanced sensor technology, setting the pass/fail criteria based on small failure samples has always been challenging in traditional machine vision approaches. To overcome these problems, we propose an advanced PCB inspection system based on a skip-connected convolutional autoencoder. The deep autoencoder model was trained to decode the original non-defect images from the defect images. The decoded images were then compared with the input image to identify the defect location. To overcome the small and imbalanced dataset in the early manufacturing stage, we applied appropriate image augmentation to improve the model training performance. The experimental results reveal that a simple unsupervised autoencoder model delivers promising performance, with a detection rate of up to 98% and a false pass rate below 1.7% for the test data, containing 3900 defect and non-defect images. Full article
Show Figures

Figure 1

19 pages, 1712 KiB  
Article
Regulatory, Legal, and Market Aspects of Smart Wearables for Cardiac Monitoring
by Jan Benedikt Brönneke, Jennifer Müller, Konstantinos Mouratis, Julia Hagen and Ariel Dora Stern
Sensors 2021, 21(14), 4937; https://doi.org/10.3390/s21144937 - 20 Jul 2021
Cited by 17 | Viewed by 7842
Abstract
In the area of cardiac monitoring, the use of digitally driven technologies is on the rise. While the development of medical products is advancing rapidly, allowing for new use-cases in cardiac monitoring and other areas, regulatory and legal requirements that govern market access [...] Read more.
In the area of cardiac monitoring, the use of digitally driven technologies is on the rise. While the development of medical products is advancing rapidly, allowing for new use-cases in cardiac monitoring and other areas, regulatory and legal requirements that govern market access are often evolving slowly, sometimes creating market barriers. This article gives a brief overview of the existing clinical studies regarding the use of smart wearables in cardiac monitoring and provides insight into the main regulatory and legal aspects that need to be considered when such products are intended to be used in a health care setting. Based on this brief overview, the article elaborates on the specific requirements in the main areas of authorization/certification and reimbursement/compensation, as well as data protection and data security. Three case studies are presented as examples of specific market access procedures: the USA, Germany, and Belgium. This article concludes that, despite the differences in specific requirements, market access pathways in most countries are characterized by a number of similarities, which should be considered early on in product development. The article also elaborates on how regulatory and legal requirements are currently being adapted for digitally driven wearables and proposes an ongoing evolution of these requirements to facilitate market access for beneficial medical technology in the future. Full article
(This article belongs to the Special Issue Smart Wearables for Cardiac Monitoring)
Show Figures

Figure 1

32 pages, 19990 KiB  
Article
Real Time Pear Fruit Detection and Counting Using YOLOv4 Models and Deep SORT
by Addie Ira Borja Parico and Tofael Ahamed
Sensors 2021, 21(14), 4803; https://doi.org/10.3390/s21144803 - 14 Jul 2021
Cited by 93 | Viewed by 13878
Abstract
This study aimed to produce a robust real-time pear fruit counter for mobile applications using only RGB data, the variants of the state-of-the-art object detection model YOLOv4, and the multiple object-tracking algorithm Deep SORT. This study also provided a systematic and pragmatic methodology [...] Read more.
This study aimed to produce a robust real-time pear fruit counter for mobile applications using only RGB data, the variants of the state-of-the-art object detection model YOLOv4, and the multiple object-tracking algorithm Deep SORT. This study also provided a systematic and pragmatic methodology for choosing the most suitable model for a desired application in agricultural sciences. In terms of accuracy, YOLOv4-CSP was observed as the optimal model, with an [email protected] of 98%. In terms of speed and computational cost, YOLOv4-tiny was found to be the ideal model, with a speed of more than 50 FPS and FLOPS of 6.8–14.5. If considering the balance in terms of accuracy, speed and computational cost, YOLOv4 was found to be most suitable and had the highest accuracy metrics while satisfying a real time speed of greater than or equal to 24 FPS. Between the two methods of counting with Deep SORT, the unique ID method was found to be more reliable, with an F1count of 87.85%. This was because YOLOv4 had a very low false negative in detecting pear fruits. The ROI line is more reliable because of its more restrictive nature, but due to flickering in detection it was not able to count some pears despite their being detected. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

42 pages, 2541 KiB  
Review
Wearable Devices for Environmental Monitoring in the Built Environment: A Systematic Review
by Francesco Salamone, Massimiliano Masullo and Sergio Sibilio
Sensors 2021, 21(14), 4727; https://doi.org/10.3390/s21144727 - 10 Jul 2021
Cited by 33 | Viewed by 6365
Abstract
The so-called Internet of Things (IoT), which is rapidly increasing the number of network-connected and interconnected objects, could have a far-reaching impact in identifying the link between human health, well-being, and environmental concerns. In line with the IoT concept, many commercial wearables have [...] Read more.
The so-called Internet of Things (IoT), which is rapidly increasing the number of network-connected and interconnected objects, could have a far-reaching impact in identifying the link between human health, well-being, and environmental concerns. In line with the IoT concept, many commercial wearables have been introduced in recent years, which differ from the usual devices in that they use the term “smart” alongside the terms “watches”, “glasses”, and “jewellery”. Commercially available wearables aim to enhance smartphone functionality by enabling payment for commercial items or monitoring physical activity. However, what is the trend of scientific production about the concept of wearables regarding environmental monitoring issues? What are the main areas of interest covered by scientific production? What are the main findings and limitations of the developed solution in this field? The methodology used to answer the above questions is based on a systematic review. The data were acquired following a reproducible methodology. The main result is that, among the thermal, visual, acoustic, and air quality environmental factors, the last one is the most considered when using wearables even though in combination with some others. Another relevant finding is that of the acquired studies; in only one, the authors shared their wearables as an open-source device, and it will probably be necessary to encourage researchers to consider open-source as a means to promote scalability and proliferation of new wearables customized to cover different domains. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

23 pages, 3522 KiB  
Article
TIP4.0: Industrial Internet of Things Platform for Predictive Maintenance
by Carlos Resende, Duarte Folgado, João Oliveira, Bernardo Franco, Waldir Moreira, Antonio Oliveira-Jr, Armando Cavaleiro and Ricardo Carvalho
Sensors 2021, 21(14), 4676; https://doi.org/10.3390/s21144676 - 8 Jul 2021
Cited by 33 | Viewed by 5885
Abstract
Industry 4.0, allied with the growth and democratization of Artificial Intelligence (AI) and the advent of IoT, is paving the way for the complete digitization and automation of industrial processes. Maintenance is one of these processes, where the introduction of a predictive approach, [...] Read more.
Industry 4.0, allied with the growth and democratization of Artificial Intelligence (AI) and the advent of IoT, is paving the way for the complete digitization and automation of industrial processes. Maintenance is one of these processes, where the introduction of a predictive approach, as opposed to the traditional techniques, is expected to considerably improve the industry maintenance strategies with gains such as reduced downtime, improved equipment effectiveness, lower maintenance costs, increased return on assets, risk mitigation, and, ultimately, profitable growth. With predictive maintenance, dedicated sensors monitor the critical points of assets. The sensor data then feed into machine learning algorithms that can infer the asset health status and inform operators and decision-makers. With this in mind, in this paper, we present TIP4.0, a platform for predictive maintenance based on a modular software solution for edge computing gateways. TIP4.0 is built around Yocto, which makes it readily available and compliant with Commercial Off-the-Shelf (COTS) or proprietary hardware. TIP4.0 was conceived with an industry mindset with communication interfaces that allow it to serve sensor networks in the shop floor and modular software architecture that allows it to be easily adjusted to new deployment scenarios. To showcase its potential, the TIP4.0 platform was validated over COTS hardware, and we considered a public data-set for the simulation of predictive maintenance scenarios. We used a Convolution Neural Network (CNN) architecture, which provided competitive performance over the state-of-the-art approaches, while being approximately four-times and two-times faster than the uncompressed model inference on the Central Processing Unit (CPU) and Graphical Processing Unit, respectively. These results highlight the capabilities of distributed large-scale edge computing over industrial scenarios. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

26 pages, 2381 KiB  
Review
Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing
by Mohamed H. Hassan, Cian Vyas, Bruce Grieve and Paulo Bartolo
Sensors 2021, 21(14), 4672; https://doi.org/10.3390/s21144672 - 8 Jul 2021
Cited by 145 | Viewed by 11237
Abstract
The detection of glucose is crucial in the management of diabetes and other medical conditions but also crucial in a wide range of industries such as food and beverages. The development of glucose sensors in the past century has allowed diabetic patients to [...] Read more.
The detection of glucose is crucial in the management of diabetes and other medical conditions but also crucial in a wide range of industries such as food and beverages. The development of glucose sensors in the past century has allowed diabetic patients to effectively manage their disease and has saved lives. First-generation glucose sensors have considerable limitations in sensitivity and selectivity which has spurred the development of more advanced approaches for both the medical and industrial sectors. The wide range of application areas has resulted in a range of materials and fabrication techniques to produce novel glucose sensors that have higher sensitivity and selectivity, lower cost, and are simpler to use. A major focus has been on the development of enzymatic electrochemical sensors, typically using glucose oxidase. However, non-enzymatic approaches using direct electrochemistry of glucose on noble metals are now a viable approach in glucose biosensor design. This review discusses the mechanisms of electrochemical glucose sensing with a focus on the different generations of enzymatic-based sensors, their recent advances, and provides an overview of the next generation of non-enzymatic sensors. Advancements in manufacturing techniques and materials are key in propelling the field of glucose sensing, however, significant limitations remain which are highlighted in this review and requires addressing to obtain a more stable, sensitive, selective, cost efficient, and real-time glucose sensor. Full article
(This article belongs to the Special Issue Electrochemical (Bio)sensors for Biomedical Applications)
Show Figures

Figure 1

15 pages, 2029 KiB  
Article
A Vision-Based Social Distancing and Critical Density Detection System for COVID-19
by Dongfang Yang, Ekim Yurtsever, Vishnu Renganathan, Keith A. Redmill and Ümit Özgüner
Sensors 2021, 21(13), 4608; https://doi.org/10.3390/s21134608 - 5 Jul 2021
Cited by 69 | Viewed by 9425
Abstract
Social distancing (SD) is an effective measure to prevent the spread of the infectious Coronavirus Disease 2019 (COVID-19). However, a lack of spatial awareness may cause unintentional violations of this new measure. Against this backdrop, we propose an active surveillance system to slow [...] Read more.
Social distancing (SD) is an effective measure to prevent the spread of the infectious Coronavirus Disease 2019 (COVID-19). However, a lack of spatial awareness may cause unintentional violations of this new measure. Against this backdrop, we propose an active surveillance system to slow the spread of COVID-19 by warning individuals in a region-of-interest. Our contribution is twofold. First, we introduce a vision-based real-time system that can detect SD violations and send non-intrusive audio-visual cues using state-of-the-art deep-learning models. Second, we define a novel critical social density value and show that the chance of SD violation occurrence can be held near zero if the pedestrian density is kept under this value. The proposed system is also ethically fair: it does not record data nor target individuals, and no human supervisor is present during the operation. The proposed system was evaluated across real-world datasets. Full article
(This article belongs to the Special Issue Machine Learning in Wireless Sensor Networks and Internet of Things)
Show Figures

Figure 1

17 pages, 8294 KiB  
Article
Filtering Biomechanical Signals in Movement Analysis
by Francesco Crenna, Giovanni Battista Rossi and Marta Berardengo
Sensors 2021, 21(13), 4580; https://doi.org/10.3390/s21134580 - 4 Jul 2021
Cited by 28 | Viewed by 4819
Abstract
Biomechanical analysis of human movement is based on dynamic measurements of reference points on the subject’s body and orientation measurements of body segments. Collected data include positions’ measurement, in a three-dimensional space. Signal enhancement by proper filtering is often recommended. Velocity and acceleration [...] Read more.
Biomechanical analysis of human movement is based on dynamic measurements of reference points on the subject’s body and orientation measurements of body segments. Collected data include positions’ measurement, in a three-dimensional space. Signal enhancement by proper filtering is often recommended. Velocity and acceleration signal must be obtained from position/angular measurement records, needing numerical processing effort. In this paper, we propose a comparative filtering method study procedure, based on measurement uncertainty related parameters’ set, based upon simulated and experimental signals. The final aim is to propose guidelines to optimize dynamic biomechanical measurement, considering the measurement uncertainty contribution due to the processing method. Performance of the considered methods are examined and compared with an analytical signal, considering both stationary and transient conditions. Finally, four experimental test cases are evaluated at best filtering conditions for measurement uncertainty contributions. Full article
(This article belongs to the Special Issue Sensors and Methods for Dynamic Measurement)
Show Figures

Figure 1

25 pages, 93653 KiB  
Article
Optimization of X-ray Investigations in Dentistry Using Optical Coherence Tomography
by Ralph-Alexandru Erdelyi, Virgil-Florin Duma, Cosmin Sinescu, George Mihai Dobre, Adrian Bradu and Adrian Podoleanu
Sensors 2021, 21(13), 4554; https://doi.org/10.3390/s21134554 - 2 Jul 2021
Cited by 23 | Viewed by 6146
Abstract
The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We [...] Read more.
The most common imaging technique for dental diagnoses and treatment monitoring is X-ray imaging, which evolved from the first intraoral radiographs to high-quality three-dimensional (3D) Cone Beam Computed Tomography (CBCT). Other imaging techniques have shown potential, such as Optical Coherence Tomography (OCT). We have recently reported on the boundaries of these two types of techniques, regarding. the dental fields where each one is more appropriate or where they should be both used. The aim of the present study is to explore the unique capabilities of the OCT technique to optimize X-ray units imaging (i.e., in terms of image resolution, radiation dose, or contrast). Two types of commercially available and widely used X-ray units are considered. To adjust their parameters, a protocol is developed to employ OCT images of dental conditions that are documented on high (i.e., less than 10 μm) resolution OCT images (both B-scans/cross sections and 3D reconstructions) but are hardly identified on the 200 to 75 μm resolution panoramic or CBCT radiographs. The optimized calibration of the X-ray unit includes choosing appropriate values for the anode voltage and current intensity of the X-ray tube, as well as the patient’s positioning, in order to reach the highest possible X-rays resolution at a radiation dose that is safe for the patient. The optimization protocol is developed in vitro on OCT images of extracted teeth and is further applied in vivo for each type of dental investigation. Optimized radiographic results are compared with un-optimized previously performed radiographs. Also, we show that OCT can permit a rigorous comparison between two (types of) X-ray units. In conclusion, high-quality dental images are possible using low radiation doses if an optimized protocol, developed using OCT, is applied for each type of dental investigation. Also, there are situations when the X-ray technology has drawbacks for dental diagnosis or treatment assessment. In such situations, OCT proves capable to provide qualitative images. Full article
(This article belongs to the Special Issue Feature Papers in the Sensing and Imaging Section 2021)
Show Figures

Figure 1

17 pages, 4184 KiB  
Review
Recent Advances in ZnO-Based Carbon Monoxide Sensors: Role of Doping
by Ana María Pineda-Reyes, María R. Herrera-Rivera, Hugo Rojas-Chávez, Heriberto Cruz-Martínez and Dora I. Medina
Sensors 2021, 21(13), 4425; https://doi.org/10.3390/s21134425 - 28 Jun 2021
Cited by 35 | Viewed by 4866
Abstract
Monitoring and detecting carbon monoxide (CO) are critical because this gas is toxic and harmful to the ecosystem. In this respect, designing high-performance gas sensors for CO detection is necessary. Zinc oxide-based materials are promising for use as CO sensors, owing to their [...] Read more.
Monitoring and detecting carbon monoxide (CO) are critical because this gas is toxic and harmful to the ecosystem. In this respect, designing high-performance gas sensors for CO detection is necessary. Zinc oxide-based materials are promising for use as CO sensors, owing to their good sensing response, electrical performance, cost-effectiveness, long-term stability, low power consumption, ease of manufacturing, chemical stability, and non-toxicity. Nevertheless, further progress in gas sensing requires improving the selectivity and sensitivity, and lowering the operating temperature. Recently, different strategies have been implemented to improve the sensitivity and selectivity of ZnO to CO, highlighting the doping of ZnO. Many studies concluded that doped ZnO demonstrates better sensing properties than those of undoped ZnO in detecting CO. Therefore, in this review, we analyze and discuss, in detail, the recent advances in doped ZnO for CO sensing applications. First, experimental studies on ZnO doped with transition metals, boron group elements, and alkaline earth metals as CO sensors are comprehensively reviewed. We then focused on analyzing theoretical and combined experimental–theoretical studies. Finally, we present the conclusions and some perspectives for future investigations in the context of advancements in CO sensing using doped ZnO, which include room-temperature gas sensing. Full article
(This article belongs to the Special Issue Semiconductor Materials and Nanostructures for Sensors and Devices)
Show Figures

Figure 1

22 pages, 44079 KiB  
Review
Chiroptical Metasurfaces: Principles, Classification, and Applications
by Joohoon Kim, Ahsan Sarwar Rana, Yeseul Kim, Inki Kim, Trevon Badloe, Muhammad Zubair, Muhammad Qasim Mehmood and Junsuk Rho
Sensors 2021, 21(13), 4381; https://doi.org/10.3390/s21134381 - 26 Jun 2021
Cited by 45 | Viewed by 7086
Abstract
Chiral materials, which show different optical behaviors when illuminated by left or right circularly polarized light due to broken mirror symmetry, have greatly impacted the field of optical sensing over the past decade. To improve the sensitivity of chiral sensing platforms, enhancing the [...] Read more.
Chiral materials, which show different optical behaviors when illuminated by left or right circularly polarized light due to broken mirror symmetry, have greatly impacted the field of optical sensing over the past decade. To improve the sensitivity of chiral sensing platforms, enhancing the chiroptical response is necessary. Metasurfaces, which are two-dimensional metamaterials consisting of periodic subwavelength artificial structures, have recently attracted significant attention because of their ability to enhance the chiroptical response by manipulating amplitude, phase, and polarization of electromagnetic fields. Here, we reviewed the fundamentals of chiroptical metasurfaces as well as categorized types of chiroptical metasurfaces by their intrinsic or extrinsic chirality. Finally, we introduced applications of chiral metasurfaces such as multiplexing metaholograms, metalenses, and sensors. Full article
(This article belongs to the Special Issue Metasurfaces in Depth Sensing and 3D Display)
Show Figures

Figure 1

22 pages, 2679 KiB  
Article
Anomaly Detection and Automatic Labeling for Solar Cell Quality Inspection Based on Generative Adversarial Network
by Julen Balzategui, Luka Eciolaza and Daniel Maestro-Watson
Sensors 2021, 21(13), 4361; https://doi.org/10.3390/s21134361 - 25 Jun 2021
Cited by 16 | Viewed by 2868
Abstract
Quality inspection applications in industry are required to move towards a zero-defect manufacturing scenario, with non-destructive inspection and traceability of 100% of produced parts. Developing robust fault detection and classification models from the start-up of the lines is challenging due to the difficulty [...] Read more.
Quality inspection applications in industry are required to move towards a zero-defect manufacturing scenario, with non-destructive inspection and traceability of 100% of produced parts. Developing robust fault detection and classification models from the start-up of the lines is challenging due to the difficulty in getting enough representative samples of the faulty patterns and the need to manually label them. This work presents a methodology to develop a robust inspection system, targeting these peculiarities, in the context of solar cell manufacturing. The methodology is divided into two phases: In the first phase, an anomaly detection model based on a Generative Adversarial Network (GAN) is employed. This model enables the detection and localization of anomalous patterns within the solar cells from the beginning, using only non-defective samples for training and without any manual labeling involved. In a second stage, as defective samples arise, the detected anomalies will be used as automatically generated annotations for the supervised training of a Fully Convolutional Network that is capable of detecting multiple types of faults. The experimental results using 1873 Electroluminescence (EL) images of monocrystalline cells show that (a) the anomaly detection scheme can be used to start detecting features with very little available data, (b) the anomaly detection may serve as automatic labeling in order to train a supervised model, and (c) segmentation and classification results of supervised models trained with automatic labels are comparable to the ones obtained from the models trained with manual labels. Full article
Show Figures

Figure 1

14 pages, 2596 KiB  
Article
An Online Data-Driven Fault Diagnosis Method for Air Handling Units by Rule and Convolutional Neural Networks
by Huanyue Liao, Wenjian Cai, Fanyong Cheng, Swapnil Dubey and Pudupadi Balachander Rajesh
Sensors 2021, 21(13), 4358; https://doi.org/10.3390/s21134358 - 25 Jun 2021
Cited by 21 | Viewed by 5310
Abstract
The stable operation of air handling units (AHU) is critical to ensure high efficiency and to extend the lifetime of the heating, ventilation, and air conditioning (HVAC) systems of buildings. In this paper, an online data-driven diagnosis method for AHU in an HVAC [...] Read more.
The stable operation of air handling units (AHU) is critical to ensure high efficiency and to extend the lifetime of the heating, ventilation, and air conditioning (HVAC) systems of buildings. In this paper, an online data-driven diagnosis method for AHU in an HVAC system is proposed and elaborated. The rule-based method can roughly detect the sensor condition by setting threshold values according to prior experience. Then, an efficient feature selection method using 1D convolutional neural networks (CNNs) is proposed for fault diagnosis of AHU in HVAC systems according to the system’s historical data obtained from the building management system. The new framework combines the rule-based method and CNNs-based method (RACNN) for sensor fault and complicated fault. The fault type of AHU can be accurately identified via the offline test results with an accuracy of 99.15% and fast online detection within 2 min. In the lab, the proposed RACNN method was validated on a real AHU system. The experimental results show that the proposed RACNN improves the performance of fault diagnosis. Full article
Show Figures

Figure 1

21 pages, 5227 KiB  
Article
The Promise of Sleep: A Multi-Sensor Approach for Accurate Sleep Stage Detection Using the Oura Ring
by Marco Altini and Hannu Kinnunen
Sensors 2021, 21(13), 4302; https://doi.org/10.3390/s21134302 - 23 Jun 2021
Cited by 67 | Viewed by 43042
Abstract
Consumer-grade sleep trackers represent a promising tool for large scale studies and health management. However, the potential and limitations of these devices remain less well quantified. Addressing this issue, we aim at providing a comprehensive analysis of the impact of accelerometer, autonomic nervous [...] Read more.
Consumer-grade sleep trackers represent a promising tool for large scale studies and health management. However, the potential and limitations of these devices remain less well quantified. Addressing this issue, we aim at providing a comprehensive analysis of the impact of accelerometer, autonomic nervous system (ANS)-mediated peripheral signals, and circadian features for sleep stage detection on a large dataset. Four hundred and forty nights from 106 individuals, for a total of 3444 h of combined polysomnography (PSG) and physiological data from a wearable ring, were acquired. Features were extracted to investigate the relative impact of different data streams on 2-stage (sleep and wake) and 4-stage classification accuracy (light NREM sleep, deep NREM sleep, REM sleep, and wake). Machine learning models were evaluated using a 5-fold cross-validation and a standardized framework for sleep stage classification assessment. Accuracy for 2-stage detection (sleep, wake) was 94% for a simple accelerometer-based model and 96% for a full model that included ANS-derived and circadian features. Accuracy for 4-stage detection was 57% for the accelerometer-based model and 79% when including ANS-derived and circadian features. Combining the compact form factor of a finger ring, multidimensional biometric sensory streams, and machine learning, high accuracy wake-sleep detection and sleep staging can be accomplished. Full article
Show Figures

Figure 1

24 pages, 24258 KiB  
Review
Towards Supply Chain Visibility Using Internet of Things: A Dyadic Analysis Review
by Shehzad Ahmed, Tahera Kalsoom, Naeem Ramzan, Zeeshan Pervez, Muhammad Azmat, Bassam Zeb and Masood Ur Rehman
Sensors 2021, 21(12), 4158; https://doi.org/10.3390/s21124158 - 17 Jun 2021
Cited by 43 | Viewed by 9041
Abstract
The Internet of Things (IoT) and its benefits and challenges are the most emergent research topics among academics and practitioners. With supply chains (SCs) gaining rapid complexity, having high supply chain visibility (SCV) would help companies ease the processes and reduce complexity by [...] Read more.
The Internet of Things (IoT) and its benefits and challenges are the most emergent research topics among academics and practitioners. With supply chains (SCs) gaining rapid complexity, having high supply chain visibility (SCV) would help companies ease the processes and reduce complexity by improving inaccuracies. Extant literature has given attention to the organisation’s capability to collect and evaluate information to balance between strategy and goals. The majority of studies focus on investigating IoT’s impact on different areas such as sustainability, organisational structure, lean manufacturing, product development, and strategic management. However, research investigating the relationships and impact of IoT on SCV is minimal. This study closes this gap using a structured literature review to critically analyse existing literature to synthesise the use of IoT applications in SCs to gain visibility, and the SC. We found key IoT technologies that help SCs gain visibility, and seven benefits and three key challenges of these technologies. We also found the concept of Supply 4.0 that grasps the element of Industry 4.0 within the SC context. This paper contributes by combining IoT application synthesis, enablers, and challenges in SCV by highlighting key IoT technologies used in the SCs to gain visibility. Finally, the authors propose an empirical research agenda to address the identified gaps. Full article
(This article belongs to the Special Issue Industry 4.0 and Smart Manufacturing)
Show Figures

Figure 1

50 pages, 3716 KiB  
Review
A Review of Nanocomposite-Modified Electrochemical Sensors for Water Quality Monitoring
by Olfa Kanoun, Tamara Lazarević-Pašti, Igor Pašti, Salem Nasraoui, Malak Talbi, Amina Brahem, Anurag Adiraju, Evgeniya Sheremet, Raul D. Rodriguez, Mounir Ben Ali and Ammar Al-Hamry
Sensors 2021, 21(12), 4131; https://doi.org/10.3390/s21124131 - 16 Jun 2021
Cited by 63 | Viewed by 11636
Abstract
Electrochemical sensors play a significant role in detecting chemical ions, molecules, and pathogens in water and other applications. These sensors are sensitive, portable, fast, inexpensive, and suitable for online and in-situ measurements compared to other methods. They can provide the detection for any [...] Read more.
Electrochemical sensors play a significant role in detecting chemical ions, molecules, and pathogens in water and other applications. These sensors are sensitive, portable, fast, inexpensive, and suitable for online and in-situ measurements compared to other methods. They can provide the detection for any compound that can undergo certain transformations within a potential window. It enables applications in multiple ion detection, mainly since these sensors are primarily non-specific. In this paper, we provide a survey of electrochemical sensors for the detection of water contaminants, i.e., pesticides, nitrate, nitrite, phosphorus, water hardeners, disinfectant, and other emergent contaminants (phenol, estrogen, gallic acid etc.). We focus on the influence of surface modification of the working electrodes by carbon nanomaterials, metallic nanostructures, imprinted polymers and evaluate the corresponding sensing performance. Especially for pesticides, which are challenging and need special care, we highlight biosensors, such as enzymatic sensors, immunobiosensor, aptasensors, and biomimetic sensors. We discuss the sensors’ overall performance, especially concerning real-sample performance and the capability for actual field application. Full article
(This article belongs to the Special Issue Sensors for Environmental and Life Science Applications)
Show Figures

Graphical abstract

51 pages, 13680 KiB  
Review
Roadmap of Terahertz Imaging 2021
by Gintaras Valušis, Alvydas Lisauskas, Hui Yuan, Wojciech Knap and Hartmut G. Roskos
Sensors 2021, 21(12), 4092; https://doi.org/10.3390/s21124092 - 14 Jun 2021
Cited by 156 | Viewed by 13233
Abstract
In this roadmap article, we have focused on the most recent advances in terahertz (THz) imaging with particular attention paid to the optimization and miniaturization of the THz imaging systems. Such systems entail enhanced functionality, reduced power consumption, and increased convenience, thus being [...] Read more.
In this roadmap article, we have focused on the most recent advances in terahertz (THz) imaging with particular attention paid to the optimization and miniaturization of the THz imaging systems. Such systems entail enhanced functionality, reduced power consumption, and increased convenience, thus being geared toward the implementation of THz imaging systems in real operational conditions. The article will touch upon the advanced solid-state-based THz imaging systems, including room temperature THz sensors and arrays, as well as their on-chip integration with diffractive THz optical components. We will cover the current-state of compact room temperature THz emission sources, both optolectronic and electrically driven; particular emphasis is attributed to the beam-forming role in THz imaging, THz holography and spatial filtering, THz nano-imaging, and computational imaging. A number of advanced THz techniques, such as light-field THz imaging, homodyne spectroscopy, and phase sensitive spectrometry, THz modulated continuous wave imaging, room temperature THz frequency combs, and passive THz imaging, as well as the use of artificial intelligence in THz data processing and optics development, will be reviewed. This roadmap presents a structured snapshot of current advances in THz imaging as of 2021 and provides an opinion on contemporary scientific and technological challenges in this field, as well as extrapolations of possible further evolution in THz imaging. Full article
(This article belongs to the Special Issue Terahertz Imaging and Sensors)
Show Figures

Figure 1

33 pages, 2356 KiB  
Review
Data-Driven Fault Diagnosis for Electric Drives: A Review
by David Gonzalez-Jimenez, Jon del-Olmo, Javier Poza, Fernando Garramiola and Patxi Madina
Sensors 2021, 21(12), 4024; https://doi.org/10.3390/s21124024 - 10 Jun 2021
Cited by 50 | Viewed by 6343
Abstract
The need to manufacture more competitive equipment, together with the emergence of the digital technologies from the so-called Industry 4.0, have changed many paradigms of the industrial sector. Presently, the trend has shifted to massively acquire operational data, which can be processed to [...] Read more.
The need to manufacture more competitive equipment, together with the emergence of the digital technologies from the so-called Industry 4.0, have changed many paradigms of the industrial sector. Presently, the trend has shifted to massively acquire operational data, which can be processed to extract really valuable information with the help of Machine Learning or Deep Learning techniques. As a result, classical Condition Monitoring methodologies, such as model- and signal-based ones are being overcome by data-driven approaches. Therefore, the current paper provides a review of these data-driven active supervision strategies implemented in electric drives for fault detection and diagnosis (FDD). Hence, first, an overview of the main FDD methods is presented. Then, some basic guidelines to implement the Machine Learning workflow on which most data-driven strategies are based, are explained. In addition, finally, the review of scientific articles related to the topic is provided, together with a discussion which tries to identify the main research gaps and opportunities. Full article
Show Figures

Figure 1

21 pages, 9233 KiB  
Article
Multi-Sensor and Decision-Level Fusion-Based Structural Damage Detection Using a One-Dimensional Convolutional Neural Network
by Shuai Teng, Gongfa Chen, Zongchao Liu, Li Cheng and Xiaoli Sun
Sensors 2021, 21(12), 3950; https://doi.org/10.3390/s21123950 - 8 Jun 2021
Cited by 40 | Viewed by 3445
Abstract
This paper presents a novel approach to substantially improve the detection accuracy of structural damage via a one-dimensional convolutional neural network (1-D CNN) and a decision-level fusion strategy. As structural damage usually induces changes in the dynamic responses of a structure, a CNN [...] Read more.
This paper presents a novel approach to substantially improve the detection accuracy of structural damage via a one-dimensional convolutional neural network (1-D CNN) and a decision-level fusion strategy. As structural damage usually induces changes in the dynamic responses of a structure, a CNN can effectively extract structural damage information from the vibration signals and classify them into the corresponding damage categories. However, it is difficult to build a large-scale sensor system in practical engineering; the collected vibration signals are usually non-synchronous and contain incomplete structure information, resulting in some evident errors in the decision stage of the CNN. In this study, the acceleration signals of multiple acquisition points were obtained, and the signals of each acquisition point were used to train a 1-D CNN, and their performances were evaluated by using the corresponding testing samples. Subsequently, the prediction results of all CNNs were fused (decision-level fusion) to obtain the integrated detection results. This method was validated using both numerical and experimental models and compared with a control experiment (data-level fusion) in which all the acceleration signals were used to train a CNN. The results confirmed that: by fusing the prediction results of multiple CNN models, the detection accuracy was significantly improved; for the numerical and experimental models, the detection accuracy was 10% and 16–30%, respectively, higher than that of the control experiment. It was demonstrated that: training a CNN using the acceleration signals of each acquisition point and making its own decision (the CNN output) and then fusing these decisions could effectively improve the accuracy of damage detection of the CNN. Full article
(This article belongs to the Special Issue Sensors for Structural Damage Identification)
Show Figures

Figure 1

Back to TopTop